CHARACTERIZATION OF $B M O$ OR LIPSCHITZ FUNCTIONS BY GARSIA-TYPE NORMS ON A BOUNDED DOMAIN

Jisoo Byun and Bong-Hak Im*

Abstract

In this paper, we prove that the $B M O$ norm and the Garsia norm are equivalent on a bounded domain in \mathbb{R}^{N}. Also, we investigate the equivalent relation between the Lipschitz norm and the Garsia-type norm for harmonic functions.

1. Introduction and statement of results

Let D be a bounded domain with C^{2} boundary in \mathbb{R}^{N}. This means that there is a C^{2}, real-valued function ρ such that

$$
D=\left\{x \in \mathbb{R}^{N}: \rho(x)<0\right\}
$$

and $\nabla \rho \neq 0$ on ∂D. From now on, in this paper, we assume that D is a bounded domain in \mathbb{R}^{N} with C^{2} defining function ρ.

There exists the Poisson kernel $P: D \times \partial D \rightarrow \mathbb{R}^{+}$satisfying reproducing property for harmonic functions. The Poisson transform of a continuous function f on ∂D is defined by

$$
\mathcal{P} f(x)=\int_{\partial D} P(x, y) f(y) d \sigma(y), \quad x \in D
$$

where $d \sigma$ is the surface measure of the boundary of D.
For $r>0$, we denote the Euclidean metric ball in the boundary by $Q=$ $\{y \in \partial D:|y-\tilde{x}|<r\}$, where \tilde{x} is a boundary point. The integral mean f_{Q} is defined by $f_{Q}=\frac{1}{\sigma(Q)} \int_{Q} f d \sigma$. We define the $B M O$ norm as follwos:

$$
\|f\|_{B M O}^{2}=\sup _{Q} \frac{1}{\sigma(Q)} \int_{Q}\left|f-f_{Q}\right|^{2} d \sigma .
$$

The space $B M O$ of bounded mean oscillation is a set of all L^{2} function on the boundary ∂D with finite norm $\|f\|_{B M O}<\infty$.

[^0]Further, with $f \in L^{2}(\partial D)$ we associate the nonnegative function

$$
\mathcal{G}_{f}(x)=\int_{y \in \partial D}|f(y)-\mathcal{P} f(x)|^{2} P(x, y) d \sigma(y)
$$

The Garsia norm is defined by

$$
\|f\|_{G}^{2}=\sup \left\{\mathcal{G}_{f}(x): x \in D\right\}, f \in L^{2}(\partial D) .
$$

Theorem 1.1. Let $f \in L^{2}(\partial D)$. Then

$$
\|f\|_{B M O}<\infty \text { if and only if }\|f\|_{G}<\infty .
$$

For the unit ball in \mathbb{C}^{n} the $B M O$ norm is defined by using the non-isotropic ball in the unit sphere. The same result as Theorem 1.1 on the unit ball in \mathbb{C}^{n} was proved by Garsia (see [5], one-dimensional case) and by Axler-Shapiro (see [1], n-dimensional case).

Let E be a bounded subset of \mathbb{R}^{N} and f is a function on E. For $0<\alpha<1$, we set

$$
\Delta_{f, \alpha}(x, y)=\frac{|f(x)-f(y)|}{|x-y|^{\alpha}}
$$

and

$$
\Delta_{f, \alpha}(E)=\sup \left\{\Delta_{f, \alpha}(x, y): x, y \in E, x \neq y\right\} .
$$

We define the Lipschitz norm by $\|f\|_{\Lambda_{\alpha}(E)}=\Delta_{f, \alpha}(E)+\sup |f|$. Let $\Lambda_{\alpha}(E)$ be the set of all functions satisfying $\|f\|_{\Lambda_{\alpha}(E)}<\infty$. It is called the Lipschitz space of order α on E.

We see that the Poisson transform $\mathcal{P}: \Lambda_{\alpha}(\partial D) \mapsto \Lambda_{\alpha}(D)$ is bounded. Thus we can induce the following:

$$
\|f\|_{\Lambda_{\alpha}(D)} \sim\|f\|_{\Lambda_{\alpha}(\partial D)} \sim\|f\|_{\Lambda_{\alpha}(\bar{D})} .
$$

for all harmonic functions $f \in C(\bar{D})$. The inequality $\|f\|_{\Lambda_{\alpha}(\partial D)} \leq\|f\|_{\Lambda_{\alpha}(D)}$ can be easily checked without the harmonic condition. However, the converse is false if f is not harmonic by the following example.

Example 1.2. Let \mathbb{B} be the unit ball in \mathbb{R}^{N}. We define functions $f_{n}(x)=$ $n|x|^{\alpha}-n$ on \mathbb{B}. Then $\left\|f_{n}\right\|_{\Lambda_{\alpha}(\partial \mathbb{B})}=0$ and $\left\|f_{n}\right\|_{\Lambda_{\alpha}(\mathbb{B})} \geq n \rightarrow \infty$ as $n \rightarrow \infty$.

Now we will introduce four quantities which are closely related with the Lipschitz norm. First, we define the Garsia-type norm by

$$
\begin{equation*}
\mathcal{G}_{f, \alpha}=\sup _{x \in D} \frac{1}{\delta(x)^{\alpha}} \int_{y \in \partial D}|f(y)-\mathcal{P} f(x)| P(x, y) d \sigma(y), f \in L^{1}(\partial D) \tag{1}
\end{equation*}
$$

where $\delta(x)=\operatorname{dist}(x, \partial D)$.
Well-known Hardy-Littlewood lemma tells us that [7]

$$
\Delta_{f, \alpha}(D) \lesssim \sup _{x \in D} \delta^{1-\alpha}(x)|\nabla f(x)|+\sup _{x \in D}|f(x)| .
$$

Furthermore, for all harmonic functions f,

$$
\sup _{x \in D} \delta^{1-\alpha}(x)|\nabla f(x)| \lesssim \Delta_{f, \alpha}(D)
$$

We define $H L_{\alpha}(\nabla f)$ by

$$
H L_{\alpha}(\nabla f)=\sup _{x \in D} \delta(x)^{1-\alpha}|\nabla f(x)|
$$

for any differentiable functions f, where $H L$ stands for the Hardy-Littlewood quantity.

Next two theorems tell us the relation between four quantities $\Delta_{f, \alpha}(D)$, $\Delta_{f, \alpha}(\partial D), H L_{\alpha}(\nabla f)$, and $\mathcal{G}_{f, \alpha}$.

Theorem 1.3.

$$
\mathcal{G}_{f, \alpha} \lesssim \Delta_{f, \alpha}(\partial D) \lesssim \Delta_{f, \alpha}(D) \lesssim H L_{\alpha}(\nabla f)+\sup _{D}|f| .
$$

We define several kinds of Lipschitz norms as following:

$$
\left\{\begin{array}{l}
\|f\|_{\Lambda_{\alpha}(D)}=\Delta_{f, \alpha}(D)+\sup _{D}|f| \tag{2}\\
\|f\|_{\Lambda_{\alpha}(\partial D)}=\Delta_{f, \alpha}(\partial D)+\sup _{\partial D}|f| \\
\|f\|_{H L_{\alpha}}=H L_{\alpha}(\nabla f)+\sup _{D}|f| \\
\|f\|_{G, \alpha}=\mathcal{G}_{f, \alpha}+\sup _{D}|f|
\end{array}\right.
$$

We know that if h is harmonic, then $\|f\|_{\Lambda_{\alpha}(D)},\|f\|_{\Lambda_{\alpha}(\partial D)}$, and $\|f\|_{H L_{\alpha}}$ are equnvalent.

Next theorem tell us that $\|f\|_{G, \alpha}$ is equivalent to the other Lipschitz norms.
Theorem 1.4. For $0<\alpha<1$ the Garsia-type norm $\|f\|_{G, \alpha}$ is equivalent to other Lipschitz norms in (2) for the harmonic and $L^{1}(\partial D)$ function f.

Further, we define the Garsia-type p-norm $\mathcal{G}_{f, \alpha, p}$ using L^{p} integral by

$$
\mathcal{G}_{f, \alpha, p}=\sup _{x \in D} \frac{1}{\delta(x)^{\alpha}}\left\{\int_{y \in \partial D}|f(y)-\mathcal{P} f(x)|^{p} P(x, y) d \sigma(y)\right\}^{1 / p}
$$

We have the following equivalence between $G_{f, \alpha, p}$ and the Lipschitz norm. This can be achieved by the same technique as in Theorem 1.4 using the Hölder inequality.
Corollary 1.5. Let $p \geq 1$ and $0<\alpha<1 / p$. Then

$$
\mathcal{G}_{f, \alpha, p}+\sup _{x \in D}|f(x)| \sim\|f\|_{\Lambda_{\alpha}(D)}
$$

for all harmonic functions f.
The following example shows that the condition $0<\alpha<1 / p$ in Corollary 1.5 is essential.

Example 1.6. Let $p=2$ and \mathbb{B}^{2} is the unit ball in \mathbb{R}^{2}. Define a harmonic function f by $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$. Then $f \in \Lambda_{\alpha}\left(\mathbb{B}^{2}\right)$. Denote x by $\left(x_{1}, x_{2}\right)$. By easy computation, we can compute the following integral

$$
\begin{aligned}
\int_{|y|=1}|f(y)-\mathcal{P} f(x)|^{2} P(x, y) d \sigma(y) & =\int_{|y|=1}|f(y)|^{2} P(x, y) d \sigma(y)-|f(x)|^{2} \\
& =1-|x|^{2}
\end{aligned}
$$

Hence

$$
\mathcal{G}_{f, \alpha, 2}=\sup _{x \in \mathbb{B}^{2}}\left(1-|x|^{2}\right)^{1 / 2-\alpha}
$$

This is unbounded if α is greater than $1 / 2$.
There are more general weighted Lipschitz spaces which are extensively studied in ([2], [3], [4]), and so on. Especially, in [3] they proved the same results in weighted Lipschitz spaces like as ours. However, they considered the holomorphic case on the unit ball in \mathbb{C}^{n}.

2. Integral estimates

We have the following size estimates for the Poisson kernel in ([6], [8]):

$$
\begin{equation*}
\left|\nabla_{x}^{k} P(x, y)\right| \sim \frac{\delta(x)}{|x-y|^{N+k}}, \quad \text { for } \quad k=0,1 \tag{3}
\end{equation*}
$$

For $x \in D$ let \tilde{x} be the boundary point with $\delta(x)=\operatorname{dist}(x, \tilde{x})$.
Lemma 2.1. Let $0<\alpha<1$. Then we have

$$
\int_{y \in \partial D}|y-\tilde{x}|^{\alpha} P(\zeta, z) d \sigma(y) \lesssim \delta(x)^{\alpha} \quad \text { for all } \quad x \in D .
$$

Proof. Since $|y-\tilde{x}| \leq|y-x|+|x-\tilde{x}| \leq 2|y-x|$, we have

$$
|y-\tilde{x}|^{\alpha} P(x, y) \lesssim \frac{\delta(x)}{|x-y|^{N-\alpha}}
$$

Thus it is sufficient only to prove that

$$
\int_{y \in \partial D} \frac{1}{|x-y|^{N-\alpha}} d \sigma(y) \lesssim \frac{1}{\delta(x)^{1-\alpha}} \quad \text { for all } \quad x \in D
$$

Let $Q_{k}=\left\{y \in \partial D:|y-\tilde{x}|<2^{k} \delta(x)\right\}$ for all $k=1,2, \cdots$. Then Q_{k} is a covering of the boundary of D. We can compute the above integral on Q_{1}. We obtain that

$$
\begin{aligned}
\int_{Q_{1}} \frac{1}{|x-y|^{N-\alpha}} d \sigma(y) & \leq \int_{Q_{1}} \frac{1}{\delta(x)^{N-\alpha}} d \sigma(y) \\
& \lesssim \frac{1}{\delta(x)^{1-\alpha}} .
\end{aligned}
$$

For $y \in Q_{k} \backslash Q_{k-1}(k \geq 2)$, by the triangle inequality, we get the following

$$
|x-y| \geq|y-\tilde{x}|-|\tilde{x}-x|=|y-\tilde{x}|-\delta(x) \geq 2^{k-1} \delta(x)-\delta(x) \geq 2^{k-2} \delta(x)
$$

Thus we have

$$
\begin{aligned}
\int_{Q_{k} \backslash Q_{k-1}} \frac{1}{|x-y|^{N-\alpha}} d \sigma(y) & \leq \int_{Q_{k} \backslash Q_{k-1}} \frac{1}{\left(2^{k-2} \delta(x)\right)^{N-\alpha}} d \sigma(y) \\
& \lesssim \frac{1}{2^{k(1-\alpha)}} \frac{1}{\delta(x)^{1-\alpha}}
\end{aligned}
$$

Since the series $\sum_{k=2}^{\infty} 1 / 2^{k(1-\alpha)}$ converges, we finally arrive that

$$
\begin{aligned}
\int_{y \in \partial D} \frac{1}{|x-y|^{N-\alpha}} d \sigma(y) & \leq \int_{Q_{1}}+\sum_{k=2}^{\infty} \int_{Q_{k} \backslash Q_{k-1}} \frac{1}{|x-y|^{N-\alpha}} d \sigma(y) \\
& \lesssim \sum_{k=0}^{\infty} \frac{1}{2^{k(1-\alpha)}} \frac{1}{\delta(x)^{1-\alpha}} \\
& \lesssim \frac{1}{\delta(x)^{1-\alpha}} .
\end{aligned}
$$

This is the end of the proof.

3. $B M O$ functions

Proof of Theorem 1.1. We suppose $\|f\|_{G}<\infty$. Let $x \in D$ and $Q=Q(\tilde{x}, \delta(x))=$ $\overline{\{y \in \partial D:|y-\tilde{x}|<\delta}(x)\}$. Then

$$
\begin{aligned}
\mathcal{G}_{f}(x) & =\int_{\partial D}|f(y)-\mathcal{P} f(x)|^{2} P(x, y) d \sigma(y) \\
& \gtrsim \int_{Q}|f(y)-\mathcal{P} f(x)|^{2} \frac{\delta(x)}{(2 \delta(x))^{N}} d \sigma(y) \\
& \gtrsim \frac{1}{\sigma(Q)} \int_{Q}|f(y)-\mathcal{P} f(x)|^{2} d \sigma(y)
\end{aligned}
$$

As x runs over $\left\{x \in D: \delta(x)<r_{0}\right\}$, the above Q runs all balls of radius less than r_{0}. By Lemma 5.1 in [9], we have $\|f\|_{B M O} \lesssim\|f\|_{G}$.

For the other implication, we suppose that $\|f\|_{B M O}<\infty$. Since $P(x, y)$ is smooth on ∂D, for $f \in L^{2}(\partial D)$, there exists $r_{0}>0$ such that

$$
\sup _{\substack{x \in D \\ \delta(x) \geq r_{0}}} \mathcal{P}\left(|f-\mathcal{P} f(x)|^{2}\right)<+\infty
$$

Fix $x \in D$ with $\delta(x)<r_{0}$. Let \tilde{x} be the boundary point with $\delta(x)=\operatorname{dist}(x, \tilde{x})$. Let $Q_{k}=\left\{y \in \partial D:|y-\tilde{x}| \leq 2^{k} \delta(x)\right\}$ for $k \geq 1$. Then Q_{k} is a covering of ∂D. In order to estimate $P\left(|f-\mathcal{P} f(x)|^{2}\right)$, we first compute $P\left(\left|f-f_{Q_{1}}\right|^{2}\right)$. By covering property,

$$
\begin{align*}
\int_{\partial D}\left|f(y)-f_{Q_{1}}\right|^{2} P(x, y) d \sigma(y)= & \int_{Q_{1}}\left|f(y)-f_{Q_{1}}\right|^{2} P(x, y) d \sigma(y) \\
& +\sum_{k=2}^{\infty} \int_{Q_{k} \backslash Q_{k-1}}\left|f(y)-f_{Q_{1}}\right|^{2} P(x, y) d \sigma(y) \tag{4}
\end{align*}
$$

Now, we will compute each term in the equation above. We have

$$
\begin{align*}
\int_{Q_{1}}\left|f(y)-f_{Q_{1}}\right|^{2} P(x, y) d \sigma(y) & \lesssim \int_{Q_{1}}\left|f(y)-f_{Q_{1}}\right|^{2} \frac{\delta(x)}{|x-y|^{N}} d \sigma(y) \\
& \leq \frac{1}{\delta(x)^{N-1}} \int_{Q_{1}}\left|f(y)-f_{Q_{1}}\right|^{2} d \sigma(y) \\
& \lesssim \frac{1}{\sigma\left(Q_{1}\right)} \int_{Q_{1}}\left|f(y)-f_{Q_{1}}\right|^{2} d \sigma(y) \lesssim\|f\|_{B M O}^{2} \tag{5}
\end{align*}
$$

For $k \geq 2$,

$$
\begin{align*}
& \int_{Q_{k} \backslash Q_{k-1}}\left|f(y)-f_{Q_{1}}\right|^{2} P(x, y) d \sigma(y) \\
& \lesssim \int_{Q_{k} \backslash Q_{k-1}}\left|f(y)-f_{Q_{1}}\right|^{2} \frac{\delta(x)}{|x-y|^{N}} d \sigma(y) \\
& \leq \int_{Q_{k} \backslash Q_{k-1}}\left|f(y)-f_{Q_{1}}\right|^{2} \frac{\delta(x)}{\left(2^{k-2} \delta(x)\right)^{N}} d \sigma(y) \tag{6}\\
& \lesssim \frac{1}{2^{k}} \frac{1}{\sigma\left(Q_{k}\right)} \int_{Q_{k}}\left|f(y)-f_{Q_{1}}\right|^{2} d \sigma(y) \\
& \lesssim \frac{1}{2^{k}}\|f\|_{B M O}^{2}+\frac{1}{2^{k}}\left|f_{Q_{k}}-f_{Q_{1}}\right|^{2}
\end{align*}
$$

Note that $\left|f_{Q_{k}}-f_{Q_{1}}\right|^{2} \lesssim \sum_{j=2}^{k} k\left|f_{Q_{j}}-f_{Q_{j-1}}\right|^{2}$. For each $j=2, \ldots, k$,

$$
\begin{align*}
\left|f_{Q_{k}}-f_{Q_{k-1}}\right|^{2} & =\left|f_{Q_{k}}-\frac{1}{\sigma\left(Q_{k-1}\right)} \int_{Q_{k-1}} f d \sigma\right|^{2} \\
& \leq\left(\frac{1}{\sigma\left(Q_{k-1}\right)} \int_{Q_{k-1}}\left|f_{Q_{k}}-f\right| d \sigma\right)^{2} \tag{7}\\
& \lesssim \frac{1}{\sigma\left(Q_{k}\right)} \int_{Q_{k}}\left|f_{Q_{k}}-f\right|^{2} d \sigma \leq\|f\|_{B M O}^{2}
\end{align*}
$$

Since series $\sum k / 2^{k}$ converges, by (4), (5), (6), and (7), we have

$$
\int_{\partial D}\left|f(y)-f_{Q_{1}}\right|^{2} P(x, y) d \sigma(y) \lesssim\|f\|_{B M O}^{2}
$$

We return to the estimate of $\mathcal{P}\left(|f-\mathcal{P} f(x)|^{2}\right)$. It follows that

$$
\begin{aligned}
& \int_{\partial D}\left|f(y)-f_{Q_{1}}\right|^{2} P(x, y) d \sigma(y) \\
&=\int_{\partial D}\left|f(y)-\mathcal{P} f(x)+\mathcal{P} f(x)-f_{Q_{1}}\right|^{2} P(x, y) d \sigma(y) \\
&=\int_{\partial D}|f(y)-\mathcal{P} f(x)|^{2} P(x, y) d \sigma(y)+\left|\mathcal{P} f(x)-f_{Q_{1}}\right|^{2}
\end{aligned}
$$

The last equality is followed by reproducing property of the Poisson kernel. Therefore

$$
\begin{aligned}
\|f\|_{G}^{2} & =\sup _{x \in D} \int_{\partial D}|f(y)-\mathcal{P} f(x)|^{2} P(x, y) d \sigma(y) \\
& <\sup _{x \in D} \int_{\partial D}\left|f(y)-f_{Q_{1}}\right|^{2} P(x, y) d \sigma(y) \\
& \lesssim\|f\|_{B M O}^{2} .
\end{aligned}
$$

4. Lipschitz functions

Proof of Theorem 1.3. It is enough to prove that $\mathcal{G}_{f, \alpha} \lesssim \Delta_{f, \alpha}(\partial D)$. Let $x \in D$ and $y \in \partial D$. Then

$$
|f(y)-\mathcal{P} f(x)| \leq|f(y)-f(\tilde{x})|+|f(\tilde{x})-\mathcal{P} f(x)| .
$$

We have

$$
\begin{aligned}
|f(\tilde{x})-\mathcal{P} f(x)| & =\left|\int_{y \in \partial D}(f(\tilde{x})-f(y)) P(x, y) d \sigma(y)\right| \\
& \lesssim \Delta_{f, \alpha}(\partial D) \int_{y \in \partial D}|\tilde{x}-y|^{\alpha} P(x, y) d \sigma(y) \\
& \lesssim \Delta_{f, \alpha}(\partial D) \delta(x)^{\alpha}
\end{aligned}
$$

by Lemma 2.1.
Thus we have

$$
|f(y)-\mathcal{P} f(x)| \lesssim \Delta_{f, \alpha}(\partial D)\left(|y-\tilde{x}|^{\alpha}+\delta(x)^{\alpha}\right)
$$

Therefore

$$
\begin{aligned}
& \int_{y \in \partial D}|f(y)-\mathcal{P} f(x)| P(x, y) d \sigma(y) \\
& \lesssim \Delta_{f, \alpha}(\partial D)\left\{\int_{y \in \partial D}|y-\tilde{x}|^{\alpha} P(x, y) d \sigma(y)+\delta(x)^{\alpha}\right\} \\
& \lesssim \Delta_{f, \alpha}(\partial D) \delta(x)^{\alpha}
\end{aligned}
$$

by Lemma 2.1. Hence we have $\mathcal{G}_{f, \alpha} \lesssim \Delta_{f, \alpha}(\partial D)$.
$\frac{\text { Proof of Theorem 1.4. }}{\|f\|_{G, \alpha} \text {. }}$ By Lemma 1.3, it is enough to prove that $H L_{\alpha}(\nabla f) \lesssim$
Since f is harmonic, it follows that $f(x)=\int_{\partial D} f(y) P(x, y) d \sigma(y)$ for all x in D. If we differentiate the both side, we get

$$
\begin{aligned}
\nabla_{x} f(x) & =\int_{\partial D} f(y) \nabla_{x} P(x, y) d \sigma(y) \\
& =\int_{\partial D}(f(y)-\mathcal{P} f(x)) \nabla_{x} P(x, y) d \sigma(y)
\end{aligned}
$$

By (3), we have

$$
\left|\nabla_{x} P(x, y)\right| \lesssim \delta(x)^{-1}|P(x, y)| .
$$

Combining the above two inequalities, we get that

$$
\begin{equation*}
\delta(x)^{1-\alpha}\left|\nabla_{x} f(x)\right| \lesssim \delta(x)^{-\alpha} \int_{\partial D}|f(y)-f(x)||P(x, y)| d \sigma(y) . \tag{8}
\end{equation*}
$$

By the following examples below, we know that the converse of each step of the inequalities in Theorem 1.3 are false if f is not harmonic except the first step.
Example 4.1. Let \mathbb{B} be the unit ball in \mathbb{R}^{N}. Define f by $f(x)=|x|^{\alpha}$. Then

$$
\|f\|_{\Lambda_{\alpha}(\mathbb{B})} \lesssim 1
$$

However

$$
\begin{aligned}
H L_{\alpha}(\nabla f) & =\sup _{|x|<1}(1-|x|)^{1-\alpha}|\nabla f(x)| \\
& \sim \sup _{|x|<1}(1-|x|)^{1-\alpha}|x|^{\alpha-1}=\infty
\end{aligned}
$$

Example 4.2. Let $\chi(x)$ be a smooth function such that $0 \leq \chi \leq 1$ and

$$
\chi(x)=\left\{\begin{array}{lll}
1 & \text { if } & |x| \leq \frac{1}{3} \\
0 & \text { if } & |x| \geq \frac{2}{3}
\end{array}\right.
$$

We define f_{n} by $f_{n}(x)=\chi(x) n|x|^{\alpha}$. Then

$$
\begin{aligned}
\Delta_{f_{n}, \alpha}(\mathbb{B}) & =\sup _{\substack{x, y \in \mathbb{B} \\
x \neq y}} \frac{\left|f_{n}(x)-f_{n}(y)\right|}{|x-y|^{\alpha}} \\
& \geq \sup _{|x| \leq 1 / 3} \frac{n|x|^{\alpha}}{|x|^{\alpha}}=n .
\end{aligned}
$$

Thus $\left\|f_{n}\right\|_{\Lambda_{\alpha}(\mathbb{B})} \rightarrow \infty \quad$ as $\quad n \rightarrow \infty$. However, $\left\|f_{n}\right\|_{\Lambda_{\alpha}(\partial \mathbb{B})}=0$.
The only remaining relation is between $\mathcal{G}_{f, \alpha}$ and $\Delta_{f, \alpha}(\partial D)$.
Remark 1. Note that $\mathcal{P} f$ is harmonic and $\mathcal{P} f \equiv f$ on the boundary if f is continuous. Then $\Delta_{f, \alpha}(\partial D) \sim \Delta_{\mathcal{P} f, \alpha}(D) \sim \mathcal{G}_{\mathcal{P} f, \alpha}$ by Theorem 1.4. By the definition of $\mathcal{G}_{f, \alpha}$,

$$
\mathcal{G}_{f, \alpha}=\mathcal{G}_{\mathcal{P}_{f, \alpha}}
$$

Therefore, $\mathcal{G}_{f, \alpha} \sim \Delta_{f, \alpha}(\partial D)$ if f is continuous on the boundary.

References

[1] Sh. Axler and J. Shapiro, Putman's theorem, Alexander's spectral area estimate and $V M O$, Math. Ann. 271 (1985), 161-183.
[2] S. Bloom and G. S. De Souza, Atomic decomposition of generalized Lipschitz spaces, Illinois J. Math. 33-2 (1989), 181-209.
[3] H. R. Cho, S. Kwon and J. Lee, Characterization of the weighted Lipschitz function by the Garsia-type norm on the unit ball, to appear in Taiwanese Journal of Mathematics.
[4] K. M. Dyakonov, Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta. Math. 178 (1997), 143-167.
[5] J. B. Garnett, Bounded Analytic Functions, Academic Press, Orlando, Fla., 1981.
[6] Steven G. Krantz, Calculation and estimate of the Poisson kernel, J. Math. Anal. Appl. 302 (2005) 143-148.
[7] R. M. Range, Holomorphic functions and integral representations in Several Complex Variables, (GTM 108) Springer-Verlag, New York Inc., 1986.
[8] E. M. Stein, Boundary behavior of holomorphic functions of Several Complex Variables, Princeton Univ. Press, Princeton, N. J., 1972.
[9] Kehe Zhu, Spaces of holomorphic functions in the unit ball, Springer 2005.
Department of Mathematics Education, Kyungnam University, Changwon, South Korea

E-mail address: jisoobyun@kyungnam.ac.kr
Department of Mathematics, Pusan National University, Pusan 609-735, South Korea

E-mail address: ibk0504@pusan.ac.kr

[^0]: Received January 9, 2013; Accepted January 16, 2013.
 2010 Mathematics Subject Classification. 42B35.
 Key words and phrases. BMO, Lipschitz function, harmonic function, Garsia-type norm. The first author was supported by Kyungnam University research fund, 2012.
 *Corresponding author.

