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ON THE RESTRICTIONS OF BMO

HYEONBAE KANG, JIN KEUN SEO AND YONGSUN SHIM

Since John and Nirenberg introduced the BMO in early 1960 [JN],
it has been one of the most significant function spaces. The significance
of BMO lies in the fact that BMO is a limiting space of L? (p — 00),
or a proper substitute of L™, A dual statement of this would be that
the Hardy space H! is a proper substitute of L.

Even if BMO is a limiting class of L?, it does not share some
properties which functions in LP satisfy trivially. It is because be-
ing a BMO function is not merely a condition on the size but a con-
dition on its mean oscillation as its name stands for. For example,
L*>*.BMO ¢ BMO. In this paper, we consider one of such properties-
the restriction.

For clarity, let us consider functions in BMO(R?). Let f € BMO(R?).
Does it follow that f(-,y) € BMO(R?!) for almest all y? It seems proper
to conjecture that the answer to this question is negative by consid-
ering its dual. In fact, the restriction of a Z-dimensional atom may
not be an atom in R!. In this paper, we consider a special case of the
above question. We show that, for functions which can be separated,
the answer to the above question is positive. Putting it in more general
fashion, we have the following theorem.

THEOREM 1. Let h(z,y) be a nonzero function in BMO(R™*"). If
h can be separated as h(z,y) = f(z)g(y), then f € BMO(R™) and
g € BMO(R™).

It turns out that for h(z,y) = f(2)g(y) being in BMQ puts a severe
restriction not only on the mean oscillation but also on the means of
f and g (see the identity (1) below). This fact bears some interesting
information on the condition for h(z,y) = f(x)g(y) to be in BMO. For
instance, we prove the following theorem.
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THEOREM 2. Let g be a locally integrable function on R'. If log |z|
9(y) € BMO(R?), then ¢ must be constant.

Proof of Theorern 1. Let us first fix some notations. for a cube I in
R™, we denote by I(I) and |I| the side length and tle volume of the
cube I, respectively. We also define f; for f € Li, (R™) by

fr= m/f

Note that

: . - _1_ g 2 _ 2
m/llf(x)-fqzdm =17 ./1|j(1~)| dz — |f1I?.

Let I and J be cubes in R™ and R" with {(I) = {(J). Then, I x J

is a cube in R™*" and it is easy to see that

hr<s= f19s.

Then, a straight forward computation shows that

L
lI”JI IxJ

- (T%/]]f(m) - f1|2d:c) (Ill / g9z gJIZdy>
+ 11l (“}l /1 lg(y) “ngzdy) + (m /1 |f(z) - fll2di”) lg1%.

Since h(z,y) € BMO(R™'"), the left hand side of (1) is bounded by a
constant, say C. And hence

1 PN , |

(m[lf(rl— f[ztlm) (Iﬂ/Jlg(m)—ngzdynLIngZ) <C -
2f 1 ‘

| f1] (mfjlg(y)—mlzdy) <C

|h(z,y) ~ hixs|*dzdy (1)

(3)



"
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Suppose that f ¢ BMO(R™). Then there exists a sequence of cubes
{I+} in R™ such that

II I |f — f1,ldz > k. (4)

Then, by Jensen's inequality, we have

lI I |f(:z) - fr,|*dx > k2 (5)

We may assume that limg_.o |Ix| exists (possibly infinite) by taking a
subsequence if necessary. Put A = limy_ |{%x|. We deal with various

possibilities of A =0, 0 < 4 < 00, and 4 = ¢co
Suppose first that A = 0. Then, it follows from (2) and (5) that

9% < ZC— for all J with J| = |I|

for each k. Then, by the Lebesgue differentiat:on theorem, we get ¢ = 0
which contradicts to our hypothesis.

Suppose now that 0 < A < oc. Then, it fcllows again from (2) and
(5) that

1 -
|—7!/ l9(x) = gsl*dy < % for all J with |J| = |I;]
I J; i
for each k. This implies that
1 f » \ ,,
m /] lg(x) — gs°dy =0 for all J with |J| =

which in turn implies that ¢ = constant. It then follows from (1) that

1

Ty T h — R 2( » o 2_’1'.. | ) — 2 ’
Vilki m’ (2,y) = hrxy| dedy = g !:’I/,’f(r) fil7de

and hence f € BMO(R™). This leads us to a contradiction.
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Finally, we suppose that A = co. We claim that, for each k, one can
choose a cube I with I, C I; so that

2-n </!jk| <1,

i [ e 2 g [ gl

To see this, we subdivide I; into 2" nonoverlapping subcubes with
equal sidelengths, and call them {I ,Jc} Then, we have

1
— T = 92 'il'
w/]k f(z)ldz =2 Ml/ Fo)l

J=

(6)

Hence, for at least one j, |f|;, < |f|;i. Choose such a j and apply the
k

same process to [ ,ﬁ . We continue this process until we get the desired
cube. Note that |f|;, > k/2 and hence |f|;, > k/2 by (4).

We again assume that |I;| converges by taking a subsequence if
necessary. Suppose that

<

]

. | f7,]
limsup -
e

We then assume that |f; | < § for all k£ by again taking a subsequence
if necessary. Then, we have

RS
|7kl

k
@)= filde 2 e [ sl 150> §

and
27" < klim [Ix| < 1.

Therefore, the case is reduced to the second of previous cases and hence
leads us to a contradiction.

If

limsup
k—o0 k
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then we assume that |f; | > £ for all k by passing to the subsequence
if necessary. It then follows from (3) that

25

1 ‘ P ~
7] /J l9(y) = gul*dy < C5 forall 7 with |J] = ||

for each k. Hence, we again obtain ¢ = constant. The proof is com-
plete.

Proof of Theorem 2. Suppose that log|z|¢(y) € BMO(R?). Since

the average of log |z| can be arbitrary large, we have from (3)
1 2
71 [ le(y) —gsl*dy =0
171/

for any interval J. Therefore, ¢ must be cons:ant.
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