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CHARACTERIZATION OF BMO OR LIPSCHITZ
FUNCTIONS BY GARSIA-TYPE NORMS ON
A BOUNDED DOMAIN

J1soo BYUN AND BoNG-HAK Im*

ABSTRACT. In this paper, we prove that the BMO norm and the Garsia
norm are equivalent on a bounded domain in RV. Also, we investigate
the equivalent relation between the Lipschitz norm and the Garsia-type
norm for harmonic functions.

1. Introduction and statement of results

Let D be a bounded domain with C2? boundary in R". This means that
there is a C2, real-valued function p such that

D = {z e RY : p(z) < 0}

and Vp # 0 on 0D. From now on, in this paper, we assume that D is a
bounded domain in R with C? defining function p.

There exists the Poisson kernel P : D x 0D — RT satisfying reproduc-
ing property for harmonic functions. The Poisson transform of a continuous
function f on 9D is defined by

Pf(x)= [ P(x,y)f(y)do(y), =€ D,
oD

where do is the surface measure of the boundary of D.

For r > 0, we denote the Euclidean metric ball in the boundary by @ =
{y € 9D : |y — | < r}, where Z is a boundary point. The integral mean fg is
defined by fo = ﬁ fQ fdo. We define the BM O norm as follwos:

2 — sy 1 — f-12do
I ssso = sup o | 17 = saltdo

The space BMO of bounded mean oscillation is a set of all L? function on the
boundary 0D with finite norm || f|| papo < 0.
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Further, with f € L?(0D) we associate the nonnegative function

0@) = [ 1) = PI@PPla)doty).
yeoD
The Garsia norm is defined by

If1E = sup{Gy(x) : x € D}, f e L*(9D).
Theorem 1.1. Let f € L*(0D). Then

IflBaro < oo if and only if || f|la < oo.

For the unit ball in C" the BM O norm is defined by using the non-isotropic
ball in the unit sphere. The same result as Theorem 1.1 on the unit ball in C™
was proved by Garsia (see [5], one-dimensional case) and by Axler-Shapiro (see
[1], n-dimensional case).

Let E be a bounded subset of RV and f is a function on E. For 0 < a < 1,

e st /) — f)]
Afalr,y) = (Z_y|ay)

and
Af,a(E) = Sup{Af,oz(xay) 1T,y € E,SC 7£ y}
We define the Lipschitz norm by || f|a, () = Afa(£) +sup|f|. Let Ay (E) be
the set of all functions satisfying || f|[a, (z) < co. It is called the Lipschitz space
of order a on E.
We see that the Poisson transform P : A, (0D) — Ay (D) is bounded. Thus
we can induce the following:

1 fllaa0) ~ 1 fllaa@D) ~ I fllan (D)

for all harmonic functions f € C(D). The inequality ||f|a.op) < | flla. (D)
can be easily checked without the harmonic condition. However, the converse
is false if f is not harmonic by the following example.

Example 1.2. Let B be the unit ball in RY. We define functions f,(z) =
nlz|* —n on B. Then || fu||a, @8 = 0 and || ful[a, @) >n — 00 asn —oco. O

Now we will introduce four quantities which are closely related with the

Lipschitz norm. First, we define the Garsia-type norm by
1
Gro=swp 5oz [ |f) = PI@IP@.)doty). € LHOD), (1)
xeD 6(%) yedD

where §(z) = dist(z, dD).

Well-known Hardy-Littlewood lemma tells us that [7]

Afa(D) < sup 8~ (2) |V f(2)| + sup | f(z)].
zeD xeD

Furthermore, for all harmonic functions f,

sup §' ()| Vf(2)|  Ap.a(D).
xeD
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We define HL,(V f) by

HLo(Vf) = sup §(x)' |V f(z)],
zeD

for any differentiable functions f, where H L stands for the Hardy-Littlewood
quantity.

Next two theorems tell us the relation between four quantities Ay (D),
Aﬁa(aD), HLCY(Vf)v and gf,a-
Theorem 1.3.

Gfa S Afa(0D) S Afa(D) S HLa(Vf) +sup|f].
D
We define several kinds of Lipschitz norms as following:

[ fllaa(p)y = Af,a(D) +supp [ f]
[fllaa@D) = Af,a(dD) + supyp | f]
[flleL, = HLa(Vf) 4 supp | f]
[fllg.a =Gf.a+supp |f]-

We know that if A is harmonic, then | f|a, oy, Iflla.op), and ||f||zL, are

equnvalent.
Next theorem tell us that || f||g,« is equivalent to the other Lipschitz norms.

(2)

Theorem 1.4. For 0 < a < 1 the Garsia-type norm || f||g.o s equivalent to
other Lipschitz norms in (2) for the harmonic and L*(dD) function f.

Further, we define the Garsia-type p-norm Gy ., using LP integral by

1 ) 1/p
Gy = 50 5 { / 1) =PI P(a:,wda(y)} |

We have the following equivalence between Gy, and the Lipschitz norm.
This can be achieved by the same technique as in Theorem 1.4 using the Holder
inequality.

Corollary 1.5. Letp>1 and 0 < a < 1/p. Then
Gtap +sup [f(@)| ~ [ flla. (D)
r€D

for all harmonic functions f.

The following example shows that the condition 0 < a < 1/p in Corollary
1.5 is essential.

Example 1.6. Let p = 2 and B2 is the unit ball in R?. Define a harmonic

function f by f(x1,72) = 1 + 2. Then f € A,(B?). Denote = by (x1,x2).
By easy computation, we can compute the following integral

/ - |f(y) — Pf(x)]*P(z,y)do(y) = / \f(y)[2P(z, y)do(y) — | f(z)[?

ly|=1
=1—|z]%
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Hence

Gfa2 = sup (1 — [z*)/27.
r€B?

This is unbounded if « is greater than 1/2.

There are more general weighted Lipschitz spaces which are extensively stud-
ied in ([2], [3], [4]), and so on. Especially, in [3] they proved the same results
in weighted Lipschitz spaces like as ours. However, they considered the holo-
morphic case on the unit ball in C".

2. Integral estimates

We have the following size estimates for the Poisson kernel in ([6], [8]):

o(x)

m, for k= 0,]. (3)

|VEP(z,y)| ~

For z € D let & be the boundary point with d(x) = dist(z, Z).

Lemma 2.1. Let 0 < o < 1. Then we have
/ ly — 2|“P((, 2)do(y) S 6(x)*  for all x € D.
yeodD

Proof. Since |y — Z| < |y — x| + |z — Z| < 2|y — x|, we have

6()

|y—a~j‘ap(x7y>§ :
|z —y|N e

Thus it is sufficient only to prove that

1 1
LeaD Wdo(y) S (5(@71_0{ forall =z e D.

Let Qr = {y € 0D : |y — &| < 2*§(x)} for all k = 1,2,---. Then Q is a
covering of the boundary of D. We can compute the above integral on ;. We
obtain that

1

1
/Q ot < [ s dew)

< 1
~(x)ie
For y € Qi \ Qr—1(k > 2), by the triangle inequality, we get the following
[z =yl >y — | - & -z =y — 7] = 6(z) > 2" 16(x) — (x) > 2" %6 ().

Thus we have
/ s dol) < [ s doly)
T N—a %0\Y Toh—2 5 W N—a %0\Y
Qk\Qk—l |1~_y|N « Qk\Qk71 (2k 25(x))N .
1 1
Qk(lfa) 5(‘%)17& .

IN

A
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Since the series Y po, 1/28(1=%) converges, we finally arrive that

1 > 1
S — da(y):s‘/‘«+ J/ o)
/yeé)D |z —y|N—e L Z 0@y [T —ylN e

k=2
=1 1

< I

~ Z 2k(1—a) 5(1»)1704
k=0

<

3@y

This is the end of the proof. O

3. BMO functions

Proof of Theorem 1.1. We suppose ||f|la < co. Let z € Dand Q = Q(Z,d(x)) =
{y € 0D : |y — | < d(x)}. Then

%m—/’m>— F(@) P, y)do ()

5(a)
/u H@&Ddd)

/u 1) Pdo(y).

As x runs over {x € D : §(x) < ro}, the above @ runs all balls of radius less
than rg. By Lemma 5.1 in [9], we have || f|lzymo S | flle-

For the other implication, we suppose that || f|pymo < oco. Since P(z,y) is
smooth on 9D, for f € L?(9D), there exists 79 > 0 such that

sup P(|f — Pf(2)|*) < +oo.

zeD,
S(x)=rg

Fix z € D with 0(z) < r¢. Let & be the boundary point with 6(z) = dist(z, Z).
Let Qr = {y € D : |y — &| < 2¥§(x)} for k > 1. Then Q}, is a covering of
dD. In order to estimate P(|f — P f(z)|?), we first compute P(|f — fo,|?). By
covering property,

AJﬂm—mfmawwwzj‘mw—mfpmww@

+ZAM%JM»4@@mww@.
@)
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Now, we will compute each term in the equation above. We have

[ 156) = fa, PP oty /|f - faf (xy)lNd ()

< N1/ FW) — fo Pdo(y)

= fal*do(y) S I mo-

()
For k > 2,
/ |f(y) = fou |2P(x7y)do-(y)
Qr\Qr—1
o 0@
S W el e
2 o(x)

: /Qk\czk 1|f(y)_fQ1| 258 W) (6)

/ |f fQ1| da' )

S 27||f||BMo + 27€|ka — fa .

Note that |ka - le‘Z S Z§:2 k'fQj - fQj—1|2' For each j =2,...,k,
1 2
- — do
foo o

1 o) 7)
= (U(Qk—l) /le au = fld )

0 .
S — — fIPdo < || fl%m0-
Since series Y k/2% converges, by (4), (5), (6), and (7), we have

| 1) = fou PP p)dr(s) < 1o

We return to the estimate of P(|f — P f(x)|?). It follows that

/|f ~ fouPP(x,y)do (y)

\for — faul? =

[f(y) = Pf(a) + Pflx) — fo.|*P(z,y)do(y)

oD

= [ |f(y) = Pf(@)*P(z,y)do(y) + [Pf(z) — fa. "

oD
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The last equality is followed by reproducing property of the Poisson kernel.
Therefore

17112 = sup / F@) - PF@) 2P, y)do(y)
ze€D JOD

< sup / F(¥) — fou 2P (x, y)do(y)
oD

zeD

S Iz mo-

4. Lipschitz functions

Proof of Theorem 1.5. It is enough to prove that G¢ o S Af o (0D). Let x € D
and y € dD. Then

[f () =Pf)] < 1f(y) = F@)] + |f(Z) = Pf(z)].

We have
|f(Z) = Pf(z)| = /eaD(f(i‘) — f(y)P(z,y)do(y)
S 87(0D) [z~ g Play)ioty)
yedD
S Af o (0D)d(z)”
by Lemma 2.1.

Thus we have

|f(y) = Pf(2)| S Afa(@D)(ly — Z|* + 6(2)*).
Therefore

/ F@) - PL@)| Pz, y)do(y)
yeoOD

S 87000 [y aPleint) + 30"
yeodD
S Ara(0D)6(2)
by Lemma 2.1. Hence we have G o S Ay o(0D).

~

O
Proof of Theorem 1.4. By Lemma 1.3, it is enough to prove that HL,(Vf) <

1fllc.a-
Since f is harmonic, it follows that f(z) = [, f(y)P(z,y)do(y) for all = in
D. If we differentiate the both side, we get

V.f(z) = /aD fY)VeP(z,y) do(y)

- /(()D (f(y) = Pf(x)) VaP(2,y) do(y).
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By (3), we have
IVaP(z,y)l S ()7t [P(z,y)]
Combining the above two inequalities, we get that

3(x) | Vaf (@) S 5(56)"’/ [f(y) = f(@)| [Pz, )| do(y). (®)

oD
(|

By the following examples below, we know that the converse of each step of
the inequalities in Theorem 1.3 are false if f is not harmonic except the first
step.

Example 4.1. Let B be the unit ball in RY. Define f by f(z) = |z|*. Then

I fllaam) S 1.

However

HLa(Vf) = lSlllpl(l — [z TV f(2)]
x| <
~ sup (1 — |z[) 7z =
|z|<1

oQ.

Example 4.2. Let x(x) be a smooth function such that 0 < y <1 and

@) = {1 i |z] <

ol Wl

0 if |z| >
We define f, by fn(z) = x(x)n|z|® Then

Afn,ﬂt(B) = sup M

syen |z —y|*
Ay
n|z|
> sup =
|z|<1/3 ||

Thus || fn|la.@) — 00 as n — oo. However, || f,| A, o8) = 0.
The only remaining relation is between Gy o and Ay ,(0D).

Remark 1. Note that Pf is harmonic and Pf = f on the boundary if f is
continuous. Then Ay ,(0D) ~ Aps (D) ~ Gpfa by Theorem 1.4. By the
definition of G¢ 4,

Gta =0pfa-
Therefore, G¢ o ~ Ao (0D) if f is continuous on the boundary.
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