DOI QR코드

DOI QR Code

THE CHARACTERISATION OF BMO VIA COMMUTATORS IN VARIABLE LEBESGUE SPACES ON STRATIFIED GROUPS

  • Liu, Dongli (Department of Mathematics and Physics Shijiazhuang Tiedao University, School of Mathematical Sciences Beijing Normal University) ;
  • Tan, Jian (School of Science Nanjing University of Posts and Telecommunications) ;
  • Zhao, Jiman (School of Mathematical Sciences Beijing Normal University)
  • Received : 2020.12.07
  • Accepted : 2022.01.17
  • Published : 2022.05.31

Abstract

Let T be a bilinear Calderón-Zygmund operator, $b{\in}U_q>_1L^q_{loc}(G)$. We firstly obtain a constructive proof of the weak factorisation of Hardy spaces. Then we establish the characterization of BMO spaces by the boundedness of the commutator [b, T]j in variable Lebesgue spaces.

Keywords

Acknowledgement

The authors would like to express great gratitude to the referees for their careful reading of the manuscript and their valuable comments which improve the presentation of this article.

References

  1. M. Bramanti, Commutators of integral operators with positive kernels, Matematiche (Catania) 49 (1994), no. 1, 149-168.
  2. M. Bramanti and M. C. Cerutti, Commutators of singular integrals and fractional integrals on homogeneous spaces, in Harmonic analysis and operator theory (Caracas, 1994), 81-94, Contemp. Math., 189, Amer. Math. Soc., Providence, RI, 1995. https://doi.org/10.1090/conm/189/02257
  3. L. Chaffee, Commutators of multilinear singular integral operators with pointwise multiplication, Thesis (Ph.D.), University of Kansas, 2015.
  4. S. Chanillo, A note on commutators, Indiana Univ. Math. J. 31 (1982), no. 1, 7-16. https://doi.org/10.1512/iumj.1982.31.31002
  5. X. Chen and Q. Xue, Weighted estimates for a class of multilinear fractional type operators, J. Math. Anal. Appl. 362 (2010), no. 2, 355-373. https://doi.org/10.1016/j.jmaa.2009.08.022
  6. R. R. Coifman, R. Rochberg, and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), no. 3, 611-635. https://doi.org/10.2307/1970954
  7. D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical Harmonic Analysis, Birkhauser/Springer, Heidelberg, 2013. https://doi.org/10.1007/978-3-0348-0548-3
  8. D. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Perez, The boundedness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 1, 239-264.
  9. D. Cruz-Uribe and L.-A. D. Wang, Variable Hardy spaces, Indiana Univ. Math. J. 63 (2014), no. 2, 447-493. https://doi.org/10.1512/iumj.2014.63.5232
  10. X. T. Duong, H. Li, J. Li, and B. D. Wick, Lower bound of Riesz transform kernels and commutator theorems on stratified nilpotent Lie groups, J. Math. Pures Appl. (9) 124 (2019), 273-299. https://doi.org/10.1016/j.matpur.2018.06.012
  11. J. Fang and J. Zhao, Variable Hardy spaces on the Heisenberg group, Anal. Theory Appl. 32 (2016), no. 3, 242-271. https://doi.org/10.4208/ata.2016.v32.n3.4
  12. G. B. Folland and E. M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, 28, Princeton University Press, Princeton, NJ, 1982.
  13. X. Fu, D. Yang, and W. Yuan, Generalized fractional integrals and their commutators over non-homogeneous metric measure spaces, Taiwanese J. Math. 18 (2014), no. 2, 509-557. https://doi.org/10.11650/tjm.18.2014.3651
  14. L. Grafakos and R. H. Torres, Multilinear Calderon-Zygmund theory, Adv. Math. 165 (2002), no. 1, 124-164. https://doi.org/10.1006/aima.2001.2028
  15. Z. Guo, P. Li, and L. Peng, Lp boundedness of commutators of Riesz transforms associated to Schrodinger operator, J. Math. Anal. Appl. 341 (2008), no. 1, 421-432. https://doi.org/10.1016/j.jmaa.2007.05.024
  16. P. A. Hasto, Local-to-global results in variable exponent spaces, Math. Res. Lett. 16 (2009), no. 2, 263-278. https://doi.org/10.4310/MRL.2009.v16.n2.a5
  17. G. Hu, Y. Meng, and D. Yang, Multilinear commutators of singular integrals with non doubling measures, Integral Equations Operator Theory 51 (2005), no. 2, 235-255. https://doi.org/10.1007/s00020-003-1251-y
  18. S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Mat. 16 (1978), no. 2, 263-270. https://doi.org/10.1007/BF02386000
  19. O. Kovacik and J. Rakosnik, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J. 41(116) (1991), no. 4, 592-618.
  20. P. Li and L. Peng, Lp boundedness of commutator operator associated with Schrodinger operators on Heisenberg group, Acta Math. Sci. Ser. B (Engl. Ed.) 32 (2012), no. 2, 568-578. https://doi.org/10.1016/S0252-9602(12)60039-3
  21. J. Li and B. D. Wick, Weak factorizations of the Hardy space H1(ℝn) in terms of multilinear Riesz transforms, Canad. Math. Bull. 60 (2017), no. 3, 571-585. https://doi.org/10.4153/CMB-2017-033-9
  22. Y. Liang, L. D. Ky, and D. Yang, Weighted endpoint estimates for commutators of Calderon-Zygmund operators, Proc. Amer. Math. Soc. 144 (2016), no. 12, 5171-5181. https://doi.org/10.1090/proc/13130
  23. H. Lin, S. Wu, and D. Yang, Boundedness of certain commutators over non-homogeneous metric measure spaces, Anal. Math. Phys. 7 (2017), no. 2, 187-218. https://doi.org/10.1007/s13324-016-0136-6
  24. L. Liu, D. Chang, X. Fu, and D. Yang, Endpoint boundedness of commutators on spaces of homogeneous type, Appl. Anal. 96 (2017), no. 14, 2408-2433. https://doi.org/10.1080/00036811.2017.1341628
  25. Z. Liu and S. Lu, Two-weight weak-type norm inequalities for the commutators of fractional integrals, Integral Equations Operator Theory 48 (2004), no. 3, 397-409. https://doi.org/10.1007/s00020-002-1237-1
  26. D. Liu, J. Tan, and J. Zhao, Multilinear commutators in variable Lebesgue spaces on stratified groups, in Analysis of pseudo-differential operators, 97-120, Trends Math, Birkhauser/Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-05168-6_5
  27. H. Liu and L. Tang, Compactness for higher order commutators of oscillatory singular integral operators, Internat. J. Math. 20 (2009), no. 9, 1137-1146. https://doi.org/10.1142/S0129167X09005698
  28. G. Lu, S. Lu, and D. Yang, Singular integrals and commutators on homogeneous groups, Anal. Math. 28 (2002), no. 2, 103-134. https://doi.org/10.1023/A:1016568918973
  29. E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal. 262 (2012), no. 9, 3665-3748. https://doi.org/10.1016/j.jfa.2012.01.004
  30. W. Orlicz, Uber konjugierte Exponentenfolgen, Stud. Math. 3 (1931), 200-211. https://doi.org/10.4064/sm-3-1-200-211
  31. C. Perez and R. H. Torres, Sharp maximal function estimates for multilinear singular integrals, in Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), 323-331, Contemp. Math., 320, Amer. Math. Soc., Providence, RI, 2003. https://doi.org/10.1090/conm/320/05615
  32. J. Tan, Z. Liu, and J. Zhao, On some multilinear commutators in variable Lebesgue spaces, J. Math. Inequal. 11 (2017), no. 3, 715-734. https://doi.org/10.7153/jmi2017-11-57
  33. J. Tan and J. Zhao, Rough fractional integrals and its commutators on variable Morrey spaces, C. R. Math. Acad. Sci. Paris 353 (2015), no. 12, 1117-1122. https://doi.org/10.1016/j.crma.2015.09.024
  34. A. Uchiyama, On the compactness of operators of Hankel type, Tohoku Math. J. (2) 30 (1978), no. 1, 163-171. https://doi.org/10.2748/tmj/1178230105
  35. H. Wang and Z. Liu, The wavelet characterization of Herz-type Hardy spaces with variable exponent, Ann. Funct. Anal. 3 (2012), no. 1, 128-141. https://doi.org/10.15352/afa/1399900030
  36. D. Yang, C. Zhuo, and W. Yuan, Triebel-Lizorkin type spaces with variable exponents, Banach J. Math. Anal. 9 (2015), no. 4, 146-202. https://doi.org/10.15352/bjma/09-4-9
  37. Y. Zhu and L. Liu, Weighted sharp boundedness for multilinear commutators of singular integral on spaces of homogeneous type, Vietnam J. Math. 39 (2011), no. 4, 381-390.