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CHARACTERIZATION OF LIPSCHITZ-TYPE FUNCTIONS
BY GARSIA-TYPE NORMS ON THE UPPER HALF SPACE

Jisoo Byun, HoNGg RAE CHO, AND BoNG-HAK Im

ABSTRACT. It is well-known that the BMO norm is equivalent to the
Garsia norm. In this paper, we characterize mean-Lipschitz spaces by
using Garsia-type norms on the upper half space IRT'I.

1. Introduction and statement of results

Let Ri” be the (n + 1)-dimensional upper-half space. In the coordinate
notation, we have

R} = {(z,t) e R" x R: ¢ > 0}.

We can consider R™ as the boundary of R’ffl. For t > 0, we denote the
Euclidean ball in R™ by

Qiz)={yeR": |z —y|<t}, zeR"™
We define the integral mean fqg, by

1
faq. f(y)dy
@@ T Nu@)] Jouw)
and the BMO norm as
sup f— ()| dy.

Here |Q¢(z)| is the volume of Qt(az) in R™. The space BMO of bounded mean
oscillation is a set of all L}, . functions on R with the finite norm || f|| papro < 0.
The Poisson kernel in RIH has an explicit expression;
ent _I'((n+1)/2)
(2P +2)miD2 = i/

Py(z) =
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The Poisson integral of a function given on R™ is defined by
Pfat)=Pxf@)= [ Pla=niw)d
YyeR™

Garsia has observed that there is another norm for functions in BM O which
is easier to use.[3] For f € L{ .(R™), the Garsia norm G(f) is defined by

loc

0n=sw [ 1) -Pi@oRE -y

(w,t)GRi'H
It is well-known that [2]

Il fll Baro ~ G(f). (1)

For the unit ball in C™ the BM O norm is defined by using the non-isotropic
ball on the boundary of the unit ball. The same result as (1) on the unit ball in
C™ was proved by Garsia (see [2], one-dimensional case) and by Axler-Shapiro
(see [1], n-dimensional case).

Let 1 <p,g<ooand 0 < a< 1. For f e LP(R™), we denote

1/q
||f( + y) - f()HqLP(Rn)
ApI(f) = ( | 2
and we define the mean-Lipschitz norm by

[fllaze = [fllLe@n) + AZ(S).

Then A9 consists of all functions f in LP(R™) for which the norm || f|zza is
finite. It is called the mean-Lipschitz space. For a measurable function F' on
Riﬂ we define

LYU(F) = </0°° (tla||F('at)Lp(Rn))qit>1/q- (3)

We note that [4]
q
* ia adt (i e dt
/ (tl vaf('vt)HLT’(]R")> 7"~ / (tl ) 7
0 0 LP(R™)

By Hardy-Littlewood lemma [4], we get
ALI(S) ~ LEH(VPS).

0
alpf(vt)

Now, we define the Garsia-type (p, ¢)-norm by
gri(f) (4)

_ (/Omtliaq (/IER" (/yeRn £ (y) _Pf(x,t)|Pt(x—y)dy>pdm>mdt>l/q
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When ¢ = oo, the expressions (2), (3), and (4) are interpreted in the normal

limiting way, namely
Fy)— fC)llrwn
Az(i,oo(f) = sup ||f( y) {;( )HL (R™)
ly|>0 |y|

)

LE(VPf) = iﬂ%’ tl—aHv'Pf(.’ )] Lo &)

and
1 p 1/p
g =sw e ([ ([ 1w -Prwoipe - i) @)
>0 ceRr \Jyern
Theorem 1.1. Let 1 <p,q < oo and 0 < o < 1. For f € LP(R™) we have
AZA(F) ~ GRS

Recall that the Poisson kernel for the upper half space is given by
cpt

Pz —y) = (lz — y|2 + tz)(n+1)/2'

Lemma 1.2. ([4]) Let 0 < oo < 1. Then

(i) / |z —y[* Pe(z — y)dy < 1%
R’VL
i) |VPi(z—y)| <t Pz —y) for all (z,t) € R™ and for all y € R™.
~Y +

Lemma 1.3. (Hardy’s inequalities) Let h is a non-negative function and

p>1,7r>0. Then we have
00 1/p
([ wntraar)
0

e e e
(i) [ /0 ( /I h(y)dy> xrldx} < ( /0 (yh(y))”y”dy) :

2. Proof of Theorem 1.1

=

e

First we consider the case p = ¢ = oco.
For (z,t) € R and y € R™ we have

[f(y) =P, )] S () = f@)] +[f(x) = Pf(z,1)]

and

[f(z) = Pflx,t)| =

| U@ = )R- vy

< AT (f) / & — y|" Py — y)dy
yeRn?

S AT,
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by (i) of Lemma 1.2. Thus we have

[F(y) = Pflz, )] S ASF ()2 = y[* + %)

By (i) of Lemma 1.2 again, we have
| 110 - Pra 1P - )y
yeR™

sax=() ([ le-alnie -y +17)
yeRn
< A ()t
This implies that
Gao(f) S A
Recall that

Pt = [ P@—u)ay

Differentiating the both side, we get

V. Pf(rt) = / (F(4) — P (. 0) Vo Palz — y)dy.

yER™

By (ii) of Lemma 1.2, we have

VPH@OI ST [ 1) - Pre P - )
yEeRn

It follows that

APl S [ 1) = PP = i
yER?
This implies that L5 (VP f) < G2 (f).

Now we state the proof for the case of 1 < p,q < oo. By (ii) of Lemma 1.2,
we have

VA S [ P — o)) - PSGtldy

ye]Rn
Thus it follows that

f

(VP
</ooo (tl_a (f... (/R LR = IS ) - PTGy ) de ) ”p> : @
Gr(f).

L

o3

IN

)1/q
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For the converse we let

Qt) = </rE]Rn </y€Rn |f(y) — Pf(a,t)|Pi(x — ?/)dy)pdx> 1/p
< (/xERn </%Rn \f(y) — f(2)|Py(x — y)dy>pda:>l/p
) (/”ER" (/yew (@) = Pf(z DlP(w - y)dy)p dx) N

=1 (t) + I2(t).

By Minkowski’s inequality, we have

b= ([ e -prwope)”

P 1/1)
= / dx
reR™

t
0
/0 %Pf(:c, s)ds

“l o
< Lo .
—/0 aSPf( 78) LPdS
By Hardy’s inequality (i), we have
o 1/q o tl o q 1/q
(/ Ig(t)qt—aq—ldt) < / (/ 7’Pf(., 8) ds) pmea—1gy
0 0 0 05 Ly
o 0 q . 1/q
S s||5=Pf(s ) §TIT ds>
</0 < g5 09|

S LEA(VP).

Now we estimate the first term I;(¢). Replacing y by = + £ we have

/ @) — F@)|Pule — y)dy = / o+ €) — F()|PE)de.
yER™ £ER™

By Minkowski’s inequality, we have
D 1/p
o = ([ ([ rero-r@ipe) )
< / 1FC+6) — FO)loPilE)de
£ER™
- /N 1FC+6) — FO e P(E)de + / 1FC+6) — FOle Pu(E)de

€[>t
= In(t) + Ilg(t).
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Since P;(§) < 1/t", we have

1
)= [ IS+ - SOl P S g [ 176+~ Ol

gl<t

Let & = rz where r = [£] and z € R” with |z| = 1. Then d¢ = r"~!drdz. Let
5"~ be the unit sphere on R™. Let

wlr) = [ 15C+72) = FOlnd

Then we have

1/t
I1(t) S t—n/ w(r)r™tdr.
0

Thus by Hardy’s inequality (i), we have

Tl t)4dt < cl L[ ntd th
, tited n(t)fdt 5 , tred \ g ) w(r)r r
[ee] t q
:/ (/ w(r)rn_ldr> tlmaana gy
0 0

< / w(r)qt_o‘q_ldr
0

- /ooo (/S I +r2) = f(')lledz>q a1,

s [ MO 1Ol

- €[+

Since P;(&) < t/|€"HL, we have
dg
- . AT < : (e
I1o(t) /E>t|f( +8) = fOlle Pt(ﬁ)d§~t/|§|>t 1fC+8—fOle GG

By Hardy’s inequality (ii), we have

00 1 00 1 0o q
- q < -2
/0 t1+aqf12(t) dtw/o raq (t/t w(r)r dt) dt

oo oo q
= / (/ w(r)err) tt=eda=1gy
0 t

< / (w(r)yr—hyapt-elaig,
0

I5C+6) ~ FOI,
S J T g

Therefore
1/q

gz = ([ stterar) 5 a2,

The other cases are similar.
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