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BOUNDED AND PERIODIC SOLUTIONS

OF INHOMOGENEOUS LINEAR EVOLUTION EQUATIONS

Trinh Viet Duoc

Abstract. The purpose of this paper is to prove unique existence of

bounded solution and periodic solution to inhomogeneous linear evolution
equations which trajectories of these solutions belong to given admissible

Banach function space.

1. Introduction

The qualitative theory of linear differential equations

u′(t) = A(t)u(t) + f(t),

is always interesting and attractive topic. In finite-dimensional space, we can
mention to the pioneering works of Lyapunov and Perron which characterise
exponential stability and exponential dichotomy of linear differential equations,
and Floquet theory to periodic linear differential equations. Most of the qual-
itative results to linear differential equations in finite-dimensional space are
extended to Banach spaces with contributions of Daleckii, Krein, Massera,
Schäffer, Bohl, Levitan, Zhikov,. . .. For more details about the qualitative the-
ory of linear differential equations in Banach spaces, we refer the reader to [5,9].
In the case A(t) ≡ A is the generator operator of a C0-semigroup, the existence
of bounded solution and periodic solution were proved by Kato, Naito and Shin
[8].

In this paper, we consider inhomogeneous linear evolution equationsu(t) = U(t, s)u(s) +

∫ t

s

U(t, ξ)f(ξ)dξ for t ≥ s,

u(s) = x ∈ X,

where (U(t, s))t≥s is a family evolution on Banach space X (see Definition 2.2)
and f : R → X, this is a generalized form to linear differential equations.
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Therefore, the qualitative results to linear evolution equations will also hold
for linear differential equations.

The aim of the paper is to show that the inhomogeneous linear evolution
equations have bounded solution and periodic solution uniquely in Banach
space E with each f ∈ E . To perform this aim, we use the concept of admissible
Banach function space which was introduced in [7] and assume that the family
evolution (U(t, s))t≥s has exponential dichotomy on Banach space X.

Given a Banach space X and an admissible Banach function space E then
we can define Banach space E (see Definition 2.1). The Banach space E is more
general than bounded function space (Cb(R, X)), e.g., the norm of a solution
trajectory of evolution equations can be boundedness or belong to Lp(R), or any
an admissible Banach function space. Therefore, to study qualitative properties
for evolution equations we can completely replace bounded function space by
Banach space E . This replacement can be considered the main contribution of
our work.

The outline of the paper is as follows. In the second section, we recall the
concept and some basic properties of admissible Banach function space and
evolution family. The last section, we prove the unique existence of bounded
solution and periodic solution in Banach space E . These results are generaliza-
tions to the similar results presented in [5,12]. The unique existence of bounded
solution is shown by using properties of admissible Banach function space. Us-
ing Massera’s philosophy and properties of admissible Banach function space,
we get the unique existence of periodic solution.

2. Admissible Banach function spaces and evolution family

2.1. Admissible Banach function spaces

Denote by B the Borel σ-algebra, λ the Lebesgue measure on R and L1,loc(R)
the space of real-valued locally integrable functions on R (modulo λ-null-
functions). As already known, this space becomes a Fréchet space with the

countable family of seminorms given by pn(f) :=
∫ n+1

n
|f(t)|dt with n ∈ Z. We

can now define Banach function spaces as follows.

Definition. A vector space E of real-valued Borel-measurable functions on R
is called a Banach function space if:

i. E is a Banach lattice with respect to a norm ‖ · ‖E , i.e., (E, ‖ · ‖E) is
a Banach space and if ϕ ∈ E, and ψ is a real-valued Borel-measurable
function such that |ψ(·)| ≤ |ϕ(·)|, then ψ ∈ E and ‖ψ‖E ≤ ‖ϕ‖E .

ii. If A ∈ B has finite measure, then the characteristic function χA ∈ E.
iii. E ↪→ L1,loc(R), supt∈R ‖χ[t,t+1]‖E <∞ and inft∈R ‖χ[t,t+1]‖E > 0.

Given a Banach space X on the field K (K = R or C), we define Banach
space E corresponding to Banach function space E and Banach space X as
follows.
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Definition. Let E be a Banach function space and X be a Banach space
endowed with the norm ‖ · ‖. The set

E := E(R, X) = {f : R→ X | f is strongly measurable and ‖f(·)‖ ∈ E},
endowed with the norm ‖f‖E = ‖‖f(·)‖‖E is a Banach space. We call E the
Banach space corresponding to the Banach function space E and the Banach
space X.

We now introduce the notion of admissibility in the following definition.

Definition. The Banach function space E is called admissible if:

(i) There is a constant M ≥ 1 such that∫ b

a

|ϕ(t)|dt ≤ M(b− a)

‖χ[a,b]‖E
‖ϕ‖E

for any compact interval [a, b] ⊂ R and for all ϕ ∈ E.

(ii) For ϕ ∈ E the function Λ1ϕ defined by Λ1ϕ(t) =
∫ t+1

t
ϕ(τ)dτ belongs to

E.
(iii) E is T+

τ -invariant and T−τ -invariant for τ ∈ R+, where T+
τ and T−τ are

defined by

T+
τ ϕ(t) = ϕ(t− τ), T−τ ϕ(t) = ϕ(t+ τ).

(iv) The linear operators T+
τ , T−τ are uniformly bounded, i.e., there are posi-

tive constants N1, N2 such that

‖T+
τ ‖ ≤ N1, ‖T−τ ‖ ≤ N2 for all τ ∈ R+.

Example 2.1. The Banach function spaces Lp(R), 1 ≤ p ≤ ∞ are admissible.
Besides, the space

M(R) :=

{
f ∈ L1,loc(R) : sup

t∈R

∫ t+1

t

|f(τ)|dτ <∞
}
,

endowed with the norm ‖f‖M := supt∈R
∫ t+1

t
|f(τ)|dτ and many other function

spaces occurring in interpolation theory, e.g., the Lorentz spaces Lp, q(R), 1 <
p <∞, 1 ≤ q ≤ ∞ are also admissible.

Remark 2.2. One can easily see that if E is an admissible Banach function
space, then E ↪→M(R).

We now state some properties of admissible Banach function spaces in the
following proposition.

Proposition 2.3. Let E be an admissible Banach function space. Then the
following assertions hold.

(a) Let ϕ ∈ L1,loc(R) be such that ϕ ≥ 0 and Λ1ϕ ∈ E, where Λ1ϕ is defined
as in Definition 2.1(ii). For σ > 0, we define functions Λσϕ and Λ̄σϕ by

Λσϕ(t) =

∫ t

−∞
e−σ(t−s)ϕ(s)ds, Λ̄σϕ(t) =

∫ ∞
t

e−σ(s−t)ϕ(s)ds.
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Then, Λσϕ and Λ̄σϕ belong to E and satisfy the following estimates:

‖Λσϕ‖E ≤
N1

1− e−σ
‖Λ1ϕ‖E and ‖Λ̄σϕ‖E ≤

N2

1− e−σ
‖Λ1ϕ‖E .

Moreover, if supt∈R
∫ t+1

t
ϕ(τ) dτ <∞ (this will be satisfied if ϕ ∈ E (see

Remark 2.2)), then Λσϕ and Λ̄σϕ are bounded.
(b) E contains exponentially decaying functions ψ(t) = e−α|t| for any con-

stant α > 0.
(c) E does not contain exponentially growing functions f(t) = eβt for any

constant β 6= 0.

Proof. The proof of this proposition is the same as in [7, Proposition 2.6]. We
present it here for the sake of completeness.

(a) We have

Λσϕ(t) =

∞∑
k=0

∫ t−k

t−(k+1)

e−σ(t−s)ϕ(s)ds

≤
∞∑
k=0

e−σk
∫ t−k

t−(k+1)

ϕ(s)ds =
∞∑
k=0

e−σkT+
k+1Λ1ϕ(t),

Λ̄σϕ(t) =

∞∑
k=0

∫ t+k+1

t+k

e−σ(s−t)ϕ(s)ds

≤
∞∑
k=0

e−σk
∫ t+k+1

t+k

ϕ(s)ds =

∞∑
k=0

e−σkT−k Λ1ϕ(t).

On the other hand, we have the following estimates.
∞∑
k=0

e−σk‖T+
k+1Λ1ϕ‖E ≤

∞∑
k=0

e−σkN1‖Λ1ϕ‖E =
N1

1− e−σ
‖Λ1ϕ‖E ,

∞∑
k=0

e−σk‖T−k Λ1ϕ‖E ≤
∞∑
k=0

e−σkN2‖Λ1ϕ‖E =
N2

1− e−σ
‖Λ1ϕ‖E .

Therefore, two series
∑∞
k=0 e

−σkT+
k+1Λ1ϕ(t) and

∑∞
k=0 e

−σkT−k Λ1ϕ(t) are ab-
solutely convergent in the Banach function space E. By Banach lattice prop-
erty, we have Λσϕ, Λ̄σϕ ∈ E and

‖Λσϕ‖E ≤
N1

1− e−σ
‖Λ1ϕ‖E and ‖Λ̄σϕ‖E ≤

N2

1− e−σ
‖Λ1ϕ‖E .

Take E = L∞(R), by supt∈R
∫ t+1

t
ϕ(τ) dτ <∞ so Λσϕ and Λ̄σϕ are bounded.

(b) Because of χ[0,1] ∈ E, v := Λαχ[0,1] + Λ̄αχ[0,1] ∈ E. We have

v(t) =


e−αt(eα−1)

α , t ≥ 1,
eαt(1−e−α)

α , t ≤ 0,
1−e−αt

α + 1−e−α(1−t)

α , t ∈ (0, 1).
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Therefore, eα|t|v(t) ≥ 1−e−α
α for all t ∈ R. The Banach lattice property implies

e−α|t| ∈ E.
(c) Assume that f(t) = eβt ∈ E. Then, there exists a K > 0 such that

‖f‖M ≤ K‖f‖E (see Remark 2.2). So,

eβt(eβ − 1)

β
≤ K‖f‖E for all t ∈ R.

This contradicts with limt→∞
eβt(eβ−1)

β =∞ or limt→−∞
eβt(eβ−1)

β =∞. Thus,

eβt /∈ E. �

2.2. Evolution family

Definition. A family of bounded linear operators (U(t, s))t≥s on a Banach
space X is a (strongly continuous, exponential bounded) evolution family if:

(i) U(t, t) = Id and U(t, r)U(r, s) = U(t, s) for all t ≥ r ≥ s.
(ii) The map (t, s) 7→ U(t, s)x is continuous for every x ∈ X.
(iii) There are constants K, c ≥ 0 such that ‖U(t, s)x‖ ≤ Kec(t−s)‖x‖ for all

t ≥ s and x ∈ X.

The notion of an evolution family arises naturally from the theory of non-
autonomous evolution equations which are well-posed on the real line. This
means that if the abstract Cauchy problem

(1)

{
u′(t) = A(t)u(t), t ≥ s,
u(s) = x,

is well-posed, there exists an evolution family (U(t, s))t≥s such that the solution
of the Cauchy problem (1) is given by u(t) = U(t, s)u(s) for every u(s) ∈
D(A(s)). For more details on the notion of evolution family, conditions for the
existence of such family and applications to partial differential equations we
refer the readers to Pazy [12], Nagel and Nickel [11]. The next is the property
of exponential dichotomy of evolution family which we will use in later section.

Definition. An evolution family (U(t, s))t≥s is said that have an exponential
dichotomy on R if there exist one family of projections (P (t))t∈R and positive
constants N, β such that the following conditions are fulfilled:

(i) P (t)U(t, s) = U(t, s)P (s) for t ≥ s.
(ii) U(t, s)|KerP (s) is an isomorphism from KerP (s) onto KerP (t) for all t ≥ s.

Denote the inverse of U(t, s)|KerP (s) by U(s, t)|, s ≤ t.
(iii) For all t ≥ s and x ∈ X, the following estimates hold:

‖U(t, s)P (s)x‖ ≤ Ne−β(t−s)‖P (s)x‖,

‖U(s, t)|(Id− P (t))x‖ ≤ Ne−β(t−s)‖(Id− P (t))x‖.

The projections P (t), t ∈ R are called the dichotomy projections, and the con-
stants N, β are the dichotomy constants.
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Remark 2.4. The family of dichotomy projections P (t) is strongly continuous
and uniformly bounded on R, the proof is the same as in [10, Lemma 4.2].

As evolution family (U(t, s))t≥s on the Banach space X has an exponential
dichotomy on R, we can define the Green function as follows:

(2) G(t, s) =

{
U(t, s)P (s) for t > s,
−U(t, s)|(Id− P (s)) for t < s.

Thus, we have the following estimates.

‖G(t, s)‖ ≤ NHe−β|t−s| for all t 6= s,

where H = sup{‖P (t)‖, ‖Id − P (t)‖ : t ∈ R}. On the other hand, at each
time t ∈ R then Banach space X is decomposed to direct sum of two closed
subspaces

X = Xs(t)⊕Xu(t),

where Xs(t) = P (t)X, Xu(t) = (Id− P (t))X.

3. Bounded and periodic solutions

Given an evolution family (U(t, s))t≥s on Banach space X and a function
f : R → X, in the section we will study the following inhomogeneous linear
evolution equation

(3)

u(t) = U(t, s)u(s) +

∫ t

s

U(t, ξ)f(ξ)dξ for t ≥ s,

u(s) = x ∈ X.

Note that if evolution family (U(t, s))t≥s is generated by the Cauchy problem
(1), then a solution u(t) of Eq. (3) is called mild solution of the differential
equation {

u′(t) = A(t)u(t) + f(t), t ≥ s,
u(s) = x.

We will now characterise solution formula of Eq. (3) in the Banach space E
in below theorem.

Theorem 3.1. Let evolution family (U(t, s))t≥s have exponential dichotomy
and function f ∈ E. Then, Eq. (3) has a unique solution in the Banach space
E and it has the formula as follows:

(4) u(t) =

∫ ∞
−∞
G(t, τ)f(τ)dτ, t ∈ R,

where G(t, τ) is Green function and defined by (2). Moreover, this solution is
bounded.
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Proof. Because of f ∈ E , ϕ(t) := ‖f(t)‖ ∈ E. Put y(t) =
∫∞
−∞ G(t, τ)f(τ)dτ ,

using estimate of operator G(t, τ) we have

‖y(t)‖ ≤ NH
∫ ∞
−∞

e−β|t−τ |ϕ(τ)dτ = NH(Λβϕ(t) + Λ̄βϕ(t)).

So, y(t) is defined for all t ∈ R. Moreover, by Proposition 2.3(a) and the
Banach lattice property of E we obtain y ∈ E and

‖y‖E ≤
NH(N1 +N2)‖Λ1ϕ‖E

1− e−β
.

Besides that y(t) is also bounded and ‖y‖∞ ≤ NH(N1+N2)‖Λ1ϕ‖∞
1−e−β .

By directly computing, we easily see that y is a solution on R of Eq. (3).
Next, we show that y is unique solution of Eq. (3) in the Banach space E . Let
u be another solution of Eq. (3) in the Banach space E . For each fixed s ∈ R
and for t > s, project Eq. (3) onto Xu(t) we obtain

(Id− P (t))u(t) = U(t, s)(Id− P (s))u(s) +

∫ t

s

U(t, τ)(Id− P (τ))f(τ)dτ.

Since U(t, s)|KerP (s) is an isomorphism from KerP (s) onto KerP (t),

U(s, t)|(Id− P (t))u(t)−
∫ t

s

U(s, τ)|(Id− P (τ))f(τ)dτ = (Id− P (s))u(s).

On the other hand,
∫∞
−∞ G(s, τ)f(τ)dτ converges absolutely in Banach space

X. Therefore, there exists x ∈ X such that limt→∞ U(s, t)|(Id−P (t))u(t) = x.
If x 6= 0, then there exists T > s such that

‖x‖
2
≤ NHe−β(t−s)‖u(t)‖

for all t ≥ T . This implies eβt‖x‖ ≤ 2NHeβs‖u(t)‖ for all t ≥ T . Put
z(t) = eβt‖x‖ if t ≥ T and z(t) = 0 if otherwise. By Banach lattice property
and ‖u(t)‖ ∈ E, we obtain z(t) ∈ E. Since E ↪→M(R),

sup
t≥T

∫ t+1

t

eβτ‖x‖dτ <∞.

However, this contradicts with supt≥T
∫ t+1

t
eβτ‖x‖dτ =∞. So,

lim
t→∞

U(s, t)|(Id− P (t))u(t) = 0.

Thus,

(Id− P (s))u(s) = −
∫ ∞
s

U(s, τ)|(Id− P (τ))f(τ)dτ.

For t < s, Eq. (3) is rewritten as follows

u(s) = U(s, t)u(t) +

∫ s

t

U(s, τ)f(τ)dτ.
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Project the above equation onto Xs(s) we obtain

P (s)u(s) = U(s, t)P (t)u(t) +

∫ s

t

U(s, τ)P (τ)f(τ)dτ.

By the similar argument as above, we have limt→−∞ U(s, t)P (t)u(t) = 0.
Therefore,

P (s)u(s) =

∫ s

−∞
U(s, τ)P (τ)f(τ)dτ.

So, for each fixed s ∈ R then we have

P (s)u(s) =

∫ s

−∞
U(s, τ)P (τ)f(τ)dτ,

(Id− P (s))u(s) = −
∫ ∞
s

U(s, τ)|(Id− P (τ))f(τ)dτ.

Thus, u(s) = y(s) for all s ∈ R. �

So, for each f ∈ E then Eq. (3) has a unique solution in Banach space E and
this solution is bounded on R. A natural question poses: if f ∈ E is periodic,
then does Eq. (3) have a unique periodic solution in Banach space E? Of course,
the periodicity of evolutionary family (U(t, s))t≥s is imperative when studying
this question, i.e., there exists T > 0 such that U(t+ T, s+ T ) = U(t, s) for all
t ≥ s. Since the solution in Theorem 3.1 is bounded, we will answer the above
question using Massera’s method.

Theorem 3.2. Let evolution family (U(t, s))t≥s have exponential dichotomy.
Assume that evolution family (U(t, s))t≥s and function f ∈ E are periodic with
the same period T , and one of the following conditions holds:

(i) 1 /∈ σ(U(T, 0));
(ii) X is a reflexive Banach space;
(iii) X is the dual to some separable Banach space Z, i.e., X = Z∗, and

U(T, 0)∗Z ⊂ Z with U(T, 0)∗ is an adjoint operator of U(T, 0).

Then, Eq. (3) has a unique periodic solution in the Banach space E and its
formula defined by (4).

Proof. Firstly, we prove that Eq. (3) has a periodic solution with period T on
[0,∞). We have

u(t+ T )− u(t) = U(t, 0)(u(T )− u(0))

for all t ≥ 0. Therefore, the solution u(t) of Eq. (3) is periodic on [0,+∞) if
and only if u(T ) = u(0).

If (i) holds, then

u(0) = (I − U(T, 0))−1

∫ T

0

U(T, τ)f(τ)dτ.
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Otherwise, since (ii) and (iii) have the same way of proof, we only prove the
existence of u(0) in the case X being reflexive Banach space. To perform this
work, we define Poincaré mapping P : X → X as follows:

Px = U(T, 0)x+

∫ T

0

U(T, τ)f(τ)dτ, x ∈ X.

Denoting y(t) is a bounded solution on R of Eq. (3) corresponding to f ∈ E .
By chain property of solution, we have Pny(0) = y(nT ) for all n ≥ 1. Take
Cesàro average of sequence {Pny(0)},

Pn :=
1

n

n∑
m=1

Pmy(0).

Therefore,

Pn+1 − Pn =
1

n

(
Pn+1y(0)− Pn+1

)
.

Because y(t) is bounded, two sequences {Pny(0)} and {Pn} are also bounded.
Thus,

(5) lim
n→∞

(Pn+1 − Pn) = 0.

Since X is reflexive, there exist a subsequence {Pnk} and y ∈ X such that

Pnk
weak−→ y, i.e.,

〈Pnk − y, g〉 → 0 for all g ∈ X∗,
where 〈·, ·〉 is dual pair. On the other hand, we have

PPn = Pn −
1

n
Py(0) +

1

n
Pn+1y(0) =

n+ 1

n
Pn+1 −

1

n
Py(0).

Thus,

lim
n→∞

(PPn − Pn+1) = 0.

For g ∈ X∗, we also have

〈PPnk − Py, g〉 = 〈U(T, 0)(Pnk − y), g〉 = 〈Pnk − y, U(T, 0)∗g〉 → 0,

where U(T, 0)∗ is an adjoint operator of U(T, 0). So,

〈Pnk+1 − Py, g〉 = 〈Pnk+1 − PPnk , g〉+ 〈PPnk − Py, g〉 → 0.

Combining with (5), we obtain

〈y − Py, g〉 = lim
k→∞

[
〈y − Pnk , g〉+ 〈Pnk − Pnk+1, g〉+ 〈Pnk+1 − Py, g〉

]
= 0

for all g ∈ X∗. Therefore, Py = y. So, Eq. (3) has a periodic solution with
period T on [0,∞) when one of the above three conditions holds, and this
solution is defined by the formula

u(t) = U(t, 0)y +

∫ t

0

U(t, τ)f(τ)dτ for all t ≥ 0.
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Let v(t) be the periodic extension with period T of the function u(t) on the
line. Next, we show that v(t) is a periodic solution on R of Eq. (3). Indeed, if
s ≥ 0, then

v(t) = u(t) = U(t, s)u(s) +

∫ t

s

U(t, τ)f(τ)dτ = U(t, s)v(s) +

∫ t

s

U(t, τ)f(τ)dτ

for all t ≥ s. If s < 0, then there exists k ∈ N such that s+ kT ≥ 0, for t ≥ s
we have

v(t) = v(t+ kT ) = u(t+ kT )

= U(t+ kT, s+ kT )u(s+ kT ) +

∫ t+kT

s+kT

U(t+ kT, τ)f(τ)dτ

= U(t, s)v(s) +

∫ t

s

U(t+ kT, τ + kT )f(τ + kT )dτ

= U(t, s)v(s) +

∫ t

s

U(t, τ)f(τ)dτ.

So, Eq. (3) has a periodic solution with period T on R. Because v(t) is bounded
on R, we obtain

lim
t→∞

U(s, t)|(Id− P (t))v(t) = 0 = lim
t→−∞

U(s, t)P (t)v(t),

with similar discussion as in the proof of Theorem 3.1. Therefore, v is defined
by the formula (4). So, v ∈ E and is unique periodic solution. �

We now give an example to illustrate the theoretical results.

Example 3.3. Consider the following differential equation:

(6)


∂
∂tu(t, x) = a(t)

(
∂2

∂x2u(t, x) + ru(t, x)
)

+ x2 cos t, for t ≥ s, x ∈ [0, 1],

u(t, 0) = u(t, 1) = 0, t ≥ s,
u(s, x) = u0(x), s ∈ R, x ∈ [0, 1].

Assume that r > 0 and r 6= n2π2 for all n ∈ N, a : R→ R+ is periodic with

the period 2π such that a ∈M(R) and m := inft∈R
∫ t+1

t
a(τ)dτ > 0.

Let X = L2[0, 1], E = M(R) and define

A(t)u = a(t)Au in which Au = u′′ + ru,

D(A(t)) = D(A) = {u ∈ H2[0, 1] : u(0) = u(1) = 0}.

We know that A generates an analytic semigroup (T (t))t≥0 (see [6, Chap. II]).
Therefore, the family of operators A(t) also generate an evolution family which
have the following form

U(t, s) = T
(∫ t

s

a(τ)dτ
)
, t ≥ s.
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By the spectral mapping theorem for analytic semigroups and the spectrum of
A is the set

σ(A) = {−π2 + r,−22π2 + r, . . . ,−n2π2 + r, . . . },

the analytic semigroup (T (t))t≥0 is hyperbolic. Thus, the evolution family
(U(t, s))t≥s has exponential dichotomy.

The equation (6) is now rewritten as follows:{
d
dtu(t, ·) = A(t)u(t, ·) + f(t) for t ≥ s,
u(s, ·) = u0(·) ∈ X, s ∈ R,

where f : R→ X is defined by

f(t)(x) = x2 cos t.

Put v(t) = u(t, ·) for t ∈ R. Then, the mild solution of above Cauchy problem
is solution of evolution equation

(7) v(t) = U(t, s)u0 +

∫ t

s

U(t, τ)f(τ)dτ, t ≥ s.

Since a is a periodic function, U(t, s) = T
(∫ t

s
a(τ)dτ

)
is also periodic with the

period 2π. On the other hand, the mapping f : R → X is periodic with the
period 2π and

ϕ(t) = ‖f(t)‖2 =
1√
5
| cos t| ∈M(R).

According to Theorem 3.2, the equation (7) has unique periodic solution.

From the above example we see that the model in this paper is generalized
form for some concrete models. Therefore, the quantitative properties obtained
in the paper are general. So, a concrete model will has these properties if it
satisfies the assumptions in the paper. But in reality, to prove the exponential
dichotomy of an evolution family corresponding to a particular model aris-
ing from physics and mechanics, e.g. [2–4], is not easy and must be studied
carefully. For instance, Beniani et al. proved the well-posedness of the linear
coupled Lamé system in the paper [1], this means that this system generates
an evolution family. A natural question arises: under what conditions does it
have exponential dichotomy? The same problems pose for linearized part of
the models in the articles [2–4]. These are interesting open works in the near
future.
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[12] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equa-

tions, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. https:

//doi.org/10.1007/978-1-4612-5561-1

Trinh Viet Duoc
Faculty of Mathematics, Mechanics, and Informatics

VNU University of Science
334 Nguyen Trai, Hanoi, Vietnam

and

Thang Long Institute of Mathematics and Applied Sciences
Nghiem Xuan Yem, Hanoi, Vietnam
Email address: tvduoc@gmail.com, duoctv@vnu.edu.vn

https://doi.org/10.1016/j.camwa.2018.03.037
https://doi.org/10.1186/s13661-020-01471-9
https://doi.org/10.1186/s13661-020-01471-9
https://doi.org/10.1002/mma.7073
https://doi.org/10.1002/mma.7073
https://doi.org/10.1002/mma.7121
https://doi.org/10.1016/j.jfa.2005.11.002
https://doi.org/10.1016/j.jfa.2005.11.002
https://doi.org/10.1007/BF01203774
https://doi.org/10.1007/BF01203774
https://doi.org/10.1007/978-1-4612-5561-1
https://doi.org/10.1007/978-1-4612-5561-1

