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INTRINSIC SQUARE FUNCTIONS ON FUNCTIONS SPACES

INCLUDING WEIGHTED MORREY SPACES

Justin Feuto

Abstract. We prove that the intrinsic square functions including Lusin
area integral and Littlewood-Paley g∗

λ
-function as defined by Wilson, are

bounded in a class of function spaces include weighted Morrey spaces.
The corresponding commutators generated by BMO functions are also
considered.

1. Introduction

The classical Morrey spaces were introduced by Morrey [13] in connection
with partial differential equations. We recall that a real-valued function f is
said to belong to the Morrey space Lq,λ on the n-dimensional Euclidean space
Rn provided the following norm is finite:

‖f‖Lq,λ :=

(

sup
(y,r)∈Rn×R

∗

+

rλ−n

∫

B(y,r)

|f(x)|q dx

)
1
q

.

Here 1 ≤ q < ∞, 0 < λ < n, R∗
+ = (0,∞) and B(y, r) is a ball in R

n centered
at y of radius r.

Chiarenza and Frasca [2] established the boundedness of the Hardy-Little-
wood maximal operator, the fractional operator and Calderón-Zygmund oper-
ator on these spaces. These operator are also bounded on Lebesgue spaces,
and in weighted Lebesgue space [3, 14].

Twenty years ago, Fofana introduced a class of function spaces compris-
ing Lebesgue and Morrey spaces [8]. Precisely, for 1 ≤ q ≤ p ≤ ∞, let
(Lq, Lp)(Rn) be the Wiener amalgam space of Lq(Rn) and Lp(Rn), i.e., the
space of measurable functions f : Rn → C which are locally in Lq(Rn) and
such that the function y 7→

∥

∥fχB(y,1)

∥

∥

q
belongs to Lp(Rn), where for r > 0,

B(y, r) = {x ∈ Rn/ |x− y| < r} is the open ball centered at y with radius r,
χB(y,r) its characteristic function and ‖·‖q denoting the usual Lebesgue norm

in Lq(Rn). As we can see in [11, 9], we have the following properties.
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• For 1 ≤ q ≤ p ≤ ∞, the space (Lq, Lp)(Rn) is a Banach space when it
is equipped with the norm

‖f‖q,p :=

(
∫

Rn

∥

∥fχB(y,1)

∥

∥

p

q

)
1
p

with the usual modification when p = ∞.
• The amalgam space (Lq, Lp) is equal to the Lebesgue space Lq with
equivalence norms, provided q = p, while for q ≤ s ≤ p, we have Ls(Rn)
continuously embedded in (Lq, Lp)(Rn).

In Lebesgue spaces Lq(Rn), it is well known that for r > 0 and x ∈ R
n,

the dilation operators δqr : f 7→ r
n
q f(r·) and the translation operators τx :

f 7→ f(· − x) are isometries. We use the usual convention that 1
∞ = 0. When

we consider the amalgam spaces (Lq, Lp)(Rn) with q < p, only translation
operators conserve this property. But it is easy to see that f ∈ (Lq, Lp) if and
only if we have

‖δαr f‖q,p < ∞

for all r > 0 and all α > 0. Notice that for 1 ≤ q, p, α ≤ ∞, r > 0 and α > 0,
we have

(1.1)

‖δαr f‖q,p = rn(
1
α
− 1

q
− 1

p
)

(∫

Rn

∥

∥fχB(y,r)

∥

∥

p

q
dy

)
1
p

≈

[∫

Rn

(

|B(y, r)|
1
α
− 1

q
− 1

p

∥

∥fχB(y,r)

∥

∥

q

)p

dy

]
1
p

,

1

where |B(y, r)| stands for the Lebesgue measure of the ball B(y, r). This brings
Fofana [8] to consider the subspace (Lq, Lp)α(Rn) of (Lq, Lp)(Rn) that consists
in measurable functions f such that ‖f‖q,p,α < ∞, where for 1 ≤ q, p, α ≤ ∞,

‖f‖q,p,α := sup
r>0

‖δαr f‖q,p .

As proved in [5, 7, 8], the spaces (Lq, Lp)α(Rn) are non trivial if and only if
q ≤ α ≤ p. In this case, for fixed 1 ≤ q < α and p varying from α to ∞, these
spaces form a chain of distinct Banach spaces beginning with Lebesgue space
Lα(Rn) and ending by the classical Morrey space Lq,nq

α (Rn) = (Lq, L∞)α(Rn).
More precisely, we have the following continuous injections

Lα(Rn) →֒ (Lq, Lp1)α(Rn) →֒ (Lq, Lp2)α(Rn) →֒ Lq,nq
α (Rn)

for q ≤ α < p1 < p2 < ∞. It is therefore interesting to know the behavior of
operators which are bounded on Lebesgue and Morrey spaces, on these spaces.

We proved in [1] that classical operators such as the Hardy-Littlewood max-
imal operator, the Calderón-Zygmund operator and Riesz potentials which are

1Hereafter we propose the following abbreviation A ≈ B for the inequalities C−1
A ≤

B ≤ CA, where C is a positive constant independent of the main parameters.
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known to be bounded in Lebesgue and Morrey spaces, are also bounded on
(Lq, Lp)

α

spaces (see also [6]).
In [15], Komori and Shirai considered the weighted Morrey spaces Lq,κ

w (Rn)
when studying the boundedness of Hardy-Littlewood and Calderón-Zygmund
operators.

Let 0 < κ < 1 and w a weight on Rn, i.e., a positive locally integrable
function on Rn. The weighted Morrey space Lq,κ

w (Rn), consists of measurable
functions f such that ‖f‖Lq,κ

w
< ∞, where

‖f‖Lq,κ
w

:= sup
B

(

1

w(B)κ

∫

B

|f(x)|q w(x)dx

)
1
q

.

These spaces generalize weighted Lebesgue spaces Lq
w(R

n), namely the space
consisting in measurable functions f satisfying

‖f‖qw :=

(∫

Rn

|f(x)|q w(x)dx

)
1
q

< ∞.

In this work, we consider for 1 ≤ q ≤ α ≤ p ≤ ∞ and a weight w, the space
(Lq

w, L
p)α(Rn) consists of measurable functions f such that ‖f‖qw ,p,α < ∞,

where

r ‖f‖qw,p,α :=

[∫

Rn

(

w(B(y, r))
1
α
− 1

q
− 1

p

∥

∥fχB(y,r)

∥

∥

qw

)p

dy

]
1
p

for r > 0, and
‖f‖qw,p,α := sup

r>0
r ‖f‖qw,p,α ,

with w(B(y, r)) =
∫

B(y,r)w(x)dx and the usual modification when p = ∞.

When w ≡ 1, we recover (Lq, Lp)α(Rn) spaces while for q < α and p = ∞, the
spaces (Lq

w, L
∞)α(Rn) are noting but the weighted Morrey spaces Lq,κ

w (Rn),
with κ = 1

q − 1
α . Wilson in [18] proved that for 1 < q < ∞ and 0 < γ ≤ 1,

the intrinsic square operators Sγ given by Relation (2.1), are bounded in the
weighted Lebesgue spaces Lq

w, whenever the weight w fulfilled the Aq con-
dition of Muckenhoupt. Wang extends this result to weighted Morrey spaces
Lq,κ
w (Rn). We prove here that these operators and others known to be bounded

on weighted Lebesgue and weighted Morrey spaces, are also bounded in the
more general setting of (Lq

w, L
p)α spaces.

This paper is organized as follows:
In Section 2, we recall the definitions of the operators we are going to consider

and recall the results on weighted Lebesgue and Morrey spaces. In Section 3
we state our results and in the last section we give their proofs.

Throughout the paper, the letter C is used for non-negative constants that
may change from one occurrence to another. The notation A <

∼ B will always
stand for A ≤ CB, where C is a positive constant independent of the main
parameters. For α > 0 and a ball B ⊂ Rn, we write αB for the ball with same
center as B and with radius α times radius of B. For any subset E of Rn, we
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denote Ec := Rn \ E the complement of E. We denote by N∗ the set of all
positive integers.

2. Definitions and known results

For 0 < γ ≤ 1, we denote by Cγ the family of function ϕ defined on Rn with
support in the closed unit ball B = {x ∈ Rn : |x| ≤ 1} and vanishing integral,
i.e.,

∫

Rn ϕ(x)dx = 0, and such that for all x, x′ ∈ Rn, |ϕ(x) − ϕ(x′)| ≤ |x− x′|γ .

Let Rn+1
+ = Rn×(0,∞) and ϕt(x) = t−nϕ(t−1x). The intrinsic square function

of f (of order γ) is defined by the formula

(2.1) Sγ(f)(x) =





∫

Γ(x)

(

sup
ϕ∈Cγ

|f ∗ ϕt(y)|

)2
dydt

tn+1





1
2

,

where for x ∈ R
n, Γ(x) denote the usual “cone of arperture one”,

Γ(x) =
{

(y, t) ∈ R
n+1
+ : |x− y| < t

}

.

For 1 < q < ∞ and 0 < γ ≤ 1, the operators Sγ are bounded on Lq
w(R

n)
provided w ∈ Aq [17]. We recall that a weight w is of class Aq or belongs to Aq

for 1 < q < ∞ if there exists a constant C > 0 such that for all balls B ⊂ Rn

we have

(2.2)

(

1

|B|

∫

B

w(x)dx

)(

1

|B|

∫

B

w
−1
q−1 (x)dx

)q−1

≤ C.

In the setting of weighted Morrey spaces one has the following.

Theorem 2.1 (Theorem 1.1 [16]). Let 0 < γ ≤ 1, 1 < q < ∞, 0 < κ < 1 and

w ∈ Aq. Then there exists C > 0 such that

(2.3) ‖Sγf‖Lq,κ
w

≤ C ‖f‖Lq,κ
w

.

We also define the intrinsic Littlewood-Paley g-function gγ(f) and g∗λ-func-
tion g∗λ,γ(f) by

gγ(f)(x) =





∫ ∞

0

(

sup
ϕ∈Cγ

|f ∗ ϕt(y)|

)2
dt

t





1
2

,

and

g∗λ,γ(f)(x) =





∫

R
n+1
+

(

t

t+ |x− y|

)λn
(

sup
ϕ∈Cγ

|f ∗ ϕt(y)|

)2
dydt

tn+1





1
2

,

respectively.

Theorem 2.2 (Theorem 1.3 [16]). Let 0 < γ ≤ 1, 1 < q < ∞, 0 < κ < 1 and

w ∈ Aq. If λ > max {q, 3}, then there exists C > 0 such that

(2.4)
∥

∥g∗λ,γf
∥

∥

Lq,κ
w

≤ C ‖f‖Lq,κ
w

.
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Let b be a locally integrable function. The commutator of b and Sγ is defined
by

[b, Sγ ] (f)(x) =

(

∫

Γ(x)

sup
ϕ∈Cγ

∣

∣

∣

∣

∫

Rn

(b(x)− b(z))ϕt(y − z)f(z)dz

∣

∣

∣

∣

2
dydt

tn+1

)
1
2

,

and the commutator of b and g∗λ,γ by
[

b, g∗λ,γ
]

(f)(x)

=

(

∫

R
n+1
+

(

t

t+ |x− y|

)λn

sup
ϕ∈Cγ

∣

∣

∣

∣

∫

Rn

(b(x) − b(z))ϕt(y − z)f(z)dz

∣

∣

∣

∣

2
dydt

tn+1

)
1
2

.

A locally integrable function b belongs to BMO(Rn) (bounded mean oscillation
functions) if ‖b‖BMO(Rn) < ∞, where

‖b‖BMO(Rn) := sup
B: ball

1

|B|

∫

B

|b(x)− bB| dx.

We have the following result in the context of weighted Lebesgue spaces.

Theorem 2.3 (Theorem 3.1 [16]). Let 0 < γ ≤ 1, 1 < q < ∞ and w ∈ Aq.

Then the commutators [b, Sγ ] and [b, g∗λ,γ ] are bounded on Lq
w(R

n) whenever

b ∈ BMO(Rn).

For weighted Morrey spaces, the following results are proved.

Theorem 2.4 (Theorem 1.2 [16]). Let 0 < γ ≤ 1, 1 < q < ∞, 0 < κ < 1 and

w ∈ Aq. Suppose that b ∈ BMO, then there exists C > 0 such that

‖[b, Sγ ] f‖Lq,κ
w

≤ C ‖f‖Lq,κ
w

.

Theorem 2.5 (Theorem 1.4 [16]). Let 0 < γ ≤ 1, 1 < q < ∞, 0 < κ < 1 and

w ∈ Aq. If b ∈ BMO(Rn) and λ > max {q, 3}, then there is a constant C > 0
independent of f such that

∥

∥

[

b, g∗λ,γ
]

(f)
∥

∥

Lq,κ
w

≤ C ‖f‖Lq,κ
w

.

3. Statement of our main results

Since our space at least for the case where the weight is equal to 1, is included
in Morrey spaces, we already know that the image is in the space of Morrey.
But what is shown is that if one has a slightly stronger assumption, then this
is also true for the image.

For the intrinsic square function Sγ , we have the following result.

Theorem 3.1. Let 0 < γ ≤ 1, 1 < q ≤ α < p ≤ ∞ and w ∈ Aq. The operators

Sγ are bounded in (Lq
w, L

p)α(Rn).

Theorem 2.1 is a particular case of this result. The next, concerning the
intrinsic Littlewood-Paley g∗λ-function is an extension of Theorem 2.2.
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Theorem 3.2. Let 0 < γ ≤ 1, 1 < q ≤ α < p ≤ ∞ and w ∈ Aq. If

λ > max {q, 3}, then there exists a constant C > 0 such that
∥

∥g∗λ,γ(f)
∥

∥

qw ,p,α
≤ C ‖f‖qw ,p,α

for all f ∈ (Lq
w, L

p)α(Rn).

Furthermore, we have the following results which are extensions of Theorems
2.4 and 2.5, respectively.

Theorem 3.3. Let 0 < γ ≤ 1, 1 < q ≤ α < p ≤ ∞ and w ∈ Aq. Suppose that

b ∈ BMO(Rn), then there exists a constant C > 0 not depending on f such

that

‖[b, Sγ ] (f)‖qw ,p,α ≤ C ‖f‖qw ,p,α

for all f ∈ (Lq
w, L

p)α(Rn).

Theorem 3.4. Let 0 < γ ≤ 1, 1 < q ≤ α < p ≤ ∞ and w ∈ Aq. If

b ∈ BMO(Rn) and λ > max {q, 3}, then there exists a constant C > 0 such

that
∥

∥

[

b, g∗λ,γ
]

(f)
∥

∥

qw ,p,α
≤ C ‖f‖qw ,p,α

for all f ∈ (Lq
w, L

p)α(Rn).

Since for any 0 < γ ≤ 1 the functions Sγ(f) and gγ(f) are pointwise compa-
rable (see [17]), as an immediate consequence of Theorems 3.1 and 3.3 we have
the following results.

Corollary 3.5. Let 0 < γ ≤ 1, 1 < q ≤ α < p ≤ ∞ and w ∈ Aq. The operator

gγ is bounded in (Lq
w, L

p)α(Rn).

Corollary 3.6. Let 0 < γ ≤ 1, 1 < q ≤ α < p ≤ ∞ and w ∈ Aq. Suppose that

b ∈ BMO(Rn), then there exists a constant C > 0 not depending on f such

that

‖[b, gγ ] (f)‖qw ,p,α ≤ C ‖f‖qw ,p,α

for all f ∈ (Lq
w, L

p)α(Rn).

The above corollaries are extensions of Corollary 1.5 and Corollary 1.6 of
[16], respectively.

4. Proof of the main results

We will need the following properties of Aq weights (see Proposition 9.1.5
and Theorem 9.2.2 [10]). Let w ∈ Aq for some 1 < q < ∞.

(1) For all λ > 1 and all balls B, we have

(4.1) w(λB) <∼ λnqw(B).
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(2) There exists a positive constant τ such that for every ball B, we have

(4.2)

(

1

|B|

∫

B

w(t)1+τdt

)
1

1+τ

<
∼

1

|B|

∫

B

w(t)dt,

and for any measurable subset E of a ball B, we have

(4.3)
w(E)

w(B)
<
∼

(

|E|

|B|

)
τ

1+τ

.

For our proofs, we use arguments as in [4].

Proof of Theorem 3.1. We fix r > 0 and let B = B(y, r) for some y ∈ Rn. We
write f = f1 + f2, with f1 = fχ2B. Since Sγ is a sublinear operator, we have

(4.4) ‖Sγ(f)χB‖qw ≤ ‖Sγ(f1)χB‖qw + ‖Sγ(f2)χB‖qw .

For the term in f1, we have

(4.5) ‖Sγ(f1)χB‖qw
<
∼ ‖fχ2B‖qw

as an immediate consequence of the boundedness of Sγ in Lq
w(R

n). Our atten-
tion will be focused now on the second term.

Let ϕ ∈ Cγ , and t > 0. Since the family Cγ is uniformly bounded with
respect to the L∞-norm, we have

(4.6) |f2 ∗ ϕt(u)| <
∼ t−n

∫

(2B)c∩B̃(u,t)

|f(z)| dz

for all u ∈ R
n, where B̃(u, t) := {z ∈ R

n/ |z − u| ≤ t}. Thus for all x ∈ R
n, we

have

|Sγ(f2)(x)| <∼





∫

Γ(x)

(

t−n

∫

(2B)c∩B̃(u,t)

|f(z)| dz

)2
dudt

tn+1





1
2

<
∼

∞
∑

k=1

∫

2k+1B\2kB

|f(z)|

[

∫ ∞

0

(

∫

B(x,t)

χB̃(z,t)(u)du

)

dt

t3n+1

]
1
2

dz,

where the last control is an application of Minkowski’s integral inequality.
We suppose x ∈ B(y, r). For k ∈ N∗, z ∈ 2k+1B \ 2kB and t > 0,

∫

B(x,t) χB̃(z,t)(u)du 6= 0 implies that B(x, t) ∩ B̃(z, t) 6= ∅. Let u0 ∈ B(x, t) ∩

B̃(z, t), we have

(4.7) 2t ≥ |x− u0|+ |z − u0| ≥ |x− z| ≥ |y − z| − |x− y| ≥ 2k−1r.

Thus for x ∈ B = B(y, r),

|Sγ(f2)(x)| <∼

∞
∑

k=1

∫

2k+1B\2kB

|f(z)|

(

∫ ∞

2k−2r

∫

B(x,t)

du
dt

t3n+1

)
1
2

dz
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<
∼

∞
∑

k=1

∫

2k+1B\2kB

|f(z)|

(∫ ∞

2k−2r

dt

t2n+1

)
1
2

dz

<
∼

∞
∑

k=1

1

|2k+1B|

∫

2k+1B\2kB

|f(z)| dz.

However, by Hölder Inequality and (2.2), we have for every k ∈ N∗

(4.8)
1

|2k+1B|

∫

2k+1B

|f(z)| dz <
∼ ‖fχ2k+1B‖qw w(2k+1B)−

1
q .

It follows that

(4.9)
∥

∥Sγ(f2)χB(y,r)

∥

∥

qw
<
∼

∞
∑

k=1

‖fχ2k+1B‖qw

(

w(B)

w(2k+1B)

)
1
q

.

Multiplying both inequalities (4.5) and (4.9) by w(B(y, r))
1
α
− 1

q
− 1

p , it comes
from (4.3) that

(4.10)

w(B(y, r))
1
α
− 1

q
− 1

p

∥

∥Sγ(f)χB(y,r)

∥

∥

qw

<
∼ w(B(y, 2r))

1
α
− 1

q
− 1

p

∥

∥fχB(y,2r)

∥

∥

qw

+

∞
∑

k=1

w(B(y, 2k+1r))
1
α
− 1

q
− 1

p

∥

∥fχB(y,2k+1r)

∥

∥

qw

1

2
nk
s
( 1
α
− 1

p
)

for some s > 0. Therefore the Lp norm of both sides of (4.10) leads to

r ‖Sγ(f)‖qw ,p,α
<
∼ (1 +

∞
∑

k=1

1

2
nk
s
( 1
α
− 1

p
)
) ‖f‖qw,p,α , r > 0,

and the result follows, since the series on the right hand side converge. �

For the proof of Theorem 3.2, we need the following varying-aperture ver-
sions of Sγ . For 0 < γ ≤ 1 and β > 0, we define Sγ,β(f) by

(4.11) Sγ,β(f)(x) =





∫

Γβ(x)

(

sup
ϕ∈Cγ

|f ∗ ϕt(y)|

)2
dydt

tn+1





1
2

,

where Γβ(x) =
{

(x, t) ∈ R
n+1
+ / |x− y| < βt

}

. We have the following lemma
which is a consequence of Lemmas 1.1, 1.2 and 1.3 of [16] and the boundedness
of Sγ := Sγ,20 on the weighted Lebesgue spaces.

Lemma 4.1. Let 0 < γ ≤ 1, 1 < q < ∞ and w ∈ Aq. Then for all non

negative integers j, Sγ,2j is bounded on Lq
w(R

n). Moreover

(4.12)
∥

∥Sγ,2j (f)
∥

∥

qw
<
∼ (2nj + 2

njq
2 ) ‖f‖qw .
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Proof of Theorem 3.2. For all x ∈ Rn, we have

(4.13) g∗λ,γ(f)(x)
2 <
∼ Sγ(f)(x)

2 +

∞
∑

j=1

2−jλnSγ,2j(f)(x)
2.

Fix r > 0. For y ∈ Rn and B = B(y, r) a ball in Rn, we have

(4.14)

w(B)
1
α
− 1

q
− 1

p

∥

∥g∗λ,γ(f)χB

∥

∥

qw

<
∼ w(B)

1
α
− 1

q
− 1

p ‖Sγ(f)χB‖qw

+

∞
∑

j=1

2−jλn/2w(B)
1
α
− 1

q
− 1

p

∥

∥Sγ,2j(f)χB

∥

∥

qw
,

according to (4.13). By Theorem 3.1, we have that the Lp norm of the first
term on the right hand side of (4.14) is controlled by ‖f‖qw,p,α. Let j be fixed
in N∗. For Sγ,2jf , we proceed as for Sγf . So, for f = f1 + f2 with f1 = fχ2B,
we have

(4.15)
w(B)

1
α
− 1

q
− 1

p

∥

∥Sγ,2j(f)χB

∥

∥

qw
≤ w(B)

1
α
− 1

q
− 1

p

∥

∥Sγ,2j(f1)χB

∥

∥

qw

+ w(B)
1
α
− 1

q
− 1

p

∥

∥Sγ,2j(f2)χB

∥

∥

qw
.

Applying Lemma 4.1 and taking into consideration (4.1), we obtain
(4.16)

w(B)
1
α
− 1

q
− 1

p

∥

∥Sγ,2j (f1)χB

∥

∥

qw
<
∼ (2jn + 2jnq/2)w(2B)

1
α
− 1

q
− 1

p ‖fχ2B‖qw .

Let us estimate now the term in f2. The same arguments we use to estimate
Sγ(f2)(x) for x ∈ B, i.e., Minkowsky’s integral inequality and the fact that for
k ∈ N∗, z ∈ 2k+1B \ 2kB

∫

B(x,2jt)

χB̃(z,t)(u)du 6= 0 ⇒ t ≥
2k−1

2j + 1
r,

allow us to get the following

∣

∣Sγ,2j(f2)(x)
∣

∣ <
∼ 23jn/2

∞
∑

k=1

1

|2k+1B|

∫

2k+1B\2kB

|f(z)| dz

<
∼ 23jn/2

∞
∑

k=1

∥

∥fχB(y,2k+1r)

∥

∥

qw
w(B(y, 2k+1r))−

1
q

for all x ∈ B(y, r), where the last control comes from Estimation (4.8). There-
fore, its Lq

w(B)-norm leads to
(4.17)

w(B)
1
α
− 1

q
− 1

p

∥

∥Sγ,2j (f2)χB

∥

∥

qw
<
∼ 23jn/2

∞
∑

k=1

w(2k+1B)
1
α
− 1

q
− 1

p

2
nk
s
( 1
α
− 1

p
)

‖fχ2k+1B‖qw .
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Taking estimates (4.16) and (4.17) in (4.15), we have

w(B(y, r))
1
α
− 1

q
− 1

p

∥

∥Sγ,2j (f)χB(y,r)

∥

∥

qw

<
∼ (2jn + 2jnq/2)w(B(y, 2r))

1
α
− 1

q
− 1

p

∥

∥fχB(y,2r)

∥

∥

qw

+ 23jn/2
∞
∑

k=1

w(B(y, 2k+1r))
1
α
− 1

q
− 1

p

2
nk
s
( 1
α
− 1

p
)

∥

∥fχB(y,2k+1r)

∥

∥

qw

for all y ∈ Rn, so that the Lp-norm of both sides leads to

(4.18) r

∥

∥Sγ,2j (f)
∥

∥

qw,p,α
<
∼ (2jn + 2jnq/2) ‖f‖qw ,p,α + ‖f‖qw ,p,α 23jn/2.

Therefore the Lp norm of (4.14) give
(4.19)

r

∥

∥g∗λ,γ(f)
∥

∥

qw,p,α
<
∼



1 +

∞
∑

j=1

2−jλn/2(2jn + 2jnq/2 + 23jn/2)



 ‖f‖qw ,p,α

<
∼ ‖f‖qw,p,α

for r > 0, where the convergence of the series is due to the fact that λ >
max {q, 3}. We end the proof by taking the supremum over all r > 0. �

For the proof of the next results on commutators, we use the following
properties of BMO (see [12]). Let b be a locally integrable function. If b ∈
BMO(Rn), then for every 1 < p < ∞, we have

(4.20) ‖b‖BMO(Rn) ≈ sup
B: ball

(

1

|B|

∫

B

|b(x)− bB|
p
dx

)
1
p

,

and for w ∈ Aq with 1 < q < ∞,

(4.21)

(

1

w(B)

∫

B

|b(x)− bB|
p
w(x)dx

)
1
p

<
∼ ‖b‖BMO ,

which is an immediate consequence of (4.20) and the characterization (4.2) of
Aq weights.

Proof of Theorem 3.3. Fix y ∈ Rn and r > 0. For B = B(y, r), we put f =
f1 + f2 with f1 = fχ2B. We have

(4.22)
w(B)

1
α
− 1

q
− 1

p ‖[b, Sγ ] (f)χB‖qw ≤ w(B)
1
α
− 1

q
− 1

p ‖[b, Sγ ] (f1)χB‖qw

+ w(B)
1
α
− 1

q
− 1

p ‖[b, Sγ ] (f2)χB‖qw .

For the term in f1, it is immediate that
(4.23)

w(B(y, r))
1
α
− 1

q
− 1

p

∥

∥[b, Sγ ] (f1)χB(y,r)

∥

∥

qw
<
∼ w(B(y, 2r))

1
α
− 1

q
− 1

p

∥

∥fχB(y,2r)

∥

∥

qw
,

according to the boundedness of the commutator on Lq
w(R

n) and (4.1). It
remains to estimate the term in f2.
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Let x ∈ Rn. For (u, t) ∈ Γ(x), we have

sup
ϕ∈Cγ

∣

∣

∣

∣

∫

Rn

(b(x)− b(z))ϕt(u− z)f2(z)dz

∣

∣

∣

∣

≤ |b(x)− bB| sup
ϕ∈Cγ

|f2 ∗ ϕt(u)|+ sup
ϕ∈Cγ

|(b− bB)f2 ∗ ϕt(u)|

so that the L2(Γ(x), dudt
tn+1 )-norm of both sides leads to

|[b, Sγ ] f2(x)| ≤ |b(x)− bB|Sγ(f2)(x)

+







∫

Γ(x)

(

sup
ϕ∈Cγ

|[(b − bB)f2] ∗ ϕt(u)|

)2
dudt

tn+1







1
2

= I + II.

We take x ∈ B = B(y, r). As we proved in Theorem 3.1, we have

|Sγ(f2)(x)| <
∼

∞
∑

k=1

‖fχ2k+1B‖qw w(2k+1B)−
1
q .

Thus, the Lq
w(B)-norm of I can be estimated as follow

(4.24) ‖|b− bB|Sγ(f2)χB‖qw
<
∼ ‖b‖BMO

∞
∑

k=1

(

w(B)

w(2k+1B)

)
1
q

‖fχ2k+1B‖qw ,

where we use (4.21). On the other hand, it comes from the uniform boundedness
of the family Cγ that

II <
∼





∫

Γ(x)

(

t−n

∫

(2B)c∩B̃(u,t)

|b(z)− bB| |f(z)| dz

)2
dudt

tn+1





1
2

,

so that using once more Minkowski’s inequality for integrals and inequality
(4.7), we have

II <
∼

∞
∑

k=1

1

|2k+1B|

∫

2k+1B\2kB

|b(z)− bB| |f(z)| dz

≤
∞
∑

k=1

1

|2k+1B|

∫

2k+1B\2kB

|b(z)− b2k+1B | |f(z)| dz

+

∞
∑

k=1

|b2k+1B − bB|

|2k+1B|

∫

2k+1B\2kB

|f(z)| dz

for all x ∈ B(y, r). However,
∫

(2k+1B\2kB)

|b(z)− b2k+1B| |f(z)| dz
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≤

(∫

2k+1B

|b(z)− b2k+1B|
q′
w(z)−

q′

q dz

)
1
q′
(∫

2k+1B

|f(z)|q w(z)dz

)
1
q

<
∼ ‖fχ2k+1B‖qw

∣

∣2k+1B
∣

∣w(2k+1B)−
1
q ‖b‖BMO ,

according to Hölder inequality and the fact that the weight v(z) = w(z)−
q′

q

belongs to Aq′ whenever w ∈ Aq. So

σ1 :=

∞
∑

k=1

1

|2k+1B|

∫

2k+1B\2kB

|b(z)− b2k+1B| |f(z)| dz

<
∼ ‖b‖BMO

∞
∑

k=1

‖fχ2k+1B‖qw w(2k+1B)−
1
q

on B, and the Lq
w(B) norm of both sides leads to

(4.25)
∥

∥σ1χB(y,r)

∥

∥

qw
<
∼ ‖b‖BMO

∞
∑

k=1

‖fχ2k+1B‖qw

(

w(B)

w(2k+1B)

)
1
q

.

For the second series, we have

σ2 :=

∞
∑

k=1

|b2k+1B − bB|

|2k+1B|

∫

2k+1B\2kB

|f(z)| dz

<
∼ ‖b‖BMO

(

∞
∑

k=1

(k + 1) ‖fχ2k+1B‖qw w(2k+1B)−
1
q

)

,

where we use the fact that |b2k+1B − bB| <
∼ (k+1) ‖b‖BMO and Relation (4.8).

It comes that
(4.26)

∥

∥σ2χB(y,r)

∥

∥

qw
<
∼ ‖b‖BMO

(

∞
∑

k=1

(k + 1) ‖fχ2k+1B‖qw

(

w(B)

w(2k+1B)

)
1
q

)

.

Hence, putting together (4.24), (4.25) and (4.26), we obtain,

w(B(y, r))
1
α
− 1

q
− 1

p

∥

∥[b, Sη] (f2)χB(y,r)

∥

∥

qw
(4.27)

<
∼ ‖b‖BMO

(

∞
∑

k=1

k + 3

2
2nk

s′
( 1
α
− 1

p
)
w(B(y, 2k+1r))

1
α
− 1

q
− 1

p

∥

∥fχB(y,2k+1r)

∥

∥

qw

)

for all y ∈ Rn and some s′ > 0. Taking estimates (4.23) and (4.27) in (4.22)
yield,

w(B(y, r))
1
α
− 1

q
− 1

p

∥

∥[b, Sη] (f)χB(y,r)

∥

∥

qw
(4.28)

<
∼ ‖b‖BMO

(

∞
∑

k=1

k + 3

2
2nk
s′

( 1
α
− 1

p
)
w(B(y, 2k+1r))

1
α
− 1

q
− 1

p

∥

∥fχB(y,2k+1r)

∥

∥

qw

)

+ w(B(y, 2r))
1
α
− 1

q
− 1

p

∥

∥fχB(y,2r)

∥

∥

qw
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for all y ∈ Rn. Therefore the Lp-norm of both sides of (4.28), gives

r ‖[b, Sγ ] (f)‖qw,p,α
<
∼ (1 + ‖b‖BMO) ‖f‖qw,p,α

for all r > 0, since the series
∑∞

k=1
k+3

2
2nk
s′

( 1
α

−
1
p
)
converges. We end the proof by

taking the supremum over all r > 0. �

Proof of Theorem 3.4. It is easy to see that

[

b, g∗λ,γ
]

(f)2(x) <∼

∞
∑

j=0

2−jλn
[

b, Sγ,2j
]

(f)2(x)

for all x ∈ Rn. So, for all balls B = B(y, r) we have

∥

∥

[

b, g∗λ,γ
]

(f)χB

∥

∥

qw
<
∼

∞
∑

j=0

2−
jλn
2

∥

∥

[

b, Sγ,2j
]

(f)χB

∥

∥

qw
.

Using the arguments as in the proof of Theorems 3.3 and 3.1 and taking into
consideration (4.16) we end the proof. �
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E-mail address: justfeuto@yahoo.fr


