• Title/Summary/Keyword: BMO(${\mathbb{R}}^n$)

Search Result 12, Processing Time 0.023 seconds

CHARACTERIZATION OF FUNCTIONS VIA COMMUTATORS OF BILINEAR FRACTIONAL INTEGRALS ON MORREY SPACES

  • Mao, Suzhen;Wu, Huoxiong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1071-1085
    • /
    • 2016
  • For $b{\in}L^1_{loc}({\mathbb{R}}^n)$, let ${\mathcal{I}}_{\alpha}$ be the bilinear fractional integral operator, and $[b,{\mathcal{I}}_{\alpha}]_i$ be the commutator of ${\mathcal{I}}_{\alpha}$ with pointwise multiplication b (i = 1, 2). This paper shows that if the commutator $[b,{\mathcal{I}}_{\alpha}]_i$ for i = 1 or 2 is bounded from the product Morrey spaces $L^{p_1,{\lambda}_1}({\mathbb{R}}^n){\times}L^{p_2,{\lambda}_2}({\mathbb{R}}^n)$ to the Morrey space $L^{q,{\lambda}}({\mathbb{R}}^n)$ for some suitable indexes ${\lambda}$, ${\lambda}_1$, ${\lambda}_2$ and $p_1$, $p_2$, q, then $b{\in}BMO({\mathbb{R}}^n)$, as well as that the compactness of $[b,{\mathcal{I}}_{\alpha}]_i$ for i = 1 or 2 from $L^{p_1,{\lambda}_1}({\mathbb{R}}^n){\times}L^{p_2,{\lambda}_2}({\mathbb{R}}^n)$ to $L^{q,{\lambda}}({\mathbb{R}}^n)$ implies that $b{\in}CMO({\mathbb{R}}^n)$ (the closure in $BMO({\mathbb{R}}^n)$of the space of $C^{\infty}({\mathbb{R}}^n)$ functions with compact support). These results together with some previous ones give a new characterization of $BMO({\mathbb{R}}^n)$ functions or $CMO({\mathbb{R}}^n)$ functions in essential ways.

POINTWISE ESTIMATES AND BOUNDEDNESS OF GENERALIZED LITTLEWOOD-PALEY OPERATORS IN BMO(ℝn)

  • Wu, Yurong;Wu, Huoxiong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.851-864
    • /
    • 2015
  • In this paper, we study the generalized Littlewood-Paley operators. It is shown that the generalized g-function, Lusin area function and $g^*_{\lambda}$-function on any BMO function are either infinite everywhere, or finite almost everywhere, respectively; and in the latter case, such operators are bounded from BMO($\mathbb{R}^n$) to BLO($\mathbb{R}^n$), which improve and generalize some previous results.

ESTIMATES FOR RIESZ TRANSFORMS ASSOCIATED WITH SCHRÖDINGER TYPE OPERATORS

  • Wang, Yueshan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1117-1127
    • /
    • 2019
  • Let ${\mathcal{L}}_2=(-{\Delta})^2+V^2$ be the $Schr{\ddot{o}}dinger$ type operator, where nonnegative potential V belongs to the reverse $H{\ddot{o}}lder$ class $RH_s$, s > n/2. In this paper, we consider the operator $T_{{\alpha},{\beta}}=V^{2{\alpha}}{\mathcal{L}}^{-{\beta}}_2$ and its conjugate $T^*_{{\alpha},{\beta}}$, where $0<{\alpha}{\leq}{\beta}{\leq}1$. We establish the $(L^p,\;L^q)$-boundedness of operator $T_{{\alpha},{\beta}}$ and $T^*_{{\alpha},{\beta}}$, respectively, we also show that $T_{{\alpha},{\beta}}$ is bounded from Hardy type space $H^1_{L_2}({\mathbb{R}}^n)$ into $L^{p_2}({\mathbb{R}}^n)$ and $T^*_{{\alpha},{\beta}}$ is bounded from $L^{p_1}({\mathbb{R}}^n)$ into BMO type space $BMO_{{\mathcal{L}}1}({\mathbb{R}}^n)$, where $p_1={\frac{n}{4({\beta}-{\alpha})}}$, $p_2={\frac{n}{n-4({\beta}-{\alpha})}}$.

ESTIMATES FOR THE HIGHER ORDER RIESZ TRANSFORMS RELATED TO SCHRÖDINGER TYPE OPERATORS

  • Wang, Yanhui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.235-251
    • /
    • 2021
  • We consider the Schrödinger type operator ��k = (-∆)k+Vk on ℝn(n ≥ 2k + 1), where k = 1, 2 and the nonnegative potential V belongs to the reverse Hölder class RHs with n/2 < s < n. In this paper, we establish the (Lp, Lq)-boundedness of the higher order Riesz transform T��,�� = V2��∇2��-��2 (0 ≤ �� ≤ 1/2 < �� ≤ 1, �� - �� ≥ 1/2) and its adjoint operator T∗��,�� respectively. We show that T��,�� is bounded from Hardy type space $H^1_{\mathcal{L}_2}({\mathbb{R}}_n)$ into Lp2 (ℝn) and T∗��,�� is bounded from ��p1 (ℝn) into BMO type space $BMO_{\mathcal{L}_1}$ (ℝn) when �� - �� > 1/2, where $p_1={\frac{n}{4({\beta}-{\alpha})-2}}$, $p_2={\frac{n}{n-4({\beta}-{\alpha})+2}}$. Moreover, we prove that T��,�� is bounded from $BMO_{\mathcal{L}_1}({\mathbb{R}}_n)$ to itself when �� - �� = 1/2.

A NOTE ON END PROPERTIES OF MARCINKIEWICZ INTEGRAL

  • DING, YONG
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.5
    • /
    • pp.1087-1100
    • /
    • 2005
  • In this note we give the mapping properties of the Marcinkiewicz integral !-to. at some end spaces. More precisely, we first prove that !-to. is a bounded operator from H$^{1,($\mathbb{R) to H$^{1, ($\mathbb{R). As a corollary of the results above, we obtain again the weak type (1,1) boundedness of $\mu$$_{, but the condition assumed on n is weaker than Stein's condition. Finally, we show that !-to. is bounded from BMO($\mathbb{R) to BMO($\mathbb{R). The results in this note are the extensions of the results obtained by Lee and Rim recently.

REMARK ON PARTICLE TRAJECTORY FLOWS WITH UNBOUNDED VORTICITY

  • Pak, Hee Chul
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.635-641
    • /
    • 2014
  • The existence and the regularity of the particle trajectory flow X(x, t) along a velocity field u on $\mathbb{R}^n$ are discussed under the BMO-blow-up condition: $${\int}_{0}^{T}{\parallel}{\omega}({\tau}){\parallel}_{BMO}d{\tau}&lt;{\infty}$$ of the vorticity ${\omega}{\equiv}{\nabla}{\times}u$. A comment on our result related with the mystery of turbulence is presented.

COMMUTATORS OF THE MAXIMAL FUNCTIONS ON BANACH FUNCTION SPACES

  • Mujdat Agcayazi;Pu Zhang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1391-1408
    • /
    • 2023
  • Let M and M# be Hardy-Littlewood maximal operator and sharp maximal operator, respectively. In this article, we present necessary and sufficient conditions for the boundedness properties for commutator operators [M, b] and [M#, b] in a general context of Banach function spaces when b belongs to BMO(?n) spaces. Some applications of the results on weighted Lebesgue spaces, variable Lebesgue spaces, Orlicz spaces and Musielak-Orlicz spaces are also given.

Lp-BOUNDEDNESS FOR THE COMMUTATORS OF ROUGH OSCILLATORY SINGULAR INTEGRALS WITH NON-CONVOLUTION PHASES

  • Wu, Huoxiong
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.577-588
    • /
    • 2009
  • In this paper, the author studies the k-th commutators of oscillatory singular integral operators with a BMO function and phases more general than polynomials. For 1 < p < $\infty$, the $L^p$-boundedness of such operators are obtained provided their kernels belong to the spaces $L(log+L)^{k+1}(S^{n-1})$. The results of the corresponding maximal operators are also established.