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CHARACTERIZATION OF FUNCTIONS VIA

COMMUTATORS OF BILINEAR FRACTIONAL INTEGRALS

ON MORREY SPACES

Suzhen Mao and Huoxiong Wu

Abstract. For b ∈ L1
loc

(Rn), let Iα be the bilinear fractional integral
operator, and [b, Iα]i be the commutator of Iα with pointwise multipli-
cation b (i = 1, 2). This paper shows that if the commutator [b, Iα]i
for i = 1 or 2 is bounded from the product Morrey spaces Lp1,λ1(Rn) ×
Lp2,λ2(Rn) to the Morrey space Lq,λ(Rn) for some suitable indexes λ, λ1,
λ2 and p1, p2, q, then b ∈ BMO(Rn), as well as that the compactness
of [b, Iα]i for i = 1 or 2 from Lp1,λ1(Rn) × Lp2,λ2(Rn) to Lq,λ(Rn)
implies that b ∈ CMO(Rn) (the closure in BMO(Rn) of the space of
C∞(Rn) functions with compact support). These results together with
some previous ones give a new characterization of BMO(Rn) functions
or CMO(Rn) functions in essential ways.

1. Introduction

Let R
n be the Euclidean space with n ≥ 2, and BMO(Rn) denote the

space of functions with bounded mean oscillation, which consists of all locally
integrable functions b, such that

‖b‖∗ := sup
Q

1

|Q|

∫

Q

|b(x)− bQ|dx < ∞,

where Q is a cube with sides parallel to the axes, and bQ is the average of b
over Q. Also, let CMO(Rn) be the closure in the BMO(Rn) norm of C∞

c (Rn),
which represents the space of infinitely differentiable functions with compact
support.
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For 0 < α < 2n, let us consider the bilinear fractional integral operator Iα
defined originally for f , g ∈ C∞

c (Rn) by

(1) Iα(f, g)(x) :=

∫

R2n

1

(|x − y|+ |x− z|)2n−α
f(y)g(z)dydz,

and its commutators with symbol b given by

(2) [b, Iα]1 (f, g) := Iα(bf, g)− b Iα(f, g),

and

(3) [b, Iα]2 (f, g) := Iα(f, bg)− b Iα(f, g).

The boundedness and compactness of [b, Iα]i on variant function spaces have
been the topic in many articles recently, see [1, 2, 3, 5, 6, 12, 13, 17, 18,
19, 26], among numerous references. One of the interesting questions on
[b, Iα]i is whether it can be used to characterize BMO(Rn) by boundedness,
or CMO(Rn) by compactness, as those in the linear setting (see [7, 9, 27] etc).
Recently, Chaffee [5] established the following result.

Theorem A. For b ∈ L1
loc (Rn), 0 < α < 2n and 1 < p1, p2, and q satisfying

0 <
1

p1
+

1

p2
−

α

n
=

1

q
< 1,

we have, for i = 1 or 2,

[b, Iα]i :L
p1(Rn)×Lp2(Rn) → Lq(Rn) is a bounded operator ⇐⇒ b∈BMO(Rn).

Subsequently, Chaffee and Torres [6] obtained the following characterization
by compactness in Lebesgue spaces.

Theorem B. For b ∈ L1
loc (Rn), 0 < α < 2n and 1 < p1, p2, and q satisfying

0 <
1

p1
+

1

p2
−

α

n
=

1

q
< 1,

we have, for i = 1 or 2,

[b, Iα]i :L
p1(Rn)×Lp2(Rn) → Lq(Rn) is a compact operator ⇐⇒ b∈CMO(Rn).

In this paper, we aim to extend the above results to Morrey spaces, which
is defined as follows.

Definition. For 0 < λ < n, 1 ≤ p < ∞, the Morrey space Lp,λ(Rn) is defined
by

Lp,λ(Rn) = {f ∈ L
p
loc : ‖f‖Lp,λ(Rn) < ∞},

where

‖f‖Lp,λ(Rn) = sup
t∈Rn,R>0

(
1

Rλ

∫

B(t,R)

|f(x)|pdx

)1/p

,

and B(t, R) is the ball centered at t and with radius R > 0.
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The space Lp,λ(Rn) becomes a Banach space with norm ‖ · ‖Lp, λ(Rn). More-

over, for 1 ≤ p < ∞, then Lp,0(Rn) = Lp(Rn), and Lp,n(Rn) = L∞(Rn)
isometrically. If λ > n, then Lp,λ(Rn) = {0}.

It is well known that the classical Morrey space Lp,λ(Rn) was originally in-
troduced by Morrey [20] to study certain problems in elliptic equations and was
subsequently found to have many important applications to partial differential
equations, such as elliptic equations, Navier-Stokes equations and Scrödinger
equations, see [4, 15, 21, 23, 24] et al. and references therein. Also, the bound-
edness for the classical operators in harmonic analysis and the compactness
of the commutators for such classical operators in Lp,λ(Rn) were extensively
studied, for examples see [8, 9, 10, 11, 14, 17, 28] and references therein. In
particular, Ding and Mei [17] established the following boundedness and com-
pactness of [b, Iα]i for i = 1, 2 in Morrey spaces.

Theorem C. For 0 < α < 2n, 0 < λ, λ1, λ2 < n. Suppose that 1/2 < p < ∞,

1 < p1, p2 < ∞ with 1/p = 1/p1 + 1/p2 and λ/p = λ1/p1 + λ2/p2, 1 < q < ∞
with 1/q = 1/p− α/(n− λ). Then

(i) for b ∈ BMO(Rn), there exists a constant C > 0 such that for i = 1, 2,

‖[b, Iα]i(f, g)‖Lq,λ(Rn) ≤ C‖b‖∗‖f‖Lp1,λ1 (Rn)‖g‖Lp2,λ2(Rn);

(ii) for b ∈ CMO(Rn), [b, Iα]i is a compact operator from Lp1,λ1(Rn) ×
Lp2,λ2(Rn) to Lq,λ(Rn), i = 1, 2.

Compared Theorem C with Theorems A and B, it is natural to ask whether
the boundedness or compactness of the commutator [b, Iα]i for i = 1 or 2
from the product Morrey spaces Lp1,λ1(Rn)× Lp2,λ2(Rn) to the Morrey space
Lq,λ(Rn) can imply that b ∈ BMO(Rn) or b ∈ CMO(Rn). The main purpose
of this paper is to address the question above. Our results can be formulated
as follows.

Theorem 1.1. For 0 < α < 2n, 0 < λ, λ1, λ2 < n, suppose that 1 < p1, p2 <

∞, 1/2 < p < ∞ with 1/p = 1/p1+1/p2 and λ/p = λ1/p1+λ2/p2, 1 < q < ∞
with 1/q = 1/p−α/(n−λ). If the commutator [b, Iα]i for i = 1 or 2 is bounded

from Lp1,λ1(Rn)× Lp2,λ2(Rn) to Lq,λ(Rn), then b ∈ BMO(Rn).

Theorem 1.2. For 0 < α < 2n, 0 < λ1, λ2, λ < n, suppose that 1 < p1, p2 <

∞, 1/2 < p < ∞ with 1/p = 1/p1 + 1/p2 and λ/p = λ1/p1 + λ2/p2, and

1 < q < ∞ with 1/q = 1/p− α/(n − λ). If the commutator [b, Iα]i for i = 1
or 2 is a compact operator from Lp1,λ1(Rn) × Lp2,λ2(Rn) to Lq,λ(Rn), then

b ∈ CMO(Rn).

Moreover, combining Theorems 1.1 and 1.2 with Theorem C, we have the
following equivalent characterizations.

Theorem 1.3. Under the assumptions of Theorem 1.1 or 1.2, for i = 1 or 2,
we have
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(i) [b, Iα]i : Lp1,λ1(Rn) × Lp2,λ2(Rn) → Lq,λ(Rn) is bounded ⇐⇒ b ∈
BMO(Rn);

(ii) [b, Iα]i : Lp1,λ1(Rn) × Lp2,λ2(Rn) → Lq,λ(Rn) is compact ⇐⇒ b ∈
CMO(Rn).

Remark. Obviously, Theorems A and B can be regarded as the extreme case
of Theorem 1.3 in λ = λ1 = λ2 = 0 since Lp,0(Rn) = Lp(Rn) for any 1 ≤
p < ∞. Therefore, our results essentially extend the corresponding ones in
[5, 6]. In addition, Theorem 1.3 can also be regarded as the generalization of
the corresponding result in [9] from the linear setting to the multilinear setting.

The rest of this paper is organized as follows. In Section 2, we will prove
Theorem 1.1 and the proof of Theorem 1.2 will be given in Section 3. We
remark that our ideas are greatly motivated by [5, 6, 9, 16].

We shall use the following conventions:

• C always denotes a positive constant that is independent of main pa-
rameters involved but whose value may differ from line to line.

• For a set E ⊂ R
n, χE denotes its characteristic function.

• For p ∈ [1,∞), we use p′ to denote the dual exponent of p, namely
p′ = p/(p− 1).

• For a ball B ⊂ R
n and c > 0, we use cB to denote the ball concentric

with B whose radius is c times of B′s.

2. Proof of Theorem 1.1

This section is devoted to proving Theorem 1.1. The techniques in our
arguments are taken from [5, 16], which originate from [7].

Proof of Theorem 1.1. By symmetry of the kernel of [b, Iα]i, we will give our
arguments to [b, Iα]1. For δ > 0, let B((y0, z0), δ

√
n) ⊂ R

2n be the ball for
which we can express (|y|+ |z|)2n−α as an absolutely convergent Fourier series
of the form

(|y|+ |z|)2n−α =

∞∑

j=0

aje
ivj ·(y,z),

which
∑

∞

j=0 |aj | < ∞ in the neighborhood |y − y0|+ |z − z0| ≤ 2δ
√
n.

The specific vectors vj will not play a role in the proof. We will express them
as vj = (v1j , v

2
j ) ∈ R

n×R
n. Note that due to the homogeneity of (|y|+ |z|)2n−α,

we can take (y0, z0) such that |(y0, z0)| > 2
√
n and δ < 1 such that B̄∩{0} = ∅.

Set y1 = y0δ
−1 and z1 = z0δ

−1, and note that

|y − y1|+ |z − z1| < 2
√
n ⇒ |δy − y0|+ |δz − z0| ≤ 2δ

√
n,

and so for all (y, z) satisfying the inequality on the left. We have

(|y|+ |z|)2n−α = (|δy|+ |δz|)2n−αδ−2n+α
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= δ−2n+α
∞∑

j=0

aje
iδvj ·(y,z).

Let Q = Q(x0, r0) be an arbitrary cube in R
n. Set ỹ = x0− r0y1, z̃ = x0− r0z1

and take Q′ = Q(ỹ, r0) ⊂ R
n and Q′′ = Q(z̃, r0) ⊂ R

n. Then for any x ∈ Q

and y ∈ Q′, we have

|
x− y

r0
− y1| = |

x− y

r0
−

x0 − ỹ

r0
| ≤ |

x− x0

r0
|+ |

ỹ − y

r0
| ≤

√
n.

The same estimate holds for x ∈ Q and z ∈ Q′′, and so we have

|
x− y

r0
− y1|+ |

x− z

r0
− z1| ≤ 2

√
n.

Let σ(x) = sgn (b(x)− bQ′). Then
∫

Q

|b(x)− bQ′ |dx

=

∫

Q

(b(x)− bQ′)σ(x)dx

=
1

|Q′|

∫

Q

∫

Q′

(b(x)− b(y))dyσ(x)dx

=
1

|Q′′|

1

|Q′|

∫

Q

∫

Q′

∫

Q′′

(b(x)− b(y))σ(x)dzdydx

= r−2n
0

∫

R3n

b(x)− b(y)

(|x − y|+ |x− z|)2n−α
r2n−α
0

(∣
∣
∣
x− y

r0

∣
∣
∣+

∣
∣
∣
x− z

r0

∣
∣
∣

)2n−α

× σ(x)χQ(x)χQ′ (y)χQ′′ (z)dzdydx

= r−α
0

∫

R3n

b(x)− b(y)

(|x − y|+ |x− z|)2n−α
δ−2n+α

∞∑

j=0

aje
iδvj ·(

x−y
r0

, x−z
r0

)

× σ(x)χQ(x)χQ′ (y)χQ′′ (z)dzdydx.

Let fj(y) = e
−i δ

r0
v1

j ·yχQ′(y), gj(z) = e
−i δ

r0
v2

j ·zχQ′′(z) and

hj(x) = e
i δ
r0

vj ·(x,x)σ(x)χQ(x).

Then fj ∈ Lp1,λ1(Rn), gj ∈ Lp2,λ2(Rn) and by Hölder’s inequality and the as-
sumption the boundedness of [b, Iα]1 from Lp1,λ1(Rn)×Lp2,λ2(Rn) to Lq,λ(Rn),
we have

∫

Q

|b(x)− bQ′ |dx

= r−α
0 δ−2n+α

∫

R3n

b(x)− b(y)

(|x− y|+ |x− z|)2n−α

∞∑

j=0

ajfj(y)gj(z)hj(x)dydzdx
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= r−α
0 δ−2n+α

∞∑

j=0

aj

∫

Rn

hj(x)

∫

R2n

b(x)− b(y)

(|x− y|+ |x− z|)2n−α
fj(y)gj(z)dydzdx

= r−α
0 δ−2n+α

∞∑

j=0

aj

∫

Q

hj(x)[b, Iα]1(fj , gj)(x)dx

≤ r−α
0 δ−2n+α

∞∑

j=0

|aj |

(∫

Q

|hj(x)|
q′dx

)1/q′(∫

Q

|[b, Iα]1(fj , gj)(x)|
qdx

)1/q

= r−α
0 δ−2n+α

∞∑

j=0

|aj ||Q|1/q
′

r
λ/q
0

(
1

rλ0

∫

Q

|[b, Iα]1(fj , gj)(x)|
qdx

)1/q

≤ Cr−α
0 δ−2n+α

∞∑

j=0

|aj ||Q|1/q
′

r
λ/q
0 ‖fj‖Lp1,λ1(Rn)‖gj‖Lp2,λ2 (Rn).

Note that for any t ∈ R
n and 0 < d < ∞,

(4)
1

dλ1

∫

Qd

|χQ′(y)|
p1dy ≤ C

1

rλ1

0

∫

Q′

|χQ′(y)|
p1dy,

where Qd = Q(t, d) and C = 2n. In fact, we need only consider the case of
t = ỹ and d < r0. The other cases are simply. In this case, there exists a k ∈ N,
such that 2k−1d < r0 ≤ 2kr0, we get

|Q′
⋂
Qd|

dλ1

=
|Qd|

dλ1

<
|Q′|

2(k−1)ndλ1

≤
2kλ1 |Q′|

2(k−1)nrλ1

0

≤ 2n
1

rλ1

0

∫

Q′

|χQ′(y)|
p1dy.

The same estimate for ‖gj‖Lp2, λ2 (R
n), hence

∫

Q

|b(x)− bQ′ |dx

≤ Cδ−2n+α
∞∑

j=0

|aj |r
−α
0 r

n(1−1/q)
0 r

−(λ1/p1+λ2/p2)
0 |Q′|1/p1 |Q′′|1/p2r

λ/q
0

= Cδ−2n+α
∞∑

j=0

|aj |r
n
0

≤ C|Q|.

Recall that |Q|−1
∫

Q
|b(x) − bQ|dx ≤ 2|Q|−1

∫

Q
|b(x) − c|dx for any c, and so

this gives us that for any arbitrary Q ⊂ R
n

1

|Q|

∫

Q

|b(x) − bQ|dx ≤
2

|Q|

∫

Q

|b(x)− bQ′ |dx ≤ C,

which implies that b ∈ BMO(Rn) and completes the proof of Theorem 1.1. �
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3. Proof of Theorem 1.2

In this section, we will prove Theorem 1.2. The following characterization
of CMO(Rn) will play key role in our arguments.

Lemma 3.1 (cf. [25]). A function b ∈ BMO(Rn) is in CMO(Rn), if and only

if b satisfies the following three conditions:

(1) lim
a→0

sup
|Q|=a

1

|Q|

∫

Q

|b(x)− bQ|dx = 0,

(2) lim
a→∞

sup
|Q|=a

1

|Q|

∫

Q

|b(x)− bQ|dx = 0,

(3) lim
|y|→∞

1

|Q|

∫

Q

|b(x+ y)− bQ|dx = 0 for each Q.

Proof of Theorem 1.2. Note that a compact operator is bounded, by Theorem
1.1, we know that the symbol b of a compact operator must be at least in
BMO(Rn). In what follows, we will prove that b ∈ CMO(Rn).

Employing the ideas of [6, 9], our approach is as follows: Under the as-
sumption of that [b, Iα]i is a compact operator from Lp1,λ1(Rn) × Lp2,λ2(Rn)
to Lq,λ(Rn) for i = 1 or 2, we will show that if b fails to satisfy one of the
conditions (1)-(3) in Lemma 3.1, then one can construct sequences of functions
{fj}

∞

j=1 uniformly bounded on Lp1,λ1(Rn) and {gj}
∞

j=1 uniformly bounded on

Lp2,λ2(Rn), such that {[b, Iα]i(fj , gj)}
∞

j=1 has no convergent subsequence in

Lq,λ(Rn), which contradicts the compactness assumption. It then follows that
if [b, Iα]i is compact, the symbol b must satisfy all three conditions and hence
be an element of CMO(Rn).

By the symmetry of the kernel of [b, Iα]i again, we will give the arguments
only to [b, Iα]1. Before constructing the sequence, we make some preliminaries.

Assume that b ∈ BMO(Rn)with ‖b‖∗ = 1. Then there exist ǫ > 0 and a
sequence of cubes {Qj(yj , dj)}

∞

j such that for every j,

(5)
1

|Qj|

∫

Qj

|b(y)− bQj
|dy > ǫ.

We define

(6) fj(y) = |Qj |
−(n−λ1)/(np1)

(
sgn (b(y)− bQj

)− c0
)
χQj

(y),

where c0 = |Qj |
−1

∫

Qj
sgn (b(y)− bQj

)dy. It is easy to check that |c0| < 1 and

{fj} has the following properties

suppfj ⊂ Qj,(7)

fj(y)(b(y)− bQj
) ≥ 0,(8)

∫

Rn

fj(y)dy = 0,(9)

∫

Rn

fj(y)(b(y)− bQj
)dy = |Qj|

−(n−λ1)/(np1)

∫

Qj

|b(y)− bQj
|dy,(10)
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|fj(y)| ≤ 2|Qj|
−(n−λ1)/(np1).(11)

(11) gives us that {‖fj‖Lp1,λ1(Rn)}
∞

j=1 is bounded uniformly. In fact, for any
t ∈ R

n,

(
1

Rλ1

∫

B(t,R)

|fj(y)|
p1dy

)1/p1

≤







C1

(
R
dj

)(n−λ1)/p1

≤ C1, 0 < R ≤ dj ;
(

1

Rλ1

∫

Qj

|fj(y)|
p1dy

)1/p1

≤ C1

(dj

R

)λ1/p1

≤ C1, R > dj > 0,

where C1 is independent of j, R, t.
For the other functions, we will simply define

(12) gj =
χQj

|Qj|(n−λ2)/(p2n)
,

which satisfies

(
1

Rλ2

∫

B(t,R)

|gj(y)|
p2dy

)1/p2

≤







C2

(
R
dj

)(n−λ2)/p2

≤ C2, 0 < R ≤ dj ;
(

1

Rλ2

∫

Qj

|gj(z)|
p2dz

)1/p2

≤ C2

(dj

R

)λ2/p2

≤ C2, R > dj > 0,

where C2 is independent of j, R, t. Thus the sequence {[b, Iα]1(fj , gj)}
∞

j=1 is

also bounded in Lq,λ(Rn).
Next we establish several technical estimates. For a cube Qj with centered

yj and satisfying (5) for some ǫ > 0, fj , gj as above, and all x ∈ (2
√
nQj)

c the
following point-wise estimates hold:

(13) |Iα((b− bQj
)fj , gj)(x)| ≤ C|Qj |

2−(n−λ)/(np)|x− yj |
−2n+α,

(14) |Iα((b− bQj
)fj, gj)(x)| ≥ C|Qj |

2−(n−λ)/(np)|x− yj |
−2n+αǫ,

(15) |Iα(fj , gj)(x)| ≤ C|Qj |
2−(n−λ)/(np)+1/n|x− yj |

−2n+α−1,

where the constants involved are independent of b, fj , gj and ǫ.
To prove (13), we use that |x−yj | ≈ |x−y| for all y ∈ Qj , and that ‖b‖∗ = 1

to obtain

|Iα((b − bQj
)fj , gj)(x)|

=

∣
∣
∣
∣

∫

Rn

∫

Rn

(b(y)− bQj
)fj(y)gj(z)

(|x− y|+ |x− z|)2n−α
dydz

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

Qj

∫

Qj

(b(y)− bQj
)fj(y)gj(z)

(|x− y|+ |x− z|)2n−α
dydz

∣
∣
∣
∣

≤ |Qj|
−(n−λ1)/(np1)−(n−λ2)/(np2)|x− yj|

−2n+α

∫

Qj

∫

Qj

|b(y)− bQj
|dydz

≤ C|Qj |
2−(n−λ)/(np)|x− yj |

−2n+α‖b‖∗
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≤ C|Qj |
2−(n−λ)/(np)|x− yj |

−2n+α.

By (5), (8) and (10), we have

|Iα((b − bQj
)fj , gj)(x)|

=

∣
∣
∣
∣

∫

Rn

∫

Rn

(b(y)− bQj
)fj(y)gj(z)

(|x− y|+ |x− z|)2n−α
dydz

∣
∣
∣
∣

≥ C|Qj |
1−(n−λ2)/(np2)|x− yj |

−2n+α

∣
∣
∣
∣

∫

Qj

(b(y)− bQj
)fj(y)dy

∣
∣
∣
∣

= C|Qj |
1−(n−λ1)/(np1)−(n−λ2)/(np2)|x− yj |

−2n+α

∫

Qj

|b(y)− bQj
|dy

≥ C|Qj |
2−(n−λ)/(np)|x− yj |

−2n+αǫ,

which gives (14). Finally, using that fj has mean zero we obtain (15) in the
following way,

|Iα(fj , gj)(x)|

=

∣
∣
∣
∣

∫

Rn

∫

Rn

(
fj(y)gj(z)

(|x− y|+ |x− z|)2n−α
−

fj(y)gj(z)

(|x− yj |+ |x− z|)2n−α

)

dydz

∣
∣
∣
∣

≤ C

∫

Rn

∫

Rn

|y − yj|

(|x − yj|+ |x− z|)2n−α+1
fj(y)gj(z)|dydz

≤ C
|Qj |

1/n

|x− yj |2n−α+1

∫

Qj

∫

Qj

|fj(y)gj(z)|dydz

≤ C|Qj |
2−(n−λ)/(np)+1/n|x− yj |

−2n+α−1.

Following [25] and [9], we now use the above point-wise estimates (13)–(15) to
prove some Lq,λ(Rn) inequalities for [b, Iα]1(fj , gj). We may get the following
claims.

Claim 1. There exist constants γ2 > γ1 > 2 and γ3 > 0, which are depend-
ing only on p1, p2, n, ǫ, λ and b, such that

(16)

(∫

γ1dj<|x−yj|<γ2dj

|[b, Iα]1(fj , gj)(x)|
qdx

)1/q

≥ γ3|Qj|
λ/(nq),

and

(17)

(∫

|x−yj|>γ2dj

|[b, Iα]1(fj , gj)(x)|
qdx

)1/q

≤
γ3

4
|Qj |

λ/(nq).

Claim 2. There exists a constant 0 < β < γ2 depending only on p1, p2, n, ǫ, λ

and b, such that

(18)

(∫

E

|[b, Iα]1(fj , gj)(x)|
qdx

)1/q

≤
γ3

4
|Qj|

λ/(nq)
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holds for every measurable set E satisfying

E ⊂ {x : γ1dj < |x− yj| < γ2dj} and
|E|

|Qj|
< βn.

Now we prove (16)-(18). Starting γ̃1 > max{16, n}, using (15) and the fact
that 2n − α − n/q > 0, 1/p1 + 1/p2 < 2. Since |b2Q − bQ| ≤ C‖b‖∗ = C, by
‖b‖∗ = 1 we have

(∫

2sdj<|x−yj|<2s+1dj

|b(x)− bQj
|qdx

)1/q

≤ Cs2sn/q|Qj|
1/q.

Then
(∫

|x−yj|>γ̃1dj

|(b(x) − bQj
)Iα(fj , gj)(x)|

qdx

)1/q

≤ C|Qj |
2−(n−λ)/(np)+1/n

∞∑

s=xlog
2
γ̃1y

(∫

2sdj<|x−yj|<2s+1dj

|b(x)−bQj
|
q

|x−yj|
q(2n−α+1)

dx

)1/q

≤ C|Qj |
2−(n−λ)/(np)+1/n

∞∑

s=xlog
2
γ̃1y

2−s(2n−α+1)|Qj |
−2+α/n−1/n

×

(∫

2sdj<|x−yj|<2s+1dj

|b(x) − bQj
|qdx

)1/q

≤ C|Qj |
α/n−(n−λ)/(np)

∞∑

s=xlog
2
γ̃1y

2−s(2n−α+1)s2sn/q|Qj |
1/q

≤ C|Qj |
λ/(nq)

∞∑

s=xlog
2
γ̃1y

2−s(2n−α−n/q+1/2),

where we have used that s ≤ 2s/2 for 4 ≤ xlog2 γ̃1y ≤ s. Thus we obtain that

(19)

(∫

|x−yj|>γ̃1dj

|(b(x) − bQj
)Iα(fj , gj)(x)|

qdx

)1/q

≤ C|Qj |
λ/(nq)γ̃1

−2n+α+n/q−1/2.

Next, for γ̃2 > γ̃1, using (14) and (19), we have the following

(∫

γ̃1dj<|x−yj|<γ̃2dj

|[b, Iα]1(fj , gj)(x)|
qdx

)1/q

≥

(∫

γ̃1dj<|x−yj|<γ̃2dj

|Iα((b − bQj
)fj , gj)(x)|

qdx

)1/q

−

(∫

γ̃1dj<|x−yj|

|(b(x) − bQj
)Iα(fj , gj)(x)|

qdx

)1/q
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≥ Cǫ|Qj |
2−(n−λ)/(np)

(∫

γ̃1dj<|x−yj|<γ̃2dj

1

|x− yj|q(2n−α)
dx

)1/q

− C|Qj |
λ/(nq)γ̃1

−2n+α+n/q−1/2

≥ Cǫ|Qj |
λ/(nq)(γ̃1

−2nq+αq+n − γ̃2
−2nq+αq+n)1/q

− C|Qj |
λ/(nq)γ̃1

−2n+α+n/q−1/2.(20)

Similarly, from (13) and (19), we have

(∫

|x−yj|>γ̃2dj

|[b, Iα]1(fj , gj)(x)|
qdx

)1/q

≤

(∫

|x−yj|>γ̃2dj

|Iα((b − bQj
)fj , gj)(x)|

qdx

)1/q

+

(∫

|x−yj|>γ̃2dj

|(b(x)− bQj
)Iα(fj , gj)(x)|

qdx

)1/q

≤ C|Qj |
2−(n−λ)/pn

(∫

|x−yj|>γ̃2dj

1

|x− yj |(2n−α)q
dx

)1/q

+ C|Qj |
λ/(nq)γ̃2

−2n+α+n/q−1/2

≤ C|Qj |
λ/(qn)γ̃2

−2n+α+n/q + C|Qj|
λ/(nq)γ̃2

−2n+α+n/q−1/2.(21)

Using (20) and (21)
(
since 1 < p < n/α, 1/q = 1/p− α/(n− λ), n/q+ α < n

)
,

we can select γ1, γ2 in place γ̃1, γ̃2, with γ2 > γ1, such that (16) and (17) are
verified for some γ3 > 0.

We now verify (18). Let E ⊂ {x : γ1dj < |x − yj| < γ2dj} be an arbitrary
measurable set. Then by (13) and (15), we get

(∫

E

|[b, Iα]1(fj , gj)(x)|
qdx

)1/q

≤ |Qj |
2−(n−λ)/(np)

(∫

E

|x− yj |
−q(2n−α)dx

)1/q

+ |Qj |
2−(n−λ)/(np)+1/n

(∫

E

|b(x)− bQj
|q

|x− yj |q(2n−α+1)
dx

)1/q

≤ C|Qj |
λ/(nq)

{
|E|1/q

|Qj |1/q
+

(
1

|Qj |

∫

E

|b(x)− bQj
|qdx

)1/q}

.(22)

On the other hand, by the same arguments as in [9, p. 309], we can show that
there exists some positive constant c1 depending on γ1 and γ2 and b such that

1

|Qj|

∫

E

|b(x) − bQj
|qdx ≤ C

|E|

|Qj |

(

1 + log
(c1|Qj |

|E|

)
)

xqy+1

.
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This together with (22), if we take 0 < β < min(c
1/n
1 , γ2), implies that (18)

holds.
We are left with constructing the sequences to lead to a contradiction. The

arguments are again borrowed from [6, 9].
Case 1. If b does not satisfy (1), then there exist some ǫ > 0 and sequence

{Qj} with limj→∞ |Qj | = 0 such that for every j, (5) holds.

By limj→∞ dj = 0, we may choose a subsequence {Q
(1)
jk

= Q(yjk , q
(1)
jk

)},

such that their radius {d
(1)
jk

} satisfying

(23)
d
(1)
jk+1

d
(1)
jk

<
β

γ2
.

We also let {fjk} and {gjk} be the subsequence associated to the selected cubes

{Q
(1)
jk

} as defined earlier on. For fixed k and m, we define the following sets

G = {x : γ1d
(1)
jk

< |x− yjk | < γ2d
(1)
jk

},

G1 = G \ {x : |x− yjk+m
| ≤ γ2d

(1)
jk+m

},

and
G2 = {x : |x− yjk+m

| > γ2d
(1)
jk+m

},

where γ1 and γ2 are defined as before. Note that

(24) G1 ⊂ B(yjk , γ2d
(1)
jk

) ∩G2,

and

(25) G1 = G \ (Gc
2 ∩G).

Also, by construction and our choice of Q
(1)
jk

, one can easily see that

(26)
|Gc

2 ∩G|

|Qjk |
≤

(γ2d
(1)
jk+m

)n

(d
(1)
jk

)n
≤ γn

2

(
βn

γn
2

)m

< βn.

It follows that
(∫

B(yjk
,γ2d

(1)

jk
)

|[b, Iα]1(fjk , gjk)(x) − [b, Iα]1(fjk+m
, gjk+m

)(x)|qdx

)1/q

≥

(∫

G1

|[b, Iα]1(fjk , gjk)(x)|
qdx

)1/q

−

(∫

G2

|[b, Iα]1(fjk+m
, gjk+m

)(x)|qdx

)1/q

≥

(∫

G

|[b, Iα]1(fjk , gjk)(x)|
qdx−

∫

Gc
2
∩G

|[b, Iα]1(fjk , gjk)(x)|
qdx

)1/q

−
γ3

4
|Q

(1)
jk+m

|λ/(nq)

≥

(

γ
q
3 |Q

(1)
jk

|λ/n −

∫

Gc
2
∩G

|[b, Iα]1(fjk , gjk)(x)|
qdx

)1/q

−
γ3

4
|Q

(1)
jk+m

|λ/(nq).
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By (26) and applying (18) with E := Gc
2 ∩G, we have

(27)

∫

Gc
2
∩G

|[b, Iα]1(fjk , gjk)(x)|
qdx ≤ (

γ3

4
)q|Q

(1)
jk

|λ/n.

This together with (26) and the fact that |Q
(1)
jk+m

| < |Q
(1)
jk

| for any m ∈ N,

yields that there exists δ0 = δ0(γ3, q, n) > 0 such that
(∫

B(yjk
,γ2d

(1)

jk
)

|[b, Iα]1(fjk , gjk)(x) − [b, Iα]1(fjk+m
, gjk+m

)(x)|qdx

)1/q

≥

(

γ
q
3 |Q

(1)
jk

|λ/n − (
γ3

4
)q|Q

(1)
jk

|λ/n
)1/q

−
γ3

4
|Q

(1)
jk+m

|λ/(nq)

≥ δ0|Q
(1)
jk

|λ/(qn).

Thus
(

1

d
(1)λ
jk

∫

B(yjk
,γ2d

(1)

jk
)

|[b, Iα]1(fjk , gjk)(x)−[b, Iα]1(fjk+m
, gjk+m

)(x)|qdx

)1/q

≥ δ,

where δ = δ(δ0, n, q, λ) and δ is independent on m.
Hence, [b, Iα]1 is not a compact operator from Lp1,λ1(Rn) × Lp2,λ2(Rn) to

Lq,λ(Rn). This contradiction shows that b must satisfy the condition (1) of
Lemma 3.1.

Case 2. If b does not satisfy (2), then there also exist ǫ and sequence of
cubes {Qj}, this time with |Qj | → ∞ as j → ∞ such that (3.1) holds, too.

This time we choose the subsequence {Q
(2)
ji

= Q(yji , d
(2)
ji

)} so that

d
(2)
ji

d
(2)
ji+1

<
β

γ2
.

We can use a similar method as in the previous case, but the diameters are
increasing, so the sets of definition in a reversed order. Thus, for fixed m, i, we
have

G̃ = {x : γ1d
(2)
ji+m

< |x− yji+m
| < γ2d

(2)
ji+m

},

G̃1 = G̃ \ {x : |x− yji | ≤ γ2d
(2)
ji

},

G̃2 = {x : |x− yji | > γ2d
(2)
ji

}.

As before, (24) and (25) hold, and from this, the calculations are identical to
those in Case 1.

Case 3. It remains to show that b must satisfying (3). In fact, in this
case, if b does not satisfy (3), then there exists a cube Q with its diameter d

and a sequence {yj} with limj→∞ yj = ∞, such that (5) holds for the sequence
{Qj := Q + yj}. Thus, if we take the sequences {fj} and {gj} defined by (6)
and (12), respectively. Then (16) and (17) hold still. Now we denote

Bj = {x ∈ R
n : |x− yj| < γ2d}
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and choose a subsequence {Bjk = B(yjk , γ2d)} such that Bjk ∩ Bjl = ∅ for
l 6= k. For selected jk, let fjk and gjk be the functions associated with Qjk .
We also define

˜̃
G = {x : γ1d < |x− yjk | < γ2d},

˜̃
G1 =

˜̃
G \ {x : |x− yjk+m

| ≤ γ2d},

˜̃
G2 = {x : |x− yjk+m

| > γ2d};

We see that
˜̃
G1 =

˜̃
G −

˜̃
G

c

2 =
˜̃
G, by Bjk ∩ Bjk+m

= ∅. Thus, for any k,m ∈ N,
by (16) and (17) we get

(∫

Bjk

|[b, Iα]1(fjk , gjk)(x) − [b, Iα]1(fjk+m
, gjk+m

)(x)|qdx

)1/q

≥

(∫

˜̃
G

|[b, Iα]1(fjk , gjk)(x)|
q

)1/q

−

(∫

˜̃
G2

|[b, Iα]1(fjk+m
, gjk+m

)(x)|qdx

)1/q

≥ γ3|Q|λ/nq −
γ3

4
|Q|λ/nq

>
γ3

2
|Q|λ/nq.

Hence,
(

1

dλ

∫

Bjk

|[b, Iα]1(fjk , gjk)(x) − [b, Iα]1(fjk+m
, gjk+m

)(x)|qdx

)1/q

≥ Cγ3.

This contradicts the compactness of [b, Iα]1 from Lp1,λ1(Rn) × Lp2,λ2(Rn) to
Lq,λ(Rn). So b must also satisfy the condition (3) in Lemma 3.1. Theorem 1.2
is proved. �

References
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