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POINTWISE ESTIMATES AND BOUNDEDNESS OF

GENERALIZED LITTLEWOOD-PALEY OPERATORS

IN BMO(Rn)

Yurong Wu and Huoxiong Wu

Abstract. In this paper, we study the generalized Littlewood-Paley op-
erators. It is shown that the generalized g-function, Lusin area function
and g∗

λ
-function on any BMO function are either infinite everywhere, or

finite almost everywhere, respectively; and in the latter case, such op-
erators are bounded from BMO(Rn) to BLO(Rn), which improve and
generalize some previous results.

1. Introduction

The classic Littlewood-Paley operators (i.e., g-function, Lusin area function
and g∗λ function) on Euclid space Rn were first introduced by Stein in [12]. Let
ϕ(x) be a real-valued integrable function on R

n satisfying
∫

Rn

ϕ(x)dx = 0,(1.1)

|ϕ(x)| ≤
C

(1 + |x|)n+1
,(1.2)

|∇ϕ(x)| ≤
C

(1 + |x|)n+2
,(1.3)

where

∇ = (∂/∂x1, . . . , ∂/∂xn),

and C is a constant independent of x.
For a function ϕ, which satisfies the above conditions, we set

ϕt(x) = t−nϕ(x/t), t > 0, x ∈ R
n.
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Then the classic Littlewood-Paley operators are defined as

g(f)(x) =
{

∫ ∞

0

|f ∗ ϕt(x)|
2 dt

t

}1/2

,

S(f)(x) =
{

∫ ∫

Γ(x)

|f ∗ ϕt(y)|
2 dydt

tn+1

}1/2

,

g∗λ(f)(x) =
{

∫ ∫

R
n+1

+

(
t

t+ |x− y|
)nλ|f ∗ ϕt(y)|

2 dydt

tn+1

}1/2

, λ ∈ (1,∞),

where R
n+1
+ = {(y, t) ∈ R

n+1 : y ∈ R
n, t > 0}, Γ(x) = {(y, t) ∈ R

n+1
+ :

|y − x| < t} for x ∈ R
n.

As is well known, the Littlewood-Paley operators play important roles in
harmonic analysis. Many authors have studied boundedness and various prop-
erties of these operators. The literature on the study of the Littlewood-Paley
operators is by now quite vast. We will recount here some closely related re-
sults. In 1984, Wang proved in [15] that if f ∈ BMO(Rn), then g(f) is either
infinite everywhere or is finite almost everywhere and in the latter case g(f)
is bounded on BMO(Rn). Subsequently, Kurtz obtained similar results for
the Lusin area function S and the Littlewood-Paley g∗λ function in [7]. Later
on, Leckband in [8] proved the boundedness of the above three operators from
L∞(Rn) to BLO(Rn). Recently, Meng and Yang in [10] improved this result
with replacing L∞(Rn) by the larger space BMO(Rn). In addition, the map-
ping properties for such operators in the Campanato spaces and the Lipschitz
spaces Lipα(R

n) and other various spaces are also established (see [6, 11, 16]
for more details).

In this paper, we will focus on the generalized Littlewood-Paley operators
defined as follows:

gr(f)(x) =

{
∫

Rn

|f ∗ ϕt(x)|
r dt

t

}1/r

,(1.4)

Sr(f)(x) =

{

∫ ∫

Γ(x)

|f ∗ ϕt(y)|
r dydt

tn+1

}1/r

,(1.5)

g∗λ,r(f)(x) =

{

∫ ∫

R
n+1

+

(
t

t+ |x− y|
)nλ|f ∗ ϕt(y)|

r dydt

tn+1

}1/r

,(1.6)

where r > 1. Clearly, g2, S2 and g∗λ,2 are the classic Littlewood-Paley function

g(f), Lusin area function S(f) and g∗λ function, respectively.
For the generalized Littlewood-Paley operators, several attentions have been

attracted. For example, Chen [3] showed that if r ≥ 2, f ∈ Lp(Rn), 1 <
p < ∞, then gr is bounded on Lp(Rn); Sun [14] proved that if 2 ≤ r < ∞,
f ∈ BMO(Rn), then gr(f)(x) is finite almost everywhere and gr is bounded
on BMO(Rn) if gr(f)(x) is finite in a set of positive measure; Bao and Tao [1]
obtained the following results: if r ≥ 2, and f belongs to the Campanato space
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Eα,p for 0 ≤ α < 1, 1 < p < ∞, then gr(f)(x) is either infinite everywhere or is
finite almost everywhere and in the latter case gr is bounded on the Campanato
space Eα,p.

Comparing with the results of Meng and Yang in [10], it is natural to
ask whether these generalized operators are also bounded from BMO(Rn) to
BLO(Rn)? The main purpose of this paper is to address this question.

To state our results, we first recall the definitions of BMO and BLO spaces.
For a complex-valued integrable function f on R

n, set

‖f‖BMO = sup
B

1

|B|

∫

B

|f(x)−mB(f)|dx,

where the supremum is taken over all ball B in R
n and mB(f) denotes the

integral average of f on the ball B. The function f is called to be bounded mean
oscillation if ‖f‖BMO < ∞ and BMO(Rn) is the set of all locally integrable
functions f on R

n with ‖f‖BMO(Rn) < ∞.
As is well known, for all p ∈ (1,∞) we have

(

1

|B|

∫

B

|f(x)−mB(f)|
pdx

)
1
p

≤ Cp‖f‖BMO(Rn).(1.7)

Next, we will recall the definition of the space BLO(Rn) introduced by
R. Coifman and R. Rochberg in [5]. A complex-valued integrable function f is
said to belong to BLO(Rn) if there exists a constant C2 such that for any ball
B we have

1

|B|

∫

B

[f(x)− inf
y∈B

f(y)]dx ≤ C2.(1.8)

The infimum of the constant C2 on the right side is defined as the BLO norm
of f , denoted by ‖f‖BLO(Rn).

Remark 1.1. As in [9], it is not difficult to show that BLO(Rn) is a proper
subspace of BMO(Rn). For example, take f(x) = (log |x|)χ{|x|≤1}(x) for all
x ∈ R, then it is easy to show that f ∈ BMO(R), but f /∈ BLO(R). Notice
that the above function is nonpositive. However, it is not so easy to show
that there exists a non-negative function which is in BMO(Rn), but not in
BLO(Rn). The authors in [9] (see Proposition 2.1 of [9]) constructed an inter-
esting counterexample of this kind, which further indicates the meaning of the
following theorems, since all Littlewood-Paley operators are nonnegative. Fur-
thermore, it can be proved that BLO(Rn) is not a linear space and ‖·‖BLO(Rn)

is not a norm.

Now, we formulate our main results as follows.

Theorem 1.1. Suppose that f ∈ BMO(Rn), and r ≥ 2. Then gr(f) is either

infinite everywhere, or is finite almost everywhere, and in the latter case there

exists a constant C independent of f such that

‖gr(f)‖BLO(Rn) ≤ C‖f‖BMO(Rn).(1.9)
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Theorem 1.2. Suppose that f ∈ BMO(Rn), r ≥ 2. Then Sr(f) is either

infinite everywhere, or is finite almost everywhere, and in the latter case there

exists a constant independent of f such that

‖Sr(f)‖BLO(Rn) ≤ C‖f‖BMO(Rn).(1.10)

Theorem 1.3. Given λ ∈ (1,∞), then for any f ∈ BMO(Rn) and r ≥ 2,
g∗λ,r(f) is either infinite everywhere, or is finite almost everywhere, and in the

latter case there exists a constant independent of f such that

‖g∗λ,r(f)‖BLO(Rn) ≤ C‖f‖BMO(Rn).(1.11)

Remark 1.2. Obviously, when r = 2, our results recover the results of Meng
and Yang in [10], which improved the results of Leckband in [8]. It is not
clear whether the conclusions of Theorems 1.1-1.3 are also true for 1 < r < 2,
which is interesting. But, please notice that the conclusion of Lemma 2.1 below
holding true also needs r ∈ [2,∞).

Remark 1.3. We remark that to obtain (1.9), it suffices to prove

‖[gr(f)]
r‖BLO(Rn) ≤ C‖f‖rBMO(Rn).(1.12)

Indeed, observe that for any given ball B and x ∈ B, if inf
x′∈B

gr(f)(x
′) < ∞,

then

gr(f)(x) − inf
x′∈B

gr(f)(x
′) ≤

{

[gr(f)(x)]
r − inf

x′∈B
[gr(f)(x

′)]r
}1/r

.(1.13)

Therefore

1

|B|

∫

B

[grf(x)− inf gr(f)]dx

≤
( 1

|B|

∫

B

(grf(x)− inf gr(f))
rdx
)1/r

≤
( 1

|B|

∫

B

([grf(x)]
r − inf[gr(f)]

r)dx
)1/r

.

Combining this with (1.12) we get (1.9). Similarly, we can deal with (1.10) and
(1.11).

We should point out that our proofs of main theorems are motivated much
by the methods used by Meng and Yang in [10].

The rest of this paper is organized as follows. After recalling and establishing
some auxiliary lemmas in Section 2, we give the proofs of our main results in
Section 3.

Throughout the paper, the letter C, sometimes with certain parameters, will
stand for positive constants not necessarily the same one at each occurrence,
but independent of the essential variables.
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2. Auxiliary lemmas

In this section, we will recall and establish some auxiliary lemmas, which
will be useful in the proofs of main theorems.

Lemma 2.1 (cf. [3]). For r ≥ 2, 1 < p < ∞, gr(f) is bounded on Lp(Rn).

Lemma 2.2. Suppose that 2 ≤ r ≤ p < ∞. Then

‖g∗λ,r(f)‖p ≤ Cp,λ,r‖f‖p.

Proof. Let h(x) be a non-negative measurable function on R
n. We claim that

(2.1)

∫

Rn

(

g∗λ,r(f)(x)
)r

h(x)dx ≤ Cλ

∫

Rn

(

gr(f)(x)
)r

M(h)(x)dx,

where M denotes the Hardy-Littlewood maximal function.
Indeed, since the left side of (2.1) equals to

∫ ∞

0

∫

Rn

|f ∗ ϕt(y)|
r 1

t

[
∫

Rn

( t

t+ |x− y|

)nλ

t−nh(x)dx

]

dydt,

we need only to prove that

sup
t>0

∫

Rn

( t

t+ |x− y|

)nλ

t−nh(x)dx ≤ CλM(h)(y),

which follows from the following inequality

sup
ǫ>0

(h ∗ ϕǫ)(y) ≤ C‖ϕ‖L1M(h)(y),

where ϕ is a nonnegative radial decreasing function with ‖ϕ‖L1 < ∞ and
ϕǫ(x) = ǫ−nϕ(xǫ ). Here we set ϕ(x) = (1 + |x|)−λn, ǫ = t.

To prove this lemma for the case p = r, it is sufficient to set h(x) ≡ 1 in
(2.1).

For p > r, there exists q > 1 such that 1/q+r/p = 1. We take the supremum
on the left side of the inequality (2.1) for all non-negative function h such that
‖h‖q ≤ 1, getting

‖g∗λ,r(f)‖
r
p ≤ ‖gr(f)‖

r
p‖M(h)‖q.

By Lemma 2.1 and the Lq (q > 1) boundedness of the maximal function, we
obtain the desired conclusion. �

Lemma 2.3. For any x ∈ R
n and r > 1, Sr(f)(x) ≤ Cλ g∗λ,r(f)(x).

Proof. The proof of this lemma follows from the following simple fact that
( t

t+ |x− y|

)nλ

≥ 2−nλ

for any (y, t) ∈ Γ(x). �

By Lemmas 2.2 and 2.3, we immediately get the following lemma.



856 YURONG WU AND HUOXIONG WU

Lemma 2.4. Suppose that 2 ≤ r ≤ p < ∞. Then

‖Sr(f)‖p ≤ Cp,r‖f‖p.

Lemma 2.5 (cf. [13]). Suppose that p ∈ (1,∞), β ∈ (0, n) and 1/q = 1/p−
β/n. Then the following fractal integral operator

Iβf(x) =

∫

Rn

f(y)

|x− y|n−β
dy

is bounded from Lp(Rn) to Lq(Rn).

3. Proofs of main results

This section is devoted to the proofs of Theorems 1.1-1.3.

Proof of Theorem 1.1. By Remark 1.2, it suffices to prove that for any f ∈
BMO(Rn), if there exists a point x0 ∈ R

n such that gr(f)(x0) < ∞, then
gr(f) is finite almost everywhere in R

n and for any ball B ⊂ R
n,

1

|B|

∫

B

(

[grf(x)]
r − inf

x′∈B
[grf(x

′)]r
)

dx ≤ C‖f‖rBMO.

By homogeneity, we may assume ‖f‖BMO = 1. Therefore it is enough to prove

1

|B|

∫

B

(

[grf(x)]
r − inf

x′∈B
[grf(x

′)]r
)

dx ≤ C.

We temporarily assume that gr(f) is finite almost everywhere in R
n, which will

be proved later.
Denote by ρ the radius of the ball B. For any x ∈ B, let

gr,ρ(f)(x) :=

(
∫ 4ρ

0

|f ∗ ϕt(x)|
r dt

t

)1/r

,

gr,∞(f)(x) :=

(
∫ ∞

4ρ

|f ∗ ϕt(x)|
r dt

t

)1/r

.

Since ϕ has mean value zero, we get

1

|B|

∫

B

(

[grf(x)]
r − inf

x′∈B
[gr(f)]

r

)

dx(3.1)

≤ C

{

1

|B|

∫

B

(

gr,ρ([f −mB(f)]χ8B)(x)
)r

dx

+
1

|B|

∫

B

(

gr,ρ([f −mB(f)]χRn\8B)(x)
)r

dx

+
1

|B|

∫

B

sup
x′∈B

∣

∣

∣
[gr,∞(f)(x)]r − [gr,∞(f)(x

′

)]r
∣

∣

∣
dx

}

:= A1 +A2 +A3.



GENERALIZED LITTLEWOOD-PALEY OPERATORS 857

In what follows, we estimate the above three terms, respectively. At first, in
view of (1.7) and Lemma 2.1, we have A1 ≤ C. Next, it is obvious that for
x ∈ B, z ∈ R

n\8B, |x− z| ∼ |xB − z|. Thus by (1.2) we get

A2 ≤ C
1

|B|

∫

B

∫ 4ρ

0

[

∫

Rn\8B

|f(z)−mB(f)|

|xB − z|n+1
dz

]r

tr−1dtdx

≤ C

{

ρr

[

∞
∑

k=3

∫

2k+1B\2kB

|f(z)−m2k+1B(f)|

(2kρ)n+1
dz

+
∞
∑

k=3

|m2k+1B(f)−mB(f)|

2kρ

]r}

≤ C.

Finally, to estimate A3, we need only to show that for any x, x′ ∈ B,

(3.2)
∣

∣

∣
[gr,∞(f)(x)]r−[gr,∞(f)(x

′

)]r
∣

∣

∣
≤

∫ ∞

4ρ

∣

∣

∣
|f ∗ϕt(x)|

r−|f ∗ϕt(x
′

)|r
∣

∣

∣

dt

t
≤ C.

For any t ≥ 4ρ, choose k0 ∈ N such that 2k0ρ ≤ t < 2k0+1ρ, then by the
cancelation property of ϕ and condition (1.2), we know that for any x ∈ B,

‖f ∗ ϕt(x)|

≤ C
(

∫

2k0B

|f(z)−m2k0B(f)|t

(t+ |x− z|)n+1
dz +

∞
∑

k=k0

∫

2k+1B\2kB

|f(z)−m2k0B(f)|t

(t+ |x− z|)n+1
dz
)

≤ C
( 1

tn

∫

2k0B

|f(z)−m2k0B(f)|dz

+

∞
∑

k=k0

t

(2kρ)n+1

∫

2k+1B

|f(z)−m2k0B(f)|dz
)

≤ C.

Consequently, by the mean value theorem, we get that for any x, x′ ∈ B,

∣

∣

∣
|f ∗ ϕt(x)|

r − |f ∗ ϕt(x
′)|r
∣

∣

∣
≤ C|f ∗ ϕt(x)− f ∗ ϕt(x

′)|
(

max
x∈B

|f ∗ ϕt(x)|
)r−1

≤ C|f ∗ ϕt(x)− f ∗ ϕt(x
′)|.

This implies

∣

∣

∣
[gr,∞(f)(x)]r − [gr,∞(f)(x

′

)]r
∣

∣

∣
=

∫ ∞

4ρ

∣

∣

∣
|f ∗ ϕt(x)|

r − |f ∗ ϕt(x
′

)|r
∣

∣

∣

dt

t

≤ C

∫ ∞

4ρ

|f ∗ ϕt(x)− f ∗ ϕt(x
′

)|
dt

t
.
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On the other hand, by the fact that ϕ has mean value zero, |ϕt(z)| ≤ t−n and
(1.3), we have

|f ∗ ϕt(x)− f ∗ ϕt(x
′)|

≤ C
(

∣

∣[f −mB(f)]χRn\8B ∗ ϕt(x) − [f −mB(f)]χRn\8B ∗ ϕt(x
′)
∣

∣

+
∣

∣[f −mB(f)]χ8B ∗ ϕt(x)
∣

∣ +
∣

∣[f −mB(f)]χ8B ∗ ϕt(x
′)
∣

∣

)

≤ C
(

∫

Rn\8B

|f(x)−mB(f)||ϕ(
x − z

t
)− ϕ(

x′ − z

t
)|t−ndz

+

∫

8B

|f −mB(f)|

tn
dz
)

≤ C
(

∫

Rn\8B

|f(x)−mB(f)|
|x− x′|t

(t+ |x− z|)n+2
dz +

∫

8B

|f −mB(f)|

tn
dz
)

.

Therefore, for x, x′ ∈ B, we obtain
∣

∣

∣
[gr,∞(f)(x)]r − [gr,∞(f)(x

′

)]r
∣

∣

∣

≤ C
(

∫

Rn\8B

|f(x)−mB(f)|
[

∫ |x−z|

4ρ

ρ

(t+ |x− z|)n+2
dt

+

∫ ∞

|x−z|

ρ

(t+ |x− z|)n+2
dt
]

dz +

∫

8B

∫ ∞

4ρ

|f(z)−mB(f)|

tn+1
dtdz

)

≤ C
(

∫

Rn\8B

|f(z)−mB(f)|r

|x− z|n+1
+

1

ρn

∫

8B

|f −mB(f)|dz
)

≤ C.

This proves that A3 ≤ C, which together with the estimates of A1 and A2

implies that

(3.3)
1

|B|

∫

B

([grf(x)]
r − inf

x′∈B
[grf(x

′)]r)dx < ∞.

To end the proof of this theorem, it remains to prove that gr(f) is finite almost
everywhere. First observe that with x′ replaced by x0 in (3.2) and repeat the
same process in the proof of (3.2), we get

|[gr,∞(f)(x)]r − [gr,∞(f)(x0)]
r| ≤ C, ∀x ∈ B.

Consequently,

|gr,∞(f)(x)| < ∞, ∀x ∈ B

since |gr,∞(f)(x0)| < ∞. This avoid the case of ∞−∞ in the expression of A3

in (3.1).
On the other hand, we assume that B ∋ x0 in (3.3). Then

gr(f)(x) < ∞, a.e. x ∈ B.
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Note that the ball B is chosen arbitrarily. Hence gr(f)(x) is finite almost
everywhere in R

n. Theorem 1.1 is proved. �

Proof of Theorem 1.2. As in proving Theorem 1.1, it suffices to prove that for
any f ∈ BMO(Rn) with ‖f‖BMO = 1, if there exists a point x0 ∈ R

n such
that Sr(f)(x0) < ∞, then for any ball B ⊂ R

n,

1

|B|

∫

B

(

[Srf(x)]
r − inf

x′∈B
[Srf(x

′)]r
)

dx ≤ C.

Let

Sr,ρ(f)(x) :=

(

∫ 4ρ

0

∫

|y−x|<t

|f ∗ ϕt(x)|
r dydt

tn+1

)1/r

,

Sr,∞(f)(x) :=

(

∫ ∞

4ρ

∫

|y−x|<t

|f ∗ ϕt(x)|
r dydt

tn+1

)1/r

.

Then the cancelation property of ϕ yields

1

|B|

∫

B

(

[Srf(x)]
r − inf

x′∈B
[Srf(x

′)]r
)

dx

≤ C
{ 1

|B|

∫

B

[Sr,ρ([f −mB(f)]χ8B)(x)]
rdx

+
1

|B|

∫

B

[

Sr,ρ([f −mB(f)]χRn\8B)(x)
]r

dx

+
1

|B|

∫

B

sup
x′∈B

|[Sr,∞(f)(x)]r − [Sr,∞(f)(x
′

)]r|dx
}

:= G1 +G2 +G3.

Now, we estimate G1, G2 and G3, respectively. Firstly, (1.7) and Lemma 2.4
implies G1 ≤ C. Secondly, for any x ∈ B, z ∈ R

n\8B and y ∈ R
n satisfying

|y − x| < t (t ∈ (0, 4ρ)), we have |y − z| ∼ |z − xB|. Therefore by (1.2)

G2 ≤ C
1

|B|

∫

B

∫ 4ρ

0

∫

|y−x|<t

[

∫

Rn\8B

|f(z)−mB(f)|

|xB − z|n+1
dz

]r
dydt

tn+1−r
dx

≤ C

{

ρr

[

∞
∑

k=3

∫

2k+1B\2kB

|f(z)−m2k+1B(f)|

(2kρ)n+1
dz

+

∞
∑

k=3

|m2k+1B(f)−mB(f)|

2kρ

]r}

≤ C.

Finally, to estimate G3, it is enough to prove that for any x, x′ ∈ B, we have
∣

∣

∣
[Sr,∞(f)(x)]r − [Sr,∞(f)(x

′

)]r
∣

∣

∣
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≤ C

∫ ∞

4ρ

∫

|y|<t

∣

∣|f ∗ ϕt(x+ y)|r − |f ∗ ϕt(x
′

+ y)|r
∣

∣

dydt

tn+1

≤ C.

Note that for any x ∈ B, z ∈ R
n and |y| ≤ t (t ≥ 4ρ), we have t+ |x+ y− z| ∼

t+ |x− z|. Then, for any x, x′ ∈ B, and y ∈ R
n satisfying |y| ≤ t (t ≥ 4ρ), we

have

|f ∗ ϕt(x+ y)|

≤ C
(

∫

2k0B

|f(z)−m2k0B(f)|t

(t+ |x− z|)n+1
dz +

∞
∑

k=k0

∫

2k+1B\2kB

|f(z)−m2k0B(f)|t

(t+ |x− z|)n+1
dz
)

≤ C
( 1

tn

∫

2k0B

|f(z)−m2k0B(f)|dz

+

∞
∑

k=k0

t

(2kρ)n+1

∫

2k+1B

|f(z)−m2k0B(f)|dz
)

≤ C,

and

|f ∗ ϕt(x+ y)− |f ∗ ϕt(x
′ + y)|

≤ C

(

∫

Rn\8B

|f(x)−mB(f)|
|x− x′|t

(t+ |x− z|)n+2
dz +

∫

8B

|f −mB(f)|

tn
dz

)

,

where k0 is a positive integer satisfying 2k0ρ ≤ t < 2k0+1ρ. Therefore by the
mean value theorem we can prove that for any x, x′ ∈ B, we have

∣

∣

∣
[Sr,∞(f)(x)]r − [Sr,∞(f)(x

′

)]r
∣

∣

∣

≤ C

∫ ∞

4ρ

∫

|y|<t

|f ∗ ϕt(x+ y)− f ∗ ϕt(x
′

+ y)|
dydt

tn+1

≤ C

(

∫ ∞

4ρ

∫

|y|<t

dydt

t2n+1

∫

8B

|f(z)−mB(f)|dz

+

∫

Rn\8B

∫ ∞

4ρ

∫

|y|<t

|f(z)−mB(f)|r

(t+ |x− z|)n+2tn
dydtdz

)

≤ C.

This implies that G3 ≤ C and we complete the proof of Theorem 1.2. �

Proof of Theorem 1.3. As before, it suffices to prove that for any f∈BMO(Rn),
‖f‖BMO = 1, if there exists a point x0 ∈ R

n such that g∗λ,r(f)(x0) < ∞, then
for any B ⊂ R

n,

1

|B|

∫

B

(

[g∗λ,rf(x)]
r − inf

x′∈B
[g∗λ,rf(x

′

)]r
)

dx ≤ C.
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We denote the radius and center of the ball B by ρ and xB , respectively. For
any non-negative integer k, let

J(k) = {(y, t) ∈ R
n+1
+ : |y − xB| < 2k−2ρ, 0 < t < 2k−2ρ}.

Since ϕ has mean value zero, we obtain

1

|B|

∫

B

(

[g∗λ,rf(x)]
r − inf

x′∈B
[g∗λ,rf(x

′

)]r
)

dx

≤ C
( 1

|B|

∫

B

[g∗λ,r,0([f −mB(f)]χ8B)(x)]
rdx

+
1

|B|

∫

B

[g∗λ,r,0([f −mB(f)]χRn\8B)(x)]
rdx

+
1

|B|

∫

B

sup
x′∈B

|[g∗λ,r,∞(f)(x)]r − [g∗λ,r,∞(f)(x
′

)]r |dx
)

:= I1 + I2 + I3,

where

g∗λ,r,0(f)(x) =

{

∫ ∫

J(0)

(

t

t+ |x− y|

)λn

|f ∗ ϕt(y)|
r dydt

tn+1

}1/r

,

g∗λ,r,∞(f)(x) =

{

∫ ∫

R
n+1

+
\J(0)

(

t

t+ |x− y|

)λn

|f ∗ ϕt(y)|
r dydt

tn+1

}1/r

.

By (1.7) and Lemma 2.2, it is easy to check that I1 ≤ C.
In what follows, we estimate I2 and I3, respectively. Since for any (y, t) ∈

J(0), x ∈ B, z ∈ R
n\8B, we have |z − y| ∼ |z − xB |, |y − x| < 2ρ, so by (1.2)

we get

I2 ≤ C
1

|B|

∫

B

∫ ∫

J(0)

(

t

t+ |x− y|

)λn
(

∫

Rn\8B

|f(z)−mB(f)|

(t+ |y − z|)n+1
dz

)r
dydt

tn+1−r
dx

≤ C
1

|B|

∫

B

∫ ∫

J(0)

(

t

t+ |x− y|

)λn
(

∞
∑

k=3

∫

2k+1B\2kB

|f(z)−mB(f)|

(2kρ)n+1
dz

)r
dydt

tn−1
dx

≤ C
1

|B|

∫

B

∫ ρ/4

0

∫

|y−xB|<2ρ

(

t

t+ |x− y|

)λn
1

ρr
dydt

tn+1−r
dx

≤ C
1

|B|

∫

B

∫ ρ/4

0

∫

|s−
xB−x

t
|< 2ρ

t

(

t

t+ t|s|

)λn
1

ρr
tr−1dsdtdx

≤ C
1

|B|

∫

B

∫ ρ/4

0

∫

|s|< 4ρ
t

1

(1 + |s|)n−1

1

ρr
tr−1dsdtdx

≤ C.
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To estimate I3, first observe that by the cancelation property of ϕ, for any
x, x′ ∈ B we have

∣

∣[g∗λ,r,∞(f)(x)]r − [g∗λ,r,∞(f)(x′)]r
∣

∣

≤ C

∫ ∫

R
n+1

+
\J(0)

∣

∣

∣

∣

∣

(

t

t+ |x− y|

)λn

−

(

t

t+ |x′ − y|

)λn
∣

∣

∣

∣

∣

|f ∗ ϕt(y)|
r dydt

tn+1

≤ C

∫ ∫

R
n+1

+
\J(0)

ρ

(t+ |x− y|)nλ+1
|f ∗ ϕt(y)|

r dydt

tn+1−nλ

≤ C

{

∞
∑

k=1

ρ

∫ ∫

J(k)\J(k−1)

[

∫

Rn\2k+1B

|f(z)−mB(f)|

(t+ |y − z|)n+1
dz

]r
(

t

2kρ

)nλ+1
dydt

tn+2−r

+

∞
∑

k=1

ρ

∫ ∫

J(k)\J(k−1)

[
∫

2k+1B

|f(z)−mB(f)|

(t+ |y − z|)n+1
dz

]r (
t

2kρ

)nλ+1
dydt

tn+2−r

}

:= E1 + E2.

Since t
2kρ

≤ 1 for (y, t) ∈ Jk, we have

(

t

2kρ

)nλ1+1

≤

(

t

2kρ

)nλ2+1

(λ1 > λ2 > 1).

So, we always assume that λ ∈ (1, 2). Note that

t+ |z − y| ∼ 2kρ+ |z − xB |, ∀x ∈ B, z /∈ 2k+1B, (y, t) ∈ J(k)\J(k − 1),

which implies

E1 ≤ C
∞
∑

k=1

ρ

(2kρ)nλ+1

∫ ∫

J(k)\J(k−1)

[

∞
∑

l=k+1

∫

2l+1B\2lB

|f(z)−mB(f)|

(2kρ+ |z − xB |)n+1
dz

]r
dydt

tn+1−r−nλ

≤ C

∞
∑

k=1

ρ

(2kρ)nλ+1

∫ ∫

J(k)\J(k−1)

[

∞
∑

l=k+1

∫

2l+1B

|f(z)−mB(f)|

(2lρ)n+1
dz

]r
dydt

tn+1−r−nλ

≤ C

∞
∑

k=1

ρ

(2kρ)nλ+1

∫ 2k−2ρ

0

∫

|y−xB|<2k−2ρ

(

k

2kρ

)r
dydt

tn+1−r−nλ

≤ C

∞
∑

k=1

ρ

(2kρ)nλ+1
(2k−2ρ)nλ+r−n(2k−2ρ)n

(

k

2kρ

)r

=

∞
∑

k=1

kr

2k

≤ C.
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On the other hand, by the Minkowski inequality and the boundedness of the
fractional integral operator In

r
(λ−1) from Lr/λ(Rn) to Lr(Rn), we have

E2 ≤ C

∞
∑

k=1

ρ

(2kρ)nλ+1

∫

|y−xB|<2k−2ρ





∫

2k+1B

|f(z)−mB(f)|

(

∫ 2k−2ρ

0

tr+nλ−n−1

(t+ |y − z|)nr+r
dt

)1/r

dz





r

dy

≤ C

{

∞
∑

k=1

ρ

(2kρ)nλ+1

∫

|y−xB|<2k−2ρ

[
∫

2k+1B

|f(z)−mB(f)|

(

∫ |y−z|

0

tr+nλ−n−1

(t+ |y − z|)nr+r
dt+

∫ ∞

|y−z|

tr+nλ−n−1

(t+ |y − z|)nr+r
dt

)
1
r

dz





r

dy







≤ C

∞
∑

k=1

ρ

(2kρ)nλ+1

∫

Rn

[

∫

2k+1B

|f(z)−mB(f)|

|z − y|n−
nλ−n

r

dz

]r

dy

≤ C

∞
∑

k=1

ρ

(2kρ)nλ+1

[
∫

2k+1B

|f(z)−mB(f)|
r
λ dz

]λ

≤ C.

Then, I3 ≤ C and Theorem 1.3 is proved. �
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