• Title/Summary/Keyword: BMO spaces

Search Result 27, Processing Time 0.025 seconds

POINTWISE ESTIMATES AND BOUNDEDNESS OF GENERALIZED LITTLEWOOD-PALEY OPERATORS IN BMO(ℝn)

  • Wu, Yurong;Wu, Huoxiong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.851-864
    • /
    • 2015
  • In this paper, we study the generalized Littlewood-Paley operators. It is shown that the generalized g-function, Lusin area function and $g^*_{\lambda}$-function on any BMO function are either infinite everywhere, or finite almost everywhere, respectively; and in the latter case, such operators are bounded from BMO($\mathbb{R}^n$) to BLO($\mathbb{R}^n$), which improve and generalize some previous results.

COMMUTATORS OF THE MAXIMAL FUNCTIONS ON BANACH FUNCTION SPACES

  • Mujdat Agcayazi;Pu Zhang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1391-1408
    • /
    • 2023
  • Let M and M# be Hardy-Littlewood maximal operator and sharp maximal operator, respectively. In this article, we present necessary and sufficient conditions for the boundedness properties for commutator operators [M, b] and [M#, b] in a general context of Banach function spaces when b belongs to BMO(?n) spaces. Some applications of the results on weighted Lebesgue spaces, variable Lebesgue spaces, Orlicz spaces and Musielak-Orlicz spaces are also given.

THE CHARACTERISATION OF BMO VIA COMMUTATORS IN VARIABLE LEBESGUE SPACES ON STRATIFIED GROUPS

  • Liu, Dongli;Tan, Jian;Zhao, Jiman
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.547-566
    • /
    • 2022
  • Let T be a bilinear Calderón-Zygmund operator, $b{\in}U_q>_1L^q_{loc}(G)$. We firstly obtain a constructive proof of the weak factorisation of Hardy spaces. Then we establish the characterization of BMO spaces by the boundedness of the commutator [b, T]j in variable Lebesgue spaces.

On the Restrictions of BMO

  • Kang, Hyeon-Bae;Seo, Jin-Keun;Shim, Yong-Sun
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.703-707
    • /
    • 1994
  • Since John and Nirenberg introduced the BMO in early 1960 [JN], it has been one of the most significant function spaces. The significance of BMO lies in the fact that BMO is a limiting space of $L^p (p \longrightarrow \infty)$, or a proper substitute of $L^\infty$. A dual statement of this would be that the Hardy space $H^1$ is a proper substitute of $L^1$.

  • PDF

WEAK FACTORIZATIONS OF H1 (ℝn) IN TERMS OF MULTILINEAR FRACTIONAL INTEGRAL OPERATOR ON VARIABLE LEBESGUE SPACES

  • Zongguang Liu;Huan Zhao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1439-1451
    • /
    • 2023
  • This paper provides a constructive proof of the weak factorizations of the classical Hardy space H1(ℝn) in terms of multilinear fractional integral operator on the variable Lebesgue spaces, which the result is new even in the linear case. As a direct application, we obtain a new proof of the characterization of BMO(ℝn) via the boundedness of commutators of the multilinear fractional integral operator on the variable Lebesgue spaces.

CHARACTERIZATION OF FUNCTIONS VIA COMMUTATORS OF BILINEAR FRACTIONAL INTEGRALS ON MORREY SPACES

  • Mao, Suzhen;Wu, Huoxiong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1071-1085
    • /
    • 2016
  • For $b{\in}L^1_{loc}({\mathbb{R}}^n)$, let ${\mathcal{I}}_{\alpha}$ be the bilinear fractional integral operator, and $[b,{\mathcal{I}}_{\alpha}]_i$ be the commutator of ${\mathcal{I}}_{\alpha}$ with pointwise multiplication b (i = 1, 2). This paper shows that if the commutator $[b,{\mathcal{I}}_{\alpha}]_i$ for i = 1 or 2 is bounded from the product Morrey spaces $L^{p_1,{\lambda}_1}({\mathbb{R}}^n){\times}L^{p_2,{\lambda}_2}({\mathbb{R}}^n)$ to the Morrey space $L^{q,{\lambda}}({\mathbb{R}}^n)$ for some suitable indexes ${\lambda}$, ${\lambda}_1$, ${\lambda}_2$ and $p_1$, $p_2$, q, then $b{\in}BMO({\mathbb{R}}^n)$, as well as that the compactness of $[b,{\mathcal{I}}_{\alpha}]_i$ for i = 1 or 2 from $L^{p_1,{\lambda}_1}({\mathbb{R}}^n){\times}L^{p_2,{\lambda}_2}({\mathbb{R}}^n)$ to $L^{q,{\lambda}}({\mathbb{R}}^n)$ implies that $b{\in}CMO({\mathbb{R}}^n)$ (the closure in $BMO({\mathbb{R}}^n)$of the space of $C^{\infty}({\mathbb{R}}^n)$ functions with compact support). These results together with some previous ones give a new characterization of $BMO({\mathbb{R}}^n)$ functions or $CMO({\mathbb{R}}^n)$ functions in essential ways.

INTRINSIC SQUARE FUNCTIONS ON FUNCTIONS SPACES INCLUDING WEIGHTED MORREY SPACES

  • Feuto, Justin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1923-1936
    • /
    • 2013
  • We prove that the intrinsic square functions including Lusin area integral and Littlewood-Paley $g^*_{\lambda}$-function as defined by Wilson, are bounded in a class of function spaces include weighted Morrey spaces. The corresponding commutators generated by BMO functions are also considered.