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THE CHARACTERISATION OF BMO VIA

COMMUTATORS IN VARIABLE LEBESGUE SPACES

ON STRATIFIED GROUPS

Dongli Liu, Jian Tan, and Jiman Zhao

Abstract. Let T be a bilinear Calderón-Zygmund operator,

b ∈ ∪q>1L
q
loc(G).

We firstly obtain a constructive proof of the weak factorisation of Hardy
spaces. Then we establish the characterization of BMO spaces by the

boundedness of the commutator [b, T ]j in variable Lebesgue spaces.

1. Introduction

The commutator of a Calderón-Zygmund operator T and a function b is
defined by

[b, T ](f)(x) = b(x)T (f)(x)− T (bf)(x).

In 1976, Coifman, Rochberg and Weiss [6] firstly established the character-
isation of BMO via the boundedness of commutators. They proved if b ∈
BMO(Rn), then [b, T ] is bounded on Lp(Rn) (1 < p < ∞). They also ob-
tained

n∑
j=1

‖[b, Rj ] : Lp(Rn)→ Lp(Rn)‖ ≈ ‖b‖BMO(Rn),

where Rj denotes the jth Riesz transform. In [18], Janson proved it is sufficient
to show the boundedness of one of these commutators [b, Rj ]. Uchiyama [34]
characterized BMO in terms of the commutators of more general singular
integral operators. Chanillo [4] obtained the characterization of BMO by the
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commutators of fractional integral operators. Since then, the research on the
commutators has been paid much attention and has fruitful results on Euclidean
spaces (see [3, 5, 15, 22, 25, 27, 31]) and on various settings (see [1, 2, 13, 17, 20,
23,24,28,37]).

In 1931, Orlicz [30] introduced the variable Lebesgue spaces which are the
generalization of the classical Lebesgue spaces. In the variable Lebesgue spaces,
Cruz-Uribe et al. [8] studied the boundedness of some classical operators such
as maximal operators, fractional integral operators, singular integral operators
and commutators. Due to the applications to partial differential equations and
the calculus of variations, many authors focus on the study of variable function
spaces (see [7, 9, 19,29,33,35,36]).

Inspired by the above results, it is natural to ask whether the boundedness
of the commutators in variable Lebesgue spaces can characterize BMO. Tan,
Liu, and Zhao [32] gave an affirmative answer. The purpose of this paper is
to extend the above result to stratified groups. On the Euclidean spaces, the
authors [32] applied the techniques in Chaffee [3] and Janson [18] to prove the
function belongs to BMO. In this paper, we will use the weak factorisation of
Hardy spaces and the duality between BMO and the Hardy spaces to obtain
the desired results.

This paper is organized as follows. In Section 2, we recall some basic prop-
erties of stratified groups and variable Lebesgue spaces. In Section 3, we firstly
consider the properties of the characteristic functions in variable Lebesgue
spaces (Lemma 3.3). Next, for any H1(G) atom a, we prove there exist func-
tions f , g1 and g2 such that Πj(f, g1, g2) → a in the sense of H1(G) norm
(Lemma 3.6). Then we obtain the weak factorisation of Hardy spaces (The-
orem 3.7). Finally, we obtain the characterization of BMO spaces by the
boundedness of the commutator [b, T ]j (Theorem 3.8).

Throughout this paper, the symbol A . B denotes there exists a constant
C > 0 such that A ≤ CB, A ≈ B denotes A . B and B . A. C always
denotes a positive constant that is independent of the main parameters and
may change from line to line. Constants with subscript will not change under
different conditions. For any set E ⊂ X, χE denotes its characteristic function.
Let L∞c (G) be the space of bounded functions with compact support. p′ will
always denote the conjugate of p.

2. Preliminary

Firstly, we recall some basic properties concerning stratified groups [12].
A Lie group G is called stratified if it is nilpotent, connected, and simple
connected, and its Lie algebra g is endowed with a vector space decomposition

g =

m⊕
i=1

Vi,
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where
[V1, Vi] = Vi+1 for 1 ≤ i < m, and [V1, Vm] = 0.

The group G is identified with its Lie algebra g via the exponential map which
is a diffeomorphism from g to G. The bi-invariant Haar measure µ on G is
induced by the Lebesgue measure on its Lie algebra g.

A family of dilations on g is a family {δr : r > 0} of algebra automorphisms of
g of the form δr = exp(A log r), where A is a diagonalizable linear operator with
positive eigenvalues. Without loss of generality, we can assume the smallest
eigenvalue of A is 1. The natural dilations on g are defined by

δr

(
m∑
i=1

Xi

)
=

m∑
i=1

riXi,

where Xi ∈ Vi and r > 0. Moreover, let d1, d2, . . . , dn be the eigenvalues of A,
listed in increasing order and with each eigenvalue listed as many times as its
multiplicity. Then the homogenous dimension of G is defined by Q =

∑n
i=1 di.

The homogenous norm on G is a continuous function x → ρ(x) from G to
[0,∞). It is C∞ on G\{o} and satisfies

(i) ρ(x−1) = ρ(x) for all x ∈ G;
(ii) ρ(rx) = rρ(x) for all x ∈ G and r > 0;
(iii) ρ(x) = 0 if and only if x = o.

Where x−1 denotes the inverse of x and o denotes the identity element of G.
Set

ρ(x, y) := ρ(x−1y) = ρ(y−1x), ∀ x, y ∈ G.
Then there exists a constant A0 ≥ 1 such that

ρ(x, y) ≤ A0(ρ(x, z) + ρ(z, y)), ∀ x, y, z ∈ G.
With this norm, let B(x, r) := {y ∈ G : ρ(x, y) < r} be the ball centred at x
with radius r and Br := B(o, r). Clearly, we have |B(x, r)| = rQ for all x ∈ G.

Secondly, we recall the definition of variable Lebegue spaces on stratified
groups. The function p(·) : G → (0,∞) is called the variable exponent. For a
measurable subset E ⊂ G, set

p+(E) := sup
x∈E

p(x), p−(E) := inf
x∈E

p(x).

For conciseness, we abbreviate p+(G) and p−(G) to p+ and p−. Let P1(G) be
the set of measurable function p(·) such that

(2.1) 1 < p− ≤ p+ <∞.
For a measurable function f ,

‖f‖p(·) := inf

{
λ > 0 :

∫
G

(
|f(x)|
λ

)p(x)
dµ(x) ≤ 1

}
.

The variable exponent Lebesgue space Lp(·) consists of those measurable func-
tions f for which ‖f‖p(·) <∞.
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Let Ω ⊂ G. p(·) is locally log-Hölder continuous in Ω if for all x, y ∈ Ω,

(2.2) |p(x)− p(y)| . 1

log(e+ 1/ρ(x, y))
.

p(·) satisfies the log-Hölder decay condition with basepoint o ∈ G if there exists
p∞ ∈ R such that for any x ∈ Ω,

(2.3) |p(x)− p∞| .
1

log(e+ ρ(o, x))
.

If (2.2) and (2.3) hold, then p(·) is log-Hölder continuous in Ω.
In fact, if p(·) is log-Hölder continuous in G, employing (2.2), then we have

(2.4) |p(x)− p(y)| . 1

− log(ρ(x, y))
for ρ(x, y) ≤ 1

2
,

and (2.3) is equivalent to

(2.5) |p(x)− p(y)| . 1

log(e+ ρ(o, x))
for ρ(o, y) ≥ ρ(o, x).

Note that p∞ ≡ lim
x→∞

p(x) exists in view of (2.5).

Definition 2.1. T is said to be a bilinear Calderón-Zygmund operator on
G if T : Lp1(G) × Lp2(G) → Lp(G) for some p1, p2 ∈ (1,∞), p ∈ [1,∞)
with 1

p = 1
p1

+ 1
p2

, and for all f1, f2 ∈ L∞(G) with bounded support, for all

x /∈ ∩2i=1supp(fi),

(2.6) T (f1, f2)(x) =

∫
G×G

K(x, y1, y2)f1(y1)f2(y2)dµ(y1)dµ(y2),

where K is a locally integral function defined on G×G×G\{(x, y1, y2) : x =
y1 = y2} and satisfies

(2.7) |K(y0, y1, y2)| . 1(∑2
k,l=0 ρ(yk, yl)

)2Q ,
(2.8) |K(y0, y1, y2)−K(y0

′, y1, y2)| . ρ(y0, y0
′)β(∑2

k,l=0 ρ(yk, yl)
)2Q+β

,

(2.9) |K(y0, y1, y2)−K(y0, y1
′, y2)| . ρ(y1, y1

′)β(∑2
k,l=0 ρ(yk, yl)

)2Q+β
,

and

(2.10) |K(y0, y1, y2)−K(y0, y1, y2
′)| . ρ(y2, y2

′)β(∑2
k,l=0 ρ(yk, yl)

)2Q+β
,

where β > 0 and ρ(yj , yj
′) ≤ 1

2 max
0≤k≤2

ρ(yj , yk) for all j = 0, 1, 2.
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In analogy with the Euclidean spaces, we define the commutators of the
bilinear Calderón-Zygmund operators as follows.

Definition 2.2. Suppose T is a bilinear Calderón-Zygmund operator on G.
Then we define

[b, T ]1(f1, f2)(x) := b(x)T (f1, f2)(x)− T (bf1, f2)(x),

[b, T ]2(f1, f2)(x) := b(x)T (f1, f2)(x)− T (f1, bf2)(x).

Definition 2.3. Suppose T is a bilinear Calderón-Zygmund operator on G.
Then T is said to be 2Q-homogeneous if for all x ∈ B(x0, r),

|T (χB1 , χB2)(x)| &M−2Q,
where B1 = B(x1, r) and B2 = B(x2, r) denote two pairwise disjoint balls and
satisfy ρ(y0, yl) ≈ Mr for all y0 ∈ B(x0, r) and yl ∈ Bl(l = 1, 2), where r > 0
and M > 0.

Remark 2.4. On Euclidean spaces, according to [14] and [21], the bilinear Riesz

transform
−→
Rj is a bilinear Calderón-Zygmund operator and 2n-homogeneous.

On stratified groups, for the linear case, Duong et al. [10] proved the Riesz
transform Rj is Q-homogeneous.

Definition 2.5. A function a is called an L∞ atom if it satisfies

(i) supp a ⊂ B(x, r);
(ii)

∫
G
a(x)dµ(x) = 0;

(iii) ‖a‖L∞(G) ≤ |B|−1.

The Hardy space H1(G) is the set of functions of the form f =
∑∞
j=1 λjaj with

{λj} ∈ l1 and aj an L∞ atom, the norm is defined by

‖f‖H1(G) := inf


∞∑
j=1

|λj | : f =

∞∑
j=1

λjaj , {λj} ∈ l1, aj an L∞ atom

 ,

where the infimum is taken over all decompositions of f =
∑∞
j=1 λjaj above.

Similarly, one has the definition via L2 atom, meaning that the atom a is
supported on a ball B ⊂ G, has mean value zero

∫
B
a(x)dµ(x) = 0 and has a

size condition ‖a‖L2(G) ≤ |B|−
1
2 .

In order to obtain the factorisation of H1(G) and inspired by [6, 10, 21], we
define the operator Πj .

Definition 2.6. Suppose T is a bilinear Calderón-Zygmund operator on G.
Then we define

Π1(f, g1, g2)(x) := f(x)T (g1, g2)(x)− g1(x)T ∗1(f, g2)(x),

Π2(f, g1, g2)(x) := f(x)T (g1, g2)(x)− g2(x)T ∗2(g1, f)(x),

where T ∗j is the j-transpose of T , that is, the kernel K∗j satisfying

K∗1(x, y1, y2) = K(y1, x, y2), K∗2(x, y1, y2) = K(y2, y1, x).
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3. The main results and proofs

In this section, we mainly use the techniques in [10, 11, 21] to obtain the
following lemmas which play important roles in obtaining the weak factorisation
of Hardy space H1(G). Finally, we will give our main results, Theorem 3.7 and
Theorem 3.8.

Lemma 3.1. Suppose p(·) satisfies (2.1), (2.4) and (2.5). If f ∈ Lp(·) and
‖f‖p(·) > 0, then

(3.1)

∫
G

(
|f(x)|
‖f‖p(·)

)p(x)
dµ(x) = 1.

Proof. It follows from the Fatou’s lemma and the definition of Lp(·). �

Lemma 3.2. Let p(·) satisfy (2.1). Then the followings are equivalent:

(i) p(·) satisfies (2.4);
(ii) for a given ball B and x ∈ B, we have

|B|p(x)−p
+(B) . 1, |B|p

−(B)−p(x) . 1.

Proof. Let B be the closure of B and r(B) be the radius of B. If r(B) ≥ 1
4A0

,

employing 0 ≤ p+(B)− p(x) ≤ p+ − p−, then

|B|p(x)−p
+(B) ≤ (4A0)Q(p+(B)−p(x)) . (4A0)Q(p+−p−) . 1.(3.2)

If r(B) < 1
4A0

, then for any y ∈ B, ρ(x, y) ≤ 2A0r(B) < 1
2 . Since p(·) is

continuous, then there exists y ∈ B such that p(y) = p+(B). Employing the
fact that 0 ≤ p+(B)− p(x) = p(y)− p(x) ≤ p+ − p− and (2.4), then we have

|B|p(x)−p
+(B) ≤ (2A0)Q|p(x)−p(y)| (ρ(x, y))

−Q|p(x)−p(y)|

. [ρ(x, y)]
−QC2

− log(ρ(x,y))

. exp

{
−QC2

− log(ρ(x, y))
log(ρ(x, y))

}
. 1,

(3.3)

where C2 is the constant such that (2.4) holds. Combining (3.2) and (3.3),
then we obtain the first inequality in (ii). The proof of the second is similar.

Fix x, y ∈ G such that ρ(x, y) ≤ 1
2 , then there exists a ball B such that

x, y ∈ B and r(B) < ρ(x, y) + ε. Employing (ii), then we have

1 & |B|−|p(x)−p(y)| & (ρ(x, y) + ε)−Q|p(x)−p(y)|

& exp{−Q|p(x)− p(y)| log(ρ(x, y) + ε)}.

Let ε→ 0, then we obtain (2.4). �

Lemma 3.3. Suppose p(·) satisfies (2.1), (2.4) and (2.5). Then
(I) for the ball B = B(x, r) and |B| ≤ 1, we have

|B|
1

p−(B) ∼ |B|
1

p+(B) ∼ |B|
1

p(x) ∼ ‖χB‖p(·).(3.4)
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(II) for the ball B = B(x, r) and |B| ≥ 1, we have

‖χB‖p(·) ∼ |B|
1
p∞ .(3.5)

Proof. (I) By Lemma 3.2, for the ball B and any y ∈ B, we have

|B|p(y) . |B|p
+(B), |B|p

−(B) . |B|p(y).

If |B| ≤ 1, then

|B|p(y) ∼ |B|p
+(B) ∼ |B|p

−(B) ∼ |B|p(x).

So we have∫
G

(
|χB(x)|
|B|

1
p(x)

)p(y)
dµ(y) =

∫
B

|B|
−p(y)
p(x) dµ(y) ∼

∫
B

|B|−1dµ(y) = 1.

Then by Lemma 3.1, we have

‖χB‖p(·) ∼ |B|
1

p(x) .

Then we obtain (3.4).
(II) Cover G with a collection of balls of the same radius s < 1. Then

there exists a countable subcover which we denote by E. Now we pick one
ball from E and denote it by B0. Then we can pick another ball B1 from E
which does not intersect with B0. Again, we can pick a third ball B2 which
does not intersect with B0 and B1. In the same way, we can pick a sequences
of balls B3, B4, B5, . . .. By Zorn’s lemma, we know there is a maximal disjoint
subcollection of E, which can be written as

F = {Bj}∞j=0 ⊂ E.

By the construction of F , if we pick an arbitrary ball B′ ∈ E, then we can find
a ball Bi ∈ F such that Bi ∩B′ 6= ∅. Moreover, we have B′ ⊂ 3A2

0Bi. For any
x ∈ G, there exist B ∈ E and Bk ∈ F such that x ∈ B ⊂ 3A2

0Bk, thus

G =
⋃
Bj∈F

3A2
0Bj =

∞⋃
j=0

3A2
0Bj .

Set F ∗ = {3A2
0Bj}∞j=0. For any point x ∈ G, denote the set of balls that

belong to F ∗ and contain x by G(x) = {3A2
0Bjk}Nk=1. It is easy to check

Bjk ⊂ B4A3
0s

(x) and N ≤ (4A3
0)Q. So the set {3A2

0Bj}∞j=0 covers any point

of G at most (4A3
0)Q times. Let us denote the set of all balls that belong to

F ∗ and intersect with Brs(z) by {3A2
0Bji}Mi=1, where r is an arbitrary positive

constant. Then we have Bji ⊂ B(4+r)A4
0s

(z) and M ≤ [(4 + r)A4
0]Q.

Now we rearrange the sequence of balls {3A2
0Bj}∞j=0 such that

dist(o, 3A2
0Bi) ≥ dist(o, 3A2

0Bj) if i > j.
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For a sequence {qj}∞j=0 in (1,∞), define

∥∥{xj}∞j=0

∥∥
l(qj)

:= inf

λ > 0 :

∞∑
j=0

(
|xj |
λ

)qj
≤ 1

 .

For a sequence of measurable sets {Ej}∞j=0 in G, write

‖f‖p(·),(Ej) =
∥∥∥{‖f‖Lp(·)(Ej)}∞j=0

∥∥∥
lp∞

.

Set qj = p+(3A2
0Bj) or p−(3A2

0Bj) and q∞ = p∞. We have discussed that
there are at most [(4 + j)A4

0]Q balls satisfying dist(o, 3A2
0Bjl) < js. Then we

can find a number k to be large enough such that ek−1s ≥ A4
0 and k ≥ 1. Thus

for a positive constant m, we have

|q[(4+j)A4
0]
Q+m − q∞| .

1

log(e+ dist(o, 3A2
0B[(4+j)A4

0]
Q+m))

.
1

log(e+ js)
.

1

log(e+A4
0j)

2Q+1

.
1

log((e+A4
0j)

2Q + (e+A4
0j)

2Q)

.
1

log(e+ (e+A8
0j

2 + 2eA4
0j)

Q)

.
1

log(e+ (A4
0(j + 5))Q)

,

where j ≥ 1. Hence for all l ∈ (((4 + j)A4
0)Q, ((5 + j)A4

0)Q] ∩N , we have

|ql − q∞| ≤
C3

log(e+ l)
.

Let C4 =max{|qi−q∞| log(e+i) : i = 0, 1, 2, . . . , (5A4
0)Q} and C̃=max{C3, C4}.

Then we have

|qj − q∞| ≤
C̃

log(e+ j)
for all j ∈ N ∪ {0}.

According to [16], then we have l(qj) ∼= lq∞ . Next we will show that

‖f‖p(·),(3A2
0Bj)

∼ ‖f‖p(·).(3.6)

Let qj = p+(3A2
0Bj). Since ‖ · ‖p(·),(3A2

0Bj)
is homogeneous and it is easy to

check that ‖f‖p(·) = 0 ⇒ ‖f‖p(·),(3A2
0Bj)

= 0. Thus we will only need to

consider the case ‖f‖p(·) = 1. By Lemma 3.1 and the definition of qj , we have∫
3A2

0Bj

|f(x)|p(x)

‖f‖p(x)
Lp(·)(3A2

0Bj)

dµ(x) = 1 ≤
∫
3A2

0Bj

|f(x)|p(x)

‖f‖qj
Lp(·)(3A2

0Bj)

dµ(x).



THE CHARACTERISATION OF BMO VIA COMMUTATORS 555

Then
∞∑
j=0

‖f‖qj
Lp(·)(3A2

0Bj)
≤ (4A3

0)Q
∫
G

|f(x)|p(x)dµ(x) = (4A3
0)Q.

Thus

‖f‖p(·), (3A2
0Bj)

≈
∥∥∥{‖f‖Lp(·)(3A2

0Bj)
}∞j=0

∥∥∥
l(qj)
≤ (4A3

0)
Q

p− . ‖f‖p(·).

Let qj = p−(3A2
0Bj). Similarly, we have ‖f‖p(·), (3A2

0Bj)
& ‖f‖p(·). So we

obtain (3.6). Let f = χB . Then have

‖χB‖p(·) ∼ ‖χB‖p(·), (3A2
0Bj)

.(3.7)

Finally, we will prove

‖χB‖p(·), (3A2
0Bj)

∼ |B|
1
p∞ .(3.8)

Note that G can be regarded as a doubling metric space, by the dyadic cubes
and the invariant properties of G under dilation and translations. If we fixed
a ball B with |B| ≥ 1, then there exists a dyadic cube Q0 such that

(18A2
0C
′)−1B ⊂ Q0 ⊂ (3A2

0)−1B,

where C ′ ≥ 1. There also exists a sequence of dyadic cubes {Qkj }∞j=0 and balls
Bj such that for all k ∈ Z,

G =

∞⋃
j=0

Qkj and Bj ⊂ Qkj ⊂ 6C ′Bj ,

where {Qkj }∞j=0 are pairwise disjoint cubes and either Qkj ⊆ Q0 or Qkj ∩Q0 = ∅.

It is obvious that |Qkj | ∼ |Bj | ∼ |B| ∼ sQ. Let F = {Bj}∞j=0. We choose the

radius of Bj to be small enough such that |3A2
0Bj | � 1. By (3.4), we have

|3A2
0Bj |

1
p(xj) ∼ ‖χ3A2

0Bj
‖p(·) = ‖1‖Lp(·)(3A2

0Bj)
∼ (3A2

0s)
Q

p(xj) .

Denote the sequence of cubes that include in Q0 and belong to V = {Qkj }∞j=0

by W = {Qkju}Nu=1. Then

| ∪Nu=1 Q
k
ju| =

N∑
u=1

|Qkju| = |Q0| ∼ N |Bju| ∼ NsQ.

Since Bju ⊂ Qkju ⊆ Q0 ⊂ (3A2
0)−1B, we have

∞∑
j=0

‖χB‖p∞Lp(·)(3A2
0Bj)

≥
N∑
u=1

‖1‖p∞
Lp(·)(3A2

0Bju)
∼

N∑
u=1

|3A2
0Bju|

p∞
p(xj)

≥
N∑
u=1

|Qkju|
p∞
p− ∼ Ns

Qp∞
p− ∼ |B|sQ

(
p∞
p−
−1

)
.

(3.9)
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On the other hand, suppose B = Br(z), from our previous discussion. There

are at most

⌊(
(r+4s)A4

0

s

)Q⌋
balls in F ∗ that intersect with B, where b·c denotes

the floor function. Denote them by {3A2
0Bjl}Ml=1. Then we have

∞∑
j=0

‖χB‖p∞Lp(·)(3A2
0Bj)

≤
M∑
l=1

‖1‖p∞
Lp(·)(3A2

0Bjl)

.

(
(r + 4s)A4

0

s

)Q
(3A2

0s)
Qp∞
p+ .

(3.10)

Combining (3.9) and (3.10), we obtain (3.8). �

Lemma 3.4 ([10]). Let r > 0, 0 < η � 1. Suppose f is a function satisfying

(i)
∫
G
f(x)dµ(x) = 0;

(ii) |f(x)| ≤ χB(x1,ηr)(x) + χB(x2,ηr)(x), where ρ(x1, x2) = r.

Then we have

‖f‖H1(G) . η
QrQ log

1

η
.

Lemma 3.5. Let 1 ≤ j ≤ 2. Suppose T is a bilinear Calderón-Zygmund
operator. And for b ∈ BMO(G), [b, T ]j is bounded from Lp1(·)(G)×Lp2(·)(G)→
Lp(·)(G) for some p1(·), p2(·) ∈P1(G) and p(·) satisfying

1

p(x)
=

1

p1(x)
+

1

p2(x)
< 1, ∀ x ∈ G.

Moreover, ∥∥∥[b, T ]j : Lp1(·) × Lp2(·) → Lp(·)
∥∥∥ . ‖b‖BMO.

Then for any fixed f ∈ L∞c ∩Lp
′(·), g1 ∈ L∞c ∩Lp1(·), g2 ∈ L∞c ∩Lp2(·), we have

Πj(f, g1, g2) ∈ H1(G).(3.11)

Moreover, there is a constant C, independent of the functions f, g1, g2, such
that

‖Πj(f, g1, g2)‖H1 ≤ C‖f‖Lp′(·)‖g1‖Lp1(·)‖g2‖Lp2(·) .(3.12)

Proof. Since f, g1, g2 ∈ L∞c (G), for any q1, q2 ∈ (1,∞) and q ∈ [1,∞) with
1
q = 1

q1
+ 1
q2

, we have that f ∈ Lq′(G), g1 ∈ Lq1(G) and g2 ∈ Lq2(G). Applying

the definition of Π1, the Hölder’s inequality and the property of the Calderón-
Zygmund operators, we have

‖Π1(f, g1, g2)‖L1 . ‖f‖Lq′‖T (g1, g2)‖Lq + ‖g1‖Lq1 ‖T ∗1(f, g2)‖Lq1′
. ‖f‖Lq′‖g1‖Lq1 ‖g2‖Lq2 .
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Similarly we obtain ‖Π2(f, g1, g2)‖L1 . ‖f‖Lq′‖g1‖Lq1 ‖g2‖Lq2 . We also have∫
G

Πj(f, g1, g2)(x)dµ(x) = 0.(3.13)

In practice, Πj(f, g1, g2)∈L2(G) and has compact support. Hence, Πj(f, g1, g2)
is a multiple of 2-atom in H1(G). Then we obtain (3.11).

For b ∈ BMO(G), we consider the inner product

〈b,Πj(f, g1, g2)〉 :=

∫
G

b(x)Πj(f, g1, g2)(x)dµ(x).

Without loss of generality, we assume supp(Πj(f, g1, g2)) ⊂ Bj . Thus∣∣∣∣∫
G

b(x)Πj(f, g1, g2)(x)dµ(x)

∣∣∣∣ . |Bj | 12 ‖b‖BMO‖Πj(f, g1, g2)‖L2(Bj) <∞.

Hence, 〈b,Πj(f, g1, g2)〉 is well defined for j = 1, 2. In fact, we have∫
G

b(x)g1(x)T ∗1(f, g2)(x)dµ(x) = 〈f, T (bg1, g2)〉.

Thus

〈b,Π1(f, g1, g2)〉 = 〈f, bT (g1, g2)〉 − 〈f, T (bg1, g2)〉 = 〈f, [b, T ]1(g1, g2)〉.

Similarly, we also obtain 〈b,Π2(f, g1, g2)〉 = 〈f, [b, T ]2(g1, g2)〉. So we have

|〈b,Πj(f, g1, g2)〉| . ‖b‖BMO‖f‖Lp′(·)‖g1‖Lp1(·)‖g2‖Lp2(·) .

By the duality between H1(G) and BMO(G), we have

‖Πj(f, g1, g2)‖H1(G) ≈ sup
b∈BMO(G):‖b‖BMO≤1

|〈b,Πj(f, g1, g2)〉|

. ‖f‖Lp′(·)‖g1‖Lp1(·)‖g2‖Lp2(·) . �

Lemma 3.6. Suppose T is a bilinear Calderón-Zygmund operator which is 2Q-
homogeneous. Let p1(·), p2(·) ∈P1(G) and be log-Hölder continuous. Let p(·)
satisfy

1

p(x)
=

1

p1(x)
+

1

p2(x)
< 1, ∀ x ∈ G.

For every H1(G) atom a and for all ε > 0, for all j = 1, 2, there exist functions

f ∈ L∞c ∩ Lp
′(·), g1 ∈ L∞c ∩ Lp1(·), g2 ∈ L∞c ∩ Lp2(·) and a number M = M(ε)

such that

‖a−Πj(f, g1, g2)‖H1(G) < ε,(3.14)

and

‖f‖Lp′(·)‖g1‖Lp1(·)‖g2‖Lp2(·) .M2Q.(3.15)
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Proof. Let a be an H1(G) atom, supported in B0 = B(x0, r) ⊂ G, satisfying∫
G

a(x)dµ(x) = 0 and ‖a‖L∞(G) ≤ |B0|−1.

For x0, select x1 ∈ G such that ρ(x0, x1) = Mr, and then select x2 ∈ G such
that ρ(x2, x1) = 2A0r. Let B1 = B(x1, r), B2 = B(x2, r). Then B1 ∩B2 = ∅.
For any y0 ∈ B0, y1 ∈ B1 and y2 ∈ B2, if M ≥ 5A3

0, then for l = 1, 2,
ρ(y0, yl) ≈Mr. Since T is 2Q-homogeneous, for any x ∈ B0,

|T (χB1
, χB2

)(x)| &M−2Q.(3.16)

Set g1(x) = χB1
(x), g2(x) = χB2

(x) and f(x) = a(x)
T (g1,g2)(x0)

, then we have

a(x)−Π1(f, g1, g2)(x)

=

(
a(x)− a(x)T (χB1 , χB2)(x)

T (χB1
, χB2

)(x0)

)
+

(
χB1

(x)T ∗1
(

a

T (χB1
, χB2

)(x0)
, χB2

)
(x)

)
=: W1(x) +W2(x).

(3.17)

It is easy to verify that if M ≥ 10A3
0, then for all y0 ∈ B0, we have ρ(y0, y2) ≥

2r. Since the atom a is supported in the ball B0, for x ∈ B0, we have

ρ(x0, x) < r ≤ 1

2
ρ(x0, y2).

Employing (2.8), we have

|K(x0, y1, y2)−K(x, y1, y2)| . ρ(x0, x)β

ρ(x0, y1)2Q+β
.

rβ

(Mr)2Q+β
.

By (3.16), the properties of the atom a and the above inequality, we obtain

|W1(x)|

= |a(x)|
∣∣∣∣T (χB1

, χB2
)(x0)− T (χB1

, χB2
)(x)

T (χB1 , χB2)(x0)

∣∣∣∣
. r−QM2QχB(x0,r)(x)

∣∣∣∣∫
B1×B2

|K(x0, y1, y2)−K(x, y1, y2)|dµ(y1)dµ(y2)

∣∣∣∣
. r−QM−βχB(x0,r)(x).

(3.18)

Similarly, if M ≥ 10A3
0, then ρ(y1, x0) < r ≤ 1

2ρ(y2, x0). By (2.9), we have

|K(x0, x, y2)−K(y1, x, y2)| . rβ

(Mr)2Q+β
.
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Applying the above inequality, the properties of atom a and (3.16), we have

|W2(x)|

= χB1
(x)

∣∣∣∣∫
G×G

K(y1, x, y2)
a(y1)χB2

(y2)

T (χB1
, χB2

)(x0)
dµ(y1)dµ(y2)

−
∫
G×G

K(x0, x, y2)
a(y1)χB2(y2)

T (χB1
, χB2

)(x0)
dµ(y1)dµ(y2)

∣∣∣∣
. χB1

(x)r−QM2Q

∫
B0×B2

|K(x0, x, y2)−K(y1, x, y2)|dµ(y1)dµ(y2)

. χB1
(x)r−QM−β .

(3.19)

Combining (3.17), (3.18) and (3.19), we obtain

|a(x)−Π1(f, g1, g2)(x)| . r−QM−β(χB(x0,r)(x) + χB(x1,r)(x)).

By (3.13) and the fact that the atom a has mean value zero, we have∫
G

[a(x)−Πj(f, g1, g2)(x)]dµ(x) = 0.

By Lemma 3.4 and choosing M large enough such that logM
Mβ < Cε, we obtain

‖a−Π1(f, g1, g2)‖H1(G) < ε.

Next we will consider the case j = 2. For x0, select x2 ∈ G such that ρ(x0, x2) =
Mr, and then select x1 ∈ G such that ρ(x1, x2) = 2A0r. Let B1 = B(x1, r),
B2 = B(x2, r). Then B1 ∩ B2 = ∅. For any y0 ∈ B0, y1 ∈ B1 and y2 ∈ B2,
if M ≥ 5A3

0, then for l = 1, 2, ρ(y0, yl) ≈ Mr. Thus (3.16) holds. Set g1(x) =

χB1
(x), g2(x) = χB2

(x) and f(x) = a(x)
T (χB1

,χB2
)(x0)

. Then

a(x)−Π2(f, g1, g2)(x)

=

(
a(x)− a(x)T (χB1

, χB2
)(x)

T (χB1 , χB2)(x0)

)
+

(
χB2

(x)T ∗2(χB1
,

a

T (χB1
, χB2

)(x0)
)(x)

)
=: W1(x) +W2(x).

(3.20)

Similarly we can obtain

|W1(x)|

. r−QM2QχB0
(x)

∫
B1×B2

|K(x0, y1, y2)−K(x, y1, y2)|dµ(y1)dµ(y2)

. r−QM−βχB0
(x).

(3.21)
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and

|W2(x)|

. χB2
(x)r−QM2Q

∫
B1×B0

|K(y2, y1, x)−K(x0, y1, x)|dµ(y1)dµ(y2)

. χB2
(x)r−QM−β .

(3.22)

Therefore, combining (3.20), (3.21) and (3.22), we obtain

|a(x)−Π2(f, g1, g2)(x)| . r−QM−β(χB0
(x) + χB2

(x)).

Similarly, if M is large enough, then we have

‖a−Π2(f, g1, g2)‖H1(G) < ε.

Therefore we obtain (3.14).
Moreover, by Lemma 3.3, we have

‖g1‖Lp1(·) = ‖χB1
‖Lp1(·) ∼ |B1|

1
p1,∞ ∼ (rQ)

1
p1,∞ ,

‖g2‖Lp2(·) = ‖χB2
‖Lp2(·) ∼ |B2|

1
p2,∞ ∼ (rQ)

1
p2,∞ ,

and

‖f‖Lp′(·) . r
−QM2Q‖χB0

‖Lp′(·) ∼ r
−QM2Q(rQ)

1
p′∞ .

Thus we obtain (3.15). �

Now we will give our main results.

Theorem 3.7. Let 1 ≤ j ≤ 2. Suppose T is a bilinear Calderón-Zygmund
operator which is 2Q-homogeneous. Let p1(·), p2(·) ∈P1(G) and be log-Hölder
continuous. Let p(·) satisfy

1

p(x)
=

1

p1(x)
+

1

p2(x)
< 1, ∀ x ∈ G.

Then for each f ∈ H1(G), there exist a sequence {λks} ∈ l1 and functions

gks ∈ L∞c ∩ Lp
′(·), hks,1 ∈ L∞c ∩ Lp1(·) and hks,2 ∈ L∞c ∩ Lp2(·) such that

f =

∞∑
k=1

∞∑
s=1

λksΠj(g
k
s , h

k
s,1, h

k
s,2)(3.23)

in the sense of H1(G). Moreover, we have

inf

{ ∞∑
k=1

∞∑
s=1

|λks |‖gks ‖Lp′(·)‖h
k
s,1‖Lp1(·)‖hks,2‖Lp2(·)

}
. ‖f‖H1(G),(3.24)

where the infimum is taken over all decomposition of f such that (3.23) holds.
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Proof. For any f ∈ H1(G), according to the atomic decomposition, there exist
a sequence {λ1s} ∈ l1 and atoms {a1s} such that

f =

∞∑
s=1

λ1sa
1
s and

∞∑
s=1

|λ1s| ≤ C‖f‖H1 .

By Lemma 3.6, for each a1s, there exist g1s , h1s,1, h1s,2 such that

‖a1s −Πj(g
1
s , h

1
s,1, h

1
s,2)‖H1 < ε and ‖g1s‖Lp′(·)‖h

1
s,1‖Lp1(·)‖h1s,2‖Lp2(·) .M2Q.

So

f =

∞∑
s=1

λ1s
[
a1s −Πj(g

1
s , h

1
s,1, h

1
s,2)
]

+

∞∑
s=1

λ1sΠj(g
1
s , h

1
s,1, h

1
s,2) =: A1 +B1,

and

‖A1‖H1 ≤
∞∑
s=1

|λ1s|
∥∥a1s −Πj(g

1
s , h

1
s,1, h

1
s,2)
∥∥
H1 < Cε‖f‖H1 .

Since A1 ∈ H1(G), we can find a sequence {λ2s} ∈ l1 and atoms {a2s} such that

A1 =

∞∑
s=1

λ2sa
2
s and

∞∑
s=1

|λ2s| ≤ C‖A1‖H1 < C2ε‖f‖H1 .

For each a2s and the same ε, by Lemma 3.6, there exist g2s , h2s,1, h2s,2 such that

‖a2s −Πj(g
2
s , h

2
s,1, h

2
s,2)‖H1 < ε and ‖g2s‖Lp′(·)‖h

2
s,1‖Lp1(·)‖h2s,2‖Lp2(·) .M2Q.

Then

A1 =

∞∑
s=1

λ2s
[
a2s −Πj(g

2
s , h

2
s,1, h

2
s,2)
]

+

∞∑
s=1

λ2sΠj(g
2
s , h

2
s,1, h

2
s,2) =: A2 +B2,

and

‖A2‖H1 ≤
∞∑
s=1

|λ2s|
∥∥a2s −Πj(g

2
s , h

2
s,1, h

2
s,2)
∥∥
H1 < (Cε)2‖f‖H1 .

Thus we have

f = A2 +

2∑
k=1

∞∑
s=1

λksΠj(g
k
s , h

k
s,1, h

k
s,2).

Repeating this step, then for 1 ≤ k ≤ K, we obtain

f = AK +

K∑
k=1

∞∑
s=1

λksΠj(g
k
s , h

k
s,1, h

k
s,2).

Moreover, we have

‖gks ‖Lp′(·)‖h
k
s,1‖Lp1(·)‖hks,2‖Lp2(·) .M2Q and ‖AK‖H1 < (Cε)K‖f‖H1 .
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Let K →∞. Then

f =

∞∑
k=1

∞∑
s=1

λksΠj(g
k
s , h

k
s,1, h

k
s,2)

in the sense of H1(G). And

∞∑
k=1

∞∑
s=1

|λks | ≤
∞∑
k=1

ε−1(Cε)k‖f‖H1 =
C

1− Cε
‖f‖H1 .

Thus
∞∑
k=1

∞∑
s=1

|λks |‖gks ‖Lp′(·)‖h
k
s,1‖Lp1(·)‖hks,2‖Lp2(·) .

M2QC

1− Cε
‖f‖H1 . ‖f‖H1 .(3.25)

Then we complete the proof. �

Theorem 3.8. Let 1 ≤ j ≤ 2. Suppose T is a bilinear Calderón-Zygmund
operator and T : L1 × L1 → L1/2,∞. Let p1(·), p2(·) ∈ P1(G) and be log-
Hölder continuous. Let p(·) satisfy

1

p(x)
=

1

p1(x)
+

1

p2(x)
< 1, ∀ x ∈ G.

If b ∈ BMO, then [b, T ]j is bounded from Lp1(·)(G) × Lp2(·)(G) → Lp(·)(G).
Moreover, ∥∥∥[b, T ]j : Lp1(·) × Lp2(·) → Lp(·)

∥∥∥ . ‖b‖BMO.(3.26)

Conversely, for b ∈ ∪q>1L
q
loc(G), if T is 2Q-homogeneous and [b, T ]j is bounded

from Lp1(·)(G)× Lp2(·)(G)→ Lp(·)(G), then b ∈ BMO(G). Moreover,

‖b‖BMO .
∥∥∥[b, T ]j : Lp1(·) × Lp2(·) → Lp(·)

∥∥∥ .(3.27)

Proof. We have proved the inequality (3.26) in [26]. It suffices to prove (3.27).
Since b ∈ ∪q>1L

q
loc(G), we can assume b ∈ Lqloc(G) for some q > 1. For any

f ∈ H1 ∩ L∞c , according to Theorem 3.7, there exist a sequence {λks} ∈ l1 and

functions gks ∈ L∞c ∩Lp
′(·), hks,1 ∈ L∞c ∩Lp1(·) and hks,2 ∈ L∞c ∩Lp2(·) such that

f =

∞∑
k=1

∞∑
s=1

λksΠj(g
k
s , h

k
s,1, h

k
s,2)

in the sense of H1(G) and

∞∑
k=1

∞∑
s=1

|λks |‖gks ‖Lp′(·)‖h
k
s,1‖Lp1(·)‖hks,2‖Lp2(·) . ‖f‖H1 .

Since f ∈ L∞c (G), we can assume suppf ⊂ E. So f ∈ Lq′(E). Thus

〈b, f〉 :=

∫
G

b(x)f(x)dµ(x)
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is well defined. Set bi(x) = b(x)χ{x∈G: |b(x)|≤i}(x). Then we have∫
G

b(x)f(x)dµ(x) = lim
i→∞

∫
G

bi(x)f(x)dµ(x).(3.28)

Since gks , h
k
s,1, h

k
s,2 ∈ L∞c , then by the boundedness of Calderón-Zygmund op-

erators, we know that Πj(g
k
s , h

k
s,1, h

k
s,2) ∈ Lq′(G). Thus 〈bi,Πj(g

k
s , h

k
s,1, h

k
s,2)〉

is well defined. According to the definition of bi, we have bi ∈ L∞, and hence
bi ∈ BMO(G). Therefore, for each i, we obtain∫

G

bi(x)f(x)dµ(x) =

∫
G

bi(x)

∞∑
k=1

∞∑
s=1

λksΠj(g
k
s , h

k
s,1, h

k
s,2)dµ(x)

=

∞∑
k=1

∞∑
s=1

λks〈bi,Πj(g
k
s , h

k
s,1, h

k
s,2)〉.

(3.29)

By (3.28) and (3.29), we have

〈b, f〉 =

∞∑
k=1

∞∑
s=1

λks〈b,Πj(g
k
s , h

k
s,1, h

k
s,2)〉.

Then by Hölder’s inequality and the boundedness of [b, T ]j , we have

|〈b, f〉| =

∣∣∣∣∣
∞∑
k=1

∞∑
s=1

λks〈gks , [b, T ]j(h
k
s,1, h

k
s,2)

∣∣∣∣∣
≤

∞∑
k=1

∞∑
s=1

|λks |‖gks ‖Lp′(·)
∥∥[b, T ]j(h

k
s,1, h

k
s,2)
∥∥
Lp(·)

.
∞∑
k=1

∞∑
s=1

|λks |‖gks ‖Lp′(·)‖h
k
s,1‖Lp1(·)‖hks,2‖Lp2(·)

×
∥∥∥[b, T ]j : Lp1(·) × Lp2(·) → Lp(·)

∥∥∥
. ‖f‖H1

∥∥∥[b, T ]j : Lp1(·) × Lp2(·) → Lp(·)
∥∥∥ .

Therefore

‖b‖BMO(G) ≈ sup
f∈H1(G): ‖f‖H1≤1

|〈b, f〉| .
∥∥∥[b, T ]j : Lp1(·) × Lp2(·) → Lp(·)

∥∥∥ .
Applying the fact H1 ∩ L∞c is dense in H1, then we obtain (3.27). �
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Harmonic Analysis, Birkhäuser/Springer, Heidelberg, 2013. https://doi.org/10.1007/

978-3-0348-0548-3

[8] D. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Pérez, The boundedness of classical
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Birkhäuser/Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-05168-6_5

[27] H. Liu and L. Tang, Compactness for higher order commutators of oscillatory singular
integral operators, Internat. J. Math. 20 (2009), no. 9, 1137–1146. https://doi.org/

10.1142/S0129167X09005698

[28] G. Lu, S. Lu, and D. Yang, Singular integrals and commutators on homogeneous groups,
Anal. Math. 28 (2002), no. 2, 103–134. https://doi.org/10.1023/A:1016568918973

[29] E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized Cam-

panato spaces, J. Funct. Anal. 262 (2012), no. 9, 3665–3748. https://doi.org/10.1016/
j.jfa.2012.01.004
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