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SUBADDITIVE SEPARATING MAPS BETWEEN REGULAR
BANACH FUNCTION ALGEBRAS

FERESHTEH SADY AND YOUSEF ESTAREMI

ABSTRACT. In this note we extend the results of [3] concerning subaddi-
tive separating maps from A = C(X) to B = C(Y), for compact Haus-
dorff spaces X and Y, to the case where A and B are regular Banach
function algebras (not necessarily unital) with A satisfying Ditkin’s con-
dition. In particular we describe the general form of these maps and get
a result on continuity of separating linear functionals.

1. Introduction and preliminaries

Let A and B be two spaces of functions (or any arbitrary algebras). A map
H between A and B is called separating (or disjointness preserving) if f.g =0
implies H(f) - H(g) = 0 for all f, g € A. Clearly any algebra homomor-
phism between two algebras is separating. Weighted composition operators are
important typical examples of separating maps between spaces of functions.
Moreover, if A and B are both lattices then every lattice homomorphism is a
separating map.

The study of separating maps between different spaces of functions (as well
as operator algebras) has attracted a considerable interest in recent years, see
for example (1, 2, 3, 4, 6, 8, 9]. The general form of linear separating maps
between algebras of continuous functions on compact Hausdorff spaces were
considered in [7]. Later on in [6] Font extended the results to certain regu-
lar Banach function algebras and considered automatic continuity problem on
these linear maps. He proved that all separating linear maps between certain
regular Banach function algebras are weighted composition operators (on a
subset) and linear isometries between regular uniform algebras are automati-
cally separating. For a survey on this topic one can refer to [10]. But very little
is known about separating maps between non-normable topological algebras,
see for instance [1] for a discussion on additive biseparating maps (bijective
separating maps whose inverses are also separating) between C(X) and C(Y),
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where X and Y are completely regular spaces and [9] for characterizing linear
separating maps on algebras of differentiable functions on an open subset of
R".

On the other hand, the well known results concerning linear separating maps
from C(X) to C(Y), for compact Hausdorff spaces X and Y, have been ex-
tended to not necessarily linear case in [3]. In this paper we revisit the results
of [3] and extend some of them to more general cases. In particular we describe
the general form of subadditive separating maps between regular Banach func-
tion algebras and conclude a continuity result on separating linear functionals.

Let A be a commutative Banach algebra with or without identity. The
maximal ideal space of A, which is denoted by m(A4), is a locally compact
Hausdorff space with respect to Gelfand topology. For an element z in A, let
& € Co(m(A)) be its Gelfand transform. We denote the unitization of A by
Aq, which is a commutative unital Banach algebra containing A as an ideal.
Moreover, m(A;) is the one-point compactification of m(A4).

A commutative Banach algebra A is said to be regular if for any closed subset
E of m(A) and any point ¢ € m(A)\E, there exists an element z € A such
that #(¢) =1and £ =0on E.

By a Banach function algebra on a locally compact Hausdorff space X we
mean a subalgebra A of Cyp(X) separating the points of X strongly such that
A is a Banach algebra under some topology and the A-topology on X is the
given topology. Here “separating strongly” means that A separates the points
of X and for each # € X there exists an element f in A with f(z) # 0.

Clearly each Banach function algebra is commutative and semisimple. In
fact, each commutative semisimple Banach algebra can be considered, through
the Gelfand transform, as a Banach function algebra on its maximal ideal space.
We note that if (A, ] -|l4) is a Banach function algebra on a locally compact
Hausdorff space X then || [|oc < || - |4, where || - ||oo is the supremum norm on
X. For each z € X we use the notation é,, for the evaluation homomorphism
at = defined on a Banach function algebra on X.

A commutative semisimple Banach algebra (A, ||.]|) is said to satisfy Ditkin’s
condition, if for any ¢ € m(A) U {0} and z € A with Z(¢) = 0 there exists a
sequence {z,} in A such that each %, is zero on a neighborhood of ¢ and

|z — z||—0.

Clearly for a locally compact Hausdorfl space X, Co(X) is an example of a
regular Banach function algebra on X satisfying Ditkin’s condition, another
examples are as follow :

- The Banach algebra lip(X, a) of all Lipschitz functions f of order a

(e € (0,1)) on a compact metric space (X, d) such that limﬁdﬁ%)ﬂ2

= 0 as d(z,y)—0, under the usual Lipschitz norm [5, Theorems 4.4.24,
4.4.30].
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- For any locally compact abelian group G, Fourier Algebra A(G) on G
[5, Theorem 4.5.18], and in general each Segal algebra on G [11].

- The algebras AC(I) and BV C(I) of all absolutely continuous func-
tions and of continuous functions of bounded variations on unit interval

I = [0, 1] respectively which are endowed with the following norms [5,
Theorem 4.4.35]:

1
1flac = 17 1loe + / F&)lds  (f € AC(D))
U llvar = £l + var(f)  (f € BVOWD))

2. Main results

Throughout this section (A4, -]|4) and (B, || -||5) are Banach function alge-
bras on their maximal ideal spaces X and Y respectively. Hence, for any f € A
and ¢ € X we may use f(z) instead of f(z).

Let X and Y, be the one-point compactifications of X and Y respectively.
Given an element f € A C Cp(X) let coz(f) denote the cozero set of f, i.e.,
coz(f) = {x € X : f(z) # 0}. For a subset E in X, clx_ (E) stands for the
closure of E in X.

For a separating map H : A— B (without any linearity assumption) let us
define the set Yo = {y € Y : Hf(y) # 0 for some f € A}. Clearly Y5 is an open
subset of Y and since H is separating it is easily seen that H0 = 0 on Yj.

The standard tools in dealing with separating maps are vanishing sets defined
in the following. The definition in not necessarily linear case is the same as in
linear case.

Definition 2.1. Let H : A— B be a separating map and let y € Y;. An open
subset U of X, is called a vanishing set for 6, 0 H if for each f € A, coz(f) CU
implies 6, o H(f) = 0. The support of §, o H is then defined by

supp dy o H = X\ U{V C X : V is a vanishing set for d, o H}.

Using the following standard proposition, we will see that for a certain sep-
arating map H, supp d, o H is a singleton, for all y € Y.

Proposition 2.2. Let A be a reqular commutative unital Banach algebra. Then
for any finite open covering {U;}?_, of m(A) there exist elementsey, ... e, € A
such that supp é; CU;, 1 <i<n, and > . & = 1.

Before stating our results we need the following definition borrowed from

[3].

Definition 2.3. A map T : A—B is called pointwise subadditive if for each
g€ Aandy €Y,

IT(f + 9 W < ITFW)| +Tg(y)l.
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Theorem 2.4. If A is regular and H : A—B is a pointwise subadditive
separating map, then for every y € Yo the set suppd, o H is a singleton.

Proof. The proof is a modification of [3, Theorem 4.2]. Let y € Yy and first
assume that the set supp 6, o H is empty. Then Xo, = UU, where {Uq }4 is the

family of all vanishing sets for §, o H (we note that since HO|y, = 0, the empty
set is clearly a vanishing set). By compactness of X, we can choose vanishing
sets Uy,...,U, for 6, o H such that X, = {J;_, U;. Using Proposition 2.2,
there exist elements fy,..., f, € A; with clx_(coz(f;)) CU;, 1 £¢ < n, and
>r fi=1on Xe. In particular, for every f € A, f = > ., ff;- Note that
ffi€ A, 1<i< n,since Ais an ideal in A;. Obviously coz(f f;) C Ui, so that
H(ff)(y) =0,1 < i< n. Hence by pointwise subadditivity of H,

\Hf)| = 1HO f£:) W) <D IH(ff) @) =0
=1 =1

for all f € A, which contradicts to y being in Y.
Now a similar argument to [3, Theorem 4.2] can be applied to show that,
indeed, for each y € Yj, supp d, o H contains exactly one point, as desired. [0

Definition 2.5. Under the hypothesis of the preceding theorem we can cor-
respond to each y € Yy an element h(y) € X, which is the unique point of
supp d, o H. We call the mapping A : Yp— X, defined in this way the support
map of H.

The following result can also be obtained with minor modifications of [3,
Theorem 4.3], so we omit its proof.

Theorem 2.6. Let A be regular and H : A— B be a pointwise subadditive
separating map. Then

a) h(coz(Hf)) Celx, (coz{f)), for all f € A,
b) {h(y)} = méyoH(f);éO ClXoo (COZ(f)), yE Yo.

Before stating more properties of the support map h of a pointwise subad-

ditive separating map H, let we define the following concept introduced in a
special case in [3].
Definition 2.7. Let A be regular and H : A— B be a pointwise subadditive
separating map with the support map h. Then we call H strongly pointwise
subadditive if for each y € Y there exists M, > 0 and for each scalar ¢ there
exists 6., (depending on ¢ and y) such that

[Hf(y) — Hg(y)l < My|H(f - g)(y)l
holds for all f,g € A with f(h(y)) = c and |f(h(y)) — g(h(y))| < bc,y-

Significant examples of pointwise and strongly pointwise subadditive sepa-
rating maps can be found in [3]. In the following we shall show that under
strongly pointwise subadditivity condition, the support map h will be contin-
uous.
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Lemma 2.8. Let A be reqular and H : A~ B be a strongly pointwise subad-
ditive separating map. Then

a) if f,g € A and f = g on a neighborhood U in X, then Hf = Hg on
h=1(U).

b) the support map h: Yo— X of H is continuous.

c) if H is injective then h(Yy) is dense in Xoo.

Proof. a) Let y € Y, and let U be an open neighborhood of hA(y) in Xo.. We
first consider the case where f € A and f = 0 on U. By definition of h, for
each z € X, \U there exists a vanishing set U, for é, o H containing . Choose
by compactness of X, \U, finitely many vanishing sets Uy,...,U, such that
X \U C UL, U;. Set Unpy1 = U, by Proposition 2.2 there exist elements
e1,...,ens1 € Ay, the unitization of A, such that coz(e;) CU;, 1 <i<n+1,
and Z?jll e; = 1. Clearly, fe; € A, for all 4, and fe,.1 = 0. Hence
n+1 n+1

Hf@) = [HY fe)@) < S 1H(fe) ) = 0
=1 i=1

that is Hf = HO on h~1(U).

We now consider the general case. Let f,g € A and f = g on a neighborhood
U in X,. By the above argument H(f —g) = H0 on h~1(U) and since HO = 0
on Yy, this means that H(f — g) = 0 on h=1(U). For y € h™1(U) let M, and
O (h(y)),y be as in Definition 2.7. Then since by hypothesis | f(h(y)) —g(h(y))| =
0 < d¢(n(y)),y We conclude that |H(f(y) — Hg(y)| < My|H(f — g)(y)| = 0 that
is Hf(y) = Hg(y) as claimed.

b) Let y € Y; and let U be an open neighborhood of hA(y) in Xo. By
definition of Yy we can find an element f € A with Hf(y) # 0. Since X
is compact, clx_ (V) C U for some open neighborhood V of h(y) in Xe.
Choose by regularity of A; an element g € A; such that g = 1 on V and
g =0o0n X \U. Since fg,f € Aand fg = f on V, it follows from (a) that
H(fg)(y) = Hf(y) # 0. Therefore coz(H(fg)) is an open neighborhood of y
in Y5. By Theorem 2.6(a), h(coz(H(fg)) C clx_coz(fg) C clx. (U), that is h
is continuous at y.

¢) Suppose that U is a non-empty open neighborhood in X, and choose by
regularity of A a non-zero element f € A with clx_ (coz(f)) C U. Since H is
assumed to be injective, H f(y) # 0, for some y € Yp. Now Theorem 2.6(a)

shows that h(y) € clx_ (coz(f)), that is h(Yy) NU # ¢. Hence h(Yp) is dense
in Xeo. O

Theorem 2.9. Let A be reqular and H : A— B be a strongly pointwise sub-
additive separating map. If A satisfies Ditkin’s condition then h(y) € X, when
y € Yy is such that 0, o H is || - || a-continuous.

Proof. Assume on the contrary that y € Y, and d, o H is || - || s-continuous but
h(y) € X, that is, h(y) = co. Hence for all f € A, f(h(y)) = 0. Let f € A
be chosen such that H f(y) # 0, then since A satisfies Ditkin’s condition, there
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exist a sequence {f,} in A and a sequence {U,} of open neighborhoods of h(y)
in X, such that f, =0on U,, n € N, and ||fof — f||la—0. By continuity
of 6, o H we conclude that H(f,.f)(y)—H(f)(y). Note also for each n € N,
faf = 0 on U,, hence it follows from Lemma 2.8 that H(f,f)(y) = 0, for all
n, which is a contradiction. O

Now we are ready to present the general form of a strongly pointwise sub-
additive separating map H : A~ B as a generalized composition map (in the
sense of the next theorem). Let us first fix some notations. Let A be regular
and H : A— B be a strongly pointwise subadditive separating map. Assume
y € h7(X) and U is an open neighborhood of h(y) in X with compact closure
in X. By regularity of A we can choose an element e, 7 € A such that e, iy =1
on U. It follows from Lemma 2.8(a) that for each scalar a, H(aeyv)(y) is
independent on the choice of U and e, i.

Theorem 2.10. Let A be regular satisfying Ditkin’s condition and let
H : A— B be a strongly pointwise subadditive separating map.
SetY.={yeYy:8,0H is||-|la— continuous}. If y € Y. then Hf(y) =
H(f(h(y))-e,,0)(y) for all f € A.

Proof. Assume first that y € Y. and f € A such that f(h(y)) = 0. Since A
satisfies Ditkin’s condition, there exists a sequence {f,} in A such that each
fn is zero on a neighborhood U, of h(y) and ||f fn — f||a—0. Hence ff, =0
on U, n € N, and by Lemma 2.8(a) H(ff,)(y) = 0, for all n. Consequently
Hf(y) =8, 0 H(f) = im3, 0 H(ff,) = 0 = HO(y).

We now pass to the general case. Let y € Y, and f € A. By preceding the-
orem h(y) € X. Consider an open neighborhood U of h(y) in X with compact
closure in X and then e, ;; as above. Obviously (f — f(h(y))ey,v)(h(y)) =0 <
07 (h(y)),y» Where d(p(y)),y is chosen by strongly pointwise subadditivity of H.
The above argument shows that H(f — f(h(y))ey,v)(y) = 0. Let M, be as in
Definition 2.7, then

|H f(y) — H(f(h(y))ey,0) ()| < My|H(f — f(h(y))ey,u) )| =0
that is H f(y) = H(f(h(y))ey,v)(y) as desired. O

Remark. The above result has been proved in [6, Proposition 5] when A is just
regular, H is linear and the set Y, is defined by

Y.={yeY :4§,0His| - ||co-continuous}.

But in the proof of Proposition 4 in [6] there is a small gap. In this proof, Font
first associates to each n € N and f € A a pair of closed subsets U,, and K, of
Xoo (where K, is indeed compact) and then using the regularity of 4 he gives a
sequence {g,} in A such that g,|x, = 1 and g,|u, =0, n € N. Since we do not
know whether the absolute values of all g,’s are less than 1 ( or any common
bound), the convergence || fg, — f||oc—>0 is not clear. Indeed, we do not know
nothing about the values of g,, at the points belonging to U,\K,. The same
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problem exists in the proof of Proposition 5 in [6]. Any way the above theorem
shows that if A satisfies Ditkin’s condition and if we define Y, as the set of all
y € Yo such that § o H is ||.||4-continuous (instead of ||.||sc-continuous ) then
the same conclusion holds. But, on the other hand Corollary 2.13 below shows,
in particular, that if A is regular and satisfies Ditkin’s condition then for any
linear separating map H : A— B and each y € Y, 8, o H is ||.||so-continuous
if and only if it is ||.|| a-continuous.

The converse of the preceding theorem has been proved in [3] when X and Y’
are compact Hausdorff spaces, 4 = C(X), B=C(Y) and H : C(X)—C(Y)
is a strongly pointwise subadditive separating map which is 1-bounded in the
sense that there exists a scalar D > 0 such that

1H (al)lloo < Dlal.||H1]

for all scalars a.

The following definition is an extension of the above concept for not neces-
sarily unital Banach function algebras.

Definition 2.11. Let A be regular. We call a strongly pointwise subadditive
separating map H : A—B locally I-bounded, if there exists a scalar D > 0
such that for each y € Y we can choose a neighborhood U of h(y) and an
appropriate element e, iy in A with e,y = 1 on U such that ||H(ae, v)llp <
Dial|.||H(ey,v)||B for all scalars a.

Theorem 2.12. Let A, B and H be as in Theorem 2.10. If H is locally
I-bounded and y € Yy, then y € Y, if and only if

(1) Hf(y) = H(f(h(y)).ey,u)(y)
holds for oll f € A.

Proof. We first recall that as it was noted earlier, for each y € Yy, the value
H(f(h(y))-ey,v)(y) in (1) is independent on the choice of U and e, r.

The “only if” part is a consequence of Theorem 2.10.

Conversely assume that y € ¥ and that (1) holds for all f € A. Let {f,} be
a sequence in A converging to f € A and let d(,(y)),y and My, be as in Definition
2.7 and D be as in Definition 2.11. Then [|fn — flloo < Ifn — flla < 05ny))
for all sufficiently large n. Hence, for a suitable choice of e, ;; and sufficiently
large n we have

l‘syOH(fn)_‘syoH(f”

|H fnly) — Hf(y)l < My|H(fn — ) ()

My|H((fn = F)(R(y))-ey,0) W)

My[|H((fn = £)(A(y))-ey,v)llB

MyD|fa(h(y)) = f(h(y))I- | H{eyv)ll5
)

e
)
||B —0.
This shows that §, o H is ||.|| a-continuous, i.e., y € V... O

IN A IA A

MyD||fn = fllallH(ey.u
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Corollary 2.13. Let A, B and H be as in Theorem 2.10. If H is locally 1-
bounded then for each y € Yy, &, o H is ||.||a-continuous iff 6y o H is ||.||oo-
continuous.

Proof. If y € Y, then by the preceding theorem relation (1) in this theorem
holds, for all f € A. Now let {f,} be a sequence in A converging to f € A in
sup-norm. Then for sufficiently large n we have

|Hf(y) — Hfn(y)l < MylH(f - fn)()]
= [H((f(h()) — fn(h(®)))-€y,u) W)l
NH((f () = fn(R(v)))-ey,0)llB

<
< DI(f = f) (R H (ey,0)ll B

where D and M, are as in Definitions 2.11 and 2.7. This relation obviously

shows that 6, o H(fn)—8, o H(f), that is 6, o H is ||.||cc-continuous.
Conversely if y € Yy is such that §, o H is ||.|lcc-continuous then since

[I-la > ||-llco We conclude that y € Y. O
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