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LP-BOUNDEDNESS FOR THE COMMUTATORS OF ROUGH
OSCILLATORY SINGULAR INTEGRALS WITH
NON-CONVOLUTION PHASES

HuoxioNng Wu

ABSTRACT. In this paper, the author studies the k-th commutators of
oscillatory singular integral operators with a BMO function and phases
more general than polynomials. For 1 < p < oo, the LP-boundedness of
such operators are obtained provided their kernels belong to the spaces
L(logt L)k+1(S?~1). The results of the corresponding maximal operators
are also established.

1. Introduction

Let us consider the following oscillatory singular integral operator

(L.1) Tof(z) = p.v./ e@(x’y)glmf(y)dy,

where R™ denotes the n-dimensional Euclidean space (n > 2), ®(x,y) is a
suitable mapping on R™ xR™, Q(z) is homogeneous of degree zero and has mean
value zero on the unit sphere S*~! of R™. As well-known, operators of the type
(1.1) have arisen in the study of singular integrals on lower dimensional varieties
and the singular Radon transform. For the background information about these
operators, we refer the readers to consult [12, 13, 14]. When ®(z,y) = P(z,y)
is a real-valued polynomial mapping on R™ x R", we denote Tg by Tp. The
class of operators Tp was first studied by Ricci and Stein [12]. They proved
that the operator Tp is bounded on LP(R™) for all 1 < p < oo provided
that Q € C1(S"~!). Later on, the condition Q € C!(S"~!) was relaxed to
Qe L9(S™ 1) for some ¢ > 1 by Lu and Zhang [10]. Subsequently, this result
was improved by many authors (see [1, 2, 7, 9] et al.). It is worth pointing out
that Al-Salman et al [1, 2] studied a more general class of oscillatory singular
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integral operators T for phase functions @ of the form
1
(12) ®(z,y) = ) Pi(x)¢;(y — ),
§=0

where ¢; : R" — R is a homogeneous function which is real analytic on
571 and P; is a real-valued polynomial on R™. It is clear that the class
of such functions ® contains properly the class of all real-valued polynomial
mapping P on R” x R™. Al-Salman et al [1, 2] proved that Ty is bounded on
LP(R™) for 1 < p < oo, provided Q € Llog"L(S"!) or BJ(S"~1) for some
q > 1, where Bg,o denotes the block space introduced by Jiang and Lu [8].

The purpose of this paper is to study the higher order commutators related
the oscillatory singular operators defined by (1.1). Let k be a positive integer,
b € BMO(R"). Define the k-th order commutator Tfk generated by T and b
as follows:

(1.3) T2 f(x) = pov. / (P9 () — b(y)]kw

f(y)dy,
where ®(x,y) satisfies (1.2). When ®(x,y) = P(x,y) is a real-valued polyno-
mial mapping on R” x R", we denote qufk by T,fk.

For b € BMO(R,) (the radial BMO function class), Ding and Lu [4] (resp.,
Lu and Wu [9]) gave the weighted LP-boundedness of T, (1 < p < o), if
Q € Llog™L(S™ 1) (resp., € BYO(S™71)). For the general b € BMO(R"),
Ding [3] showed that T/ is bounded on LP(R™)(1 < p < oo) with bound
C||bH’§MO(R,,) independent of the coefficients of P(z,y) (also see [5]), if Q €
U,>1 L"(S"71). Subsequently, Ma and Hu [11] extended the result in (3] to
the case of Q € L(logtL)**1(S"~1) for p = 2 (also see [15] for the other
improvement). A natural question is whether Q € L(logt L) *+1(S"~1) is also
sufficient for implying the LP-boundedness of Tlf pforp#2,1<p<oo In
this paper, we will give a affirmative answer for this question. In fact, we shall
establish the more general result as follows.

Theorem 1.1. Let k > 1, N° denote the set of all nonnegative integers, Q
be homogeneous of degree zero with mean value zero on S"~1, b € BMO(R™).
Suppose that Q € L(log™ L)**1(S"~1), {d;, m; : 0 < j <1} C N° and that
D(x,y) = Zé‘:o Pj(x)¢;(y — z), where ¢; : R® — R is a homogeneous of
degree m; which is real analytic on S™', and P;(z) is a real-valued polynomial
on R™ with degree d;. If ¢; is constant function whenever m; = 0, then for
1<p<oo,

T3 fllp < Cp (1 4+ 190l Lgog+ Ly+2 (sn-1) 1Bl Eno ey 1 f 115
where C, is independent of the coefficients of the polynomials {P; : 0 < j <I[}.

Remark 1.1. From [1, 2], the class of such functions ® in Theorem 1.1 contains
properly the class of all real-valued polynomial mappings on R™ x R™. For
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example, for © = (z1, x2,..., x,) and y = (y1, Y2, - - - Yn),
—3/2
n n
O(2,y) = § (Wn — zn)sin [ (o —20) [ D (5 — 25) 1=
=1 =1

satisfies the assumptions in Theorem 1.1, but it is not a polynomial. Therefore,
Theorem 1.1 extends the result of [11] by both expanding the range of the phase
function “®” and the range of “p”.

In addition, for the corresponding maximal operator defined by

(14) T f(x) = sup

e>0 ‘CL‘ - y|n

/| ) e cant VM

we will also establish the following result.

Theorem 1.2. Under the same assumptions as in Theorem 1.1, we have

D x
1T 5 fllo < Cp (14 1920 Lrogt Lys+2(sn-1)) 1Bl Bmo@n 1l 1 <p < o0,
where C, is independent of the coefficients of the polynomials {P; : 0 < j <I[}.

This paper is organized as follows. In Section 2, we shall give some auxiliary
lemmas. The proof of Theorem 1.1 will be given in Section 3. Finally, we will
prove Theorem 1.2 in Section 4. We would remark that our some ideas in the
proof of the main theorem are taken from [2, 10, 12]. Throughout this paper,
we always use the letter C' to denote a positive constant that may vary at each
occurrence but is independent of the essential variable.

2. Auxiliary lemmas

In this section, we give some auxiliary lemmas, which will be needed in the
proof of our main result.

Lemma 2.1 (see [6]). Let Q,b,k be as in Theorem 1.1. The the mazimal
operator Mé}k defined by

M, f(x) = sup — Ib(z) = b()[F19 — 1) f()ldy

n
r>0 T lz—y|<r

satisfies
Hsz?kap < C (1 + 190 aogt Lye+1(sm-1)) 1Bl Eno@n £ 1lp-

Lemma 2.2 (see [6]). Let Q € L°(S™1) be homogeneous of degree zero, k be
a positive integer and b € BMO(R™). Define the operator Mg, , by

Mg, () = sup — 1b(x) — b(y) [F[Ox — y) f(v)|dy

n
r>0 T lz—y|<r
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)\Q,k:inf{)\>0: @bg’“ <2+|QA”°°> < 1}.

Then Mg, . is bounded on LP(R™) with bound C)‘ﬁ,k”ngMO(R”) forall 1 <
p < o0.

and let

Lemma 2.3 (see [6]). Let Q, b, k be as in Theorem 1.1. Then the k-th order
commutator of singular integral operator T% ;. defined by

Toaf(@) =pv [ )~ b 2 p(pay

and the corresponding mazimal operator defined by

Tiaf@ =sp| [ o)~ b P

e>0

are bounded on LP(R™) for 1 < p < oo, with norm bounded by
C(1+ I £aog+ £ys+1 (sm-1)) 16 BMO (R7) -

Lemma 2.4. LetQ, b, k, ® be as in Theorem 1.1. IfT,;I,’k is bounded on LP(R™)
for 1 < p < oo, with norm bounded by C/||bl[gnorny- Then for any e > 0, the
truncated operator

: Oz —
TSk f(z) = p-V-/ P b(a) — b(y)]k(ii)f(y)dy
lr—y|<e |JC - y|
is also bounded on LP(R™) with bound C(1+ [|Q| Log+ £yk+1(sn-1)) 16| BMO®RN)-

Proof. Decompose R™ as R" = Uyly, where each I is a cube having side length
£/8n and these cubes {I;} have disjoint interiors. Set fq = fxi,. Since the
support of st, wfa is contained in a fixed multiple of I, the supports of the

various terms be’ «fa have bounded overlaps and so we have
o D
T2 Fls < C Y ITS s s fallh
d

Thus we may assume that supp(f) C I for some cube I with side length £/8n
and center at xg. Write

/R T2, f (@) Pde

lz—z0|<e/4n e/dn<|z—xo|<3e 3e<|z—xo|

Since |xr — x| < €/4n and |y — xo| < &/8n imply |z — x| < e, we have
Tg’b}kf(x) = Tb‘f’kf(x). Thus, for the first term, by the LP-boundedness of Tb‘f’k,
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the result holds in this case. When e/4n < |z — o] < 3¢, by |y — o] < €/8n,
we have coe < |z — y| < ¢1e for some constants ¢g and ¢;. Therefore

7@ < [ LR ()I’“WIf( Jldy < OMEJ (x).

By Lemma 2.1, we get
1Tk fllp < CUME%fllp < C (14 1920 gogt yrss (sm-)) [l Emo@s) 1f 1o,

which is the estimate for the second term. When 3¢ < |z — xg|, we get
Tf;'b’kf(x) = 0 and complete the proof of Lemma 2.4. O

3. Proof of Theorem 1.1

Employing the ideas of [2, 10], which originated from [12], we shall use
induction on
d(®) := inf Orgjé(l{dj +m,},

where the infimum is taken over all representations of the form ®(z,y) =
23:0 Pj(x)¢,(y — x) with d; is the degree of P; and m; is the degree of ho-
mogeneity of ¢;. Following the notation and the procedure in the proof of [2,
Theorem 1.1], we proceed now to the proof as follows.

It is clear that if d(®) = 0, then |T;% f(x)| = |Toxf(x)|. Therefore, Theo-
rem 1.1 directly follows from Lemma 2.3. Now we assume that Theorem 1.1
holds for all ® with d(®) < N. As the same as in [2], given ®(z,y) =

S Pi(@)¢j(y— ) with d(®) = N+1, let ji, ja, ..., jx be all 0 < j < [ with
di +m; =N+1. For 1 <s<k,let

k
hs(x) = Z Ao, %+ and H(z,y) = Zhs(l‘)ﬁbjs (y — ).

lajs|=dj

Without loss of generality, we may assume that deg(¢;,) = m;, > 0. A straight-
forward calculation shows that

M
(3.1) H(z,y) = Z)\,ﬂ/)u(x,y)

for some integers M > 0, constants {)\ : 1 < p < M} with

(3.2) Zw—z Y laa,

s=1 Jaj, |=dj,

)

and functions 9, 1 < p < M, of the form z *n(y — z) for some multi-index «
and a homogeneous function 7 of degree N + 1 — |«| which is real analytic on
S"~1. Then

M
(33)  e(z,y) =) Muthulw,y) + > Pj(x)¢;(y — x).

0<j<l,dj+m; <N
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Now set & = (3,0, [X )1/ N+,

M
Bs(,y) = D Aud VTV (ay) + > P67 2)d;(07 (y — @),

p=1 0<j<l, dj+m;<N

and f5(z) = f(6~'x). It is easy to see that the following hold:

(3.4) O(x,y) = 5(0x, 0y),
M

(3.5) D A6V =1,
pn=1

(3.6) T2 fllp = 67PN follp-

Notice that 6="/?||fs|l, = ||f|l, and [|blpmo®n) = 16(6~ ) |BMo(®n), in order
to complete the proof of our theorem, by (3.6) we need only to show that

(3.7) IToi fllp < C (L4 19 gogt Lye+1 sm-1)) 1l Bno@n) 1/ 11p

for all 1 < p < 0o, where C' is a constant independent of § and the coefficients
of the polynomials P;. Write

Toi f (@) =T33 (@) + Ty f (x),

where
Ps,00 iPs(z,y) k Q(CE — y)
T, f(z) = e b(x) — b(y)|" ———=- f(y)dy.
lz—y|>1 |‘T - y|
To prove (3.7), it suffices to show that
(38) N33 fllp < C (L Logr ys+ (sn1) 1ol Eao e 1F 1p

and

(39) N7y flp < C (1 + 120 Laogt Ly (sm—)) 1bllBatogen £l

for all 1 < p < 0o, where C is a constant independent of § and the coefficients
of the polynomials P;.
At first, we prove (3.8). For h € R™, let

M
Uns(z,y) =Y A T{Gu(2,y) — (e — hoy — h)}

(310) pn=1
+ > Pi(6 ), (07 (y — x)).

0<j<l,dj+m; <N

Since Uy, 5 satisfies the induction assumption, by Lemma 2.4 we have

¥y.5,0
(3.11) 15,5 fllp < C (1 + 12Ul Log+ Lys+1 (sm-1)) IBllEno@n) I F s
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for all 1 < p < 0o, where C' is a constant independent of § and the coefficients
of the polynomials P;, and hence of h. By (3.11) and the fact that

D5, Wy 5,0 Ds, Wy 5,0
T2 f(w) =Ty 17" f(@) + (T3 = T, 1) () (=),

to prove (3.8), we need only to prove
(3.12)
B, W), 5,0
(T3 =Ty " YDl < C (14 19l L ogt 2ys+1(57-1)) Il Baogen)

for all 1 < p < oo, where C'is as in (3.11).
Note that

et ®s(@y) _ pi¥n,s(2,y)

flly

M
< oAV (2 — by — h)| = Cs VI H(z — b,y — h)

p=1

k
=Co NN N aa, (@ = 1)y (y — 2)

s=1ay, |=d;,

k
Loy D O Naa, ll— Bl gDy — g,

s=1 oy, [=d;,

<C :
< C max |65,

by (3.2) and (3.5), for |z — h| < 1/4, we have
(T = 1) () @)

/ [eidé',s(z,y) - ei\llh,g(w,y)} b(z) — b(y)]kQ(x —y)
le—y|<1

|z —y[”

k
<O B lan, O [l by

_ r—y|<1
s=1Jaj,|=d;, o=yl

f(y)dy

% [Qa = y)[b(w) — b(y))" f(y)ldy

k
<O Y a5V [y

= lasimds, fo-yl<1
% [ — )[b(x) — b(y)]* £ ()|dy
< OMP, fw),

where f(x) = f(2)X{jz—n|<5/4}(x). Therefore, it follows from Lemma 2.1 that

/ —h|<1/4 '(T”q’)i,o - Tb\l,,;chayo)(f)(x)

p

dx

< C (14 190 L ogs et (57-1) [P Enionen) / F@)Pdy
|ly—h|<5/4
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holds for all h € R"™, with bound independent of h. Integrating the above
inequality with respect to h yields (3.12). This completes the proof of (3.8).

It remains to prove (3.9). Let Eg = {2/ € S"~1 : |Q(2/)] < 2} and E; =
{a' € 871 : 2L < |Q(2') < 2'*1} for positive integer [. Denote by € the
restriction of Q on Ej, that is, ;(2') = Q(2")x g, (2'). Then

(3.13) Q) = (),
=0

and our hypothesis on {2 now shows that El21lk+1 11 < 12| Laog+ £yx+1(5n-1)
< o0. By (3.13), we have

(3.14) L= fa) =Y Tt f(x),
1=0 j=0
where
P53l _ i®Ps(z,y) k Y (:L' _ y)
Tb,k;jf(x) = € [b(x) — b(y)] 7nf(y)dy.
20 < |z—y|<29+1 lz -yl
Consequently,
(3.15) T3> fllp < 32> T il
1=0 j=0

Invoking Lemma 2.2, we have the following crude estimates
Dsil
(3.16) ITy0 ; fllp < CliMay i flly < CAy, klIblErioen)

Next we shall establish a refined L?-estimate on qu? ,fjjl f. Precisely, we shall
show that there exists a positive constant € = e(n, N) such that

Y —ej
(3.17) 1T 5 Fll2 < €27 )|l oo 1Bl iato ny I £ l2-

To prove (3.17), we turn our attention to the following operators

D5 (@5 (20 .20 Q(z —
T = [ e P s,
1<|z—y|<2

fllp, 1<p<oo.

and

o . Oz —
77 o) = | et U= )y,
1<]e—y|<2 |z —y["

By dilation-invariance, it is easy to see that the proof of (3.17) can be reduced
to showing that

- .
(3.18) 1505 fll2 < €27 |1 Qullso 1l Ento ey I £ 2-

As in the proof of Lemma 2.4, we decompose R™ into R"™ = Uyl4, where I is
a cube with side length 1 and the cubes have disjoint interiors. Set fq = fxr,-
Similarly to the proof of Lemma 2.4, we have

~®s;1 =D L
Tt 13 < CY Ty fall3-
d
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Thus we may assume supp(f) C I for cube I with side length 1. Choose
v € C§°(R™), 0 < ¢ < 1, ¢ is identically one on 50n] and vanishes outside
100nt. Write T = 100n] and b(z) = (b(z) — myz(b))p(x), where mz(b) is the
mean value of b on I. When y € I and 2 in the support of ff,j;;ﬁ we have

k
(b(x) = b(y))* = D (=1} OB (@) (y).

m=0
Consequently,

k
(3.19)  Tf(0) = Y (~D)FOrT (@) T O ) @),

m=0

We first claim that for 1 < ¢ < 2, there exists € > 0 such that

(3200 T flly < C2 VN ulllf e Vgt 1/ =1,
Indeed, let us consider the operator
. i (wa) (T —Y
T ) = [ R e TP
20 <|z—y|<29+1 |z -yl

From [2, p. 577,(3.24)-(3.25)], it is easy to see that for some 6 > 0,
1T flla < C27%7 Qoo £ o
and
i1
1T Flloo < ClU ool £

Then (3.20) is obtained by the interpolation and the dilation-invariance.

Now we estimate ||T,;I>,jjlf||2 Choose ¢q € (1, 2), po, p1 € (1, 00) such that
1/¢"+1/pg =1/2 and 1/q = 1/2+ 1/p;. Notice that for each fixed integer m,
0<m<Ek, supp(j?‘”l(gk_mf)) C 20nI, by Holder’s inequality and (3.20) we
have

e U o1 P-4 L P o (1 %
< C275jI|Qz||oo||b||%lM0(Rn)Hfgkimf”q
< C279 || o bl Bro gy 105~ [l 11 £ 12
< C’2_Ej||Ql||oo||b||]§Mo(Rn)Hf||2~

Summing over m, we obtain (3.18) and complete the proof of (3.17).
Note that A, r < C||]| (see [6, Lemma 3]), it follows from interpolation
between (3.16) and (3.17) that

Ds;l —B7
(3.21) 152055 1lp < 2777 ulloo 1Bl Brto gy [/ 11p

for any 1 < p < oo and some 3 > 0.
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Let r be a large positive integer such that r > 237!, Combining (3.15),
(3.16) and (3.21) gives

D5,
T2 £l
oo o0 o0 o0
D5, 0 D5, 1 D5, 1
SN o+ >0 T fllp + 0> 1T fll
7=0 >0 j>rl >0 j<rl

C D27 |llo 1Bl o 1l +C D~ >~ 27 Qulloo b Bao @ 11 £l

§=0 1>0 j>rl

+ CZ Z )‘Qz,k”ngMO(R“) fllp

1>0 j<rl
< ClIblISneo@nyll fllp + CZ 2! Z 2797 |1bll o ey I f 11
150 j>rl

+C Y Dayallbl o) 1/l
1>0

<C(1+ ||Q||L(log+L)"’+1(S”*1)) ||b||]1§M0(Rn)Hf||p7

IA

where the last inequality follows from the following fact

D Dok <CY I+ C Y 127 < C (19 prog 1yr+1 (sm-1y + 1) < 0.
>0 >0 >0

This completes the proof of Theorem 1.1. O

4. Proof of Theorem 1.2

As in the proof of Theorem 1.1, we shall use induction on

d(®) := inf Org?gl{dj +m;},

where the infimum is taken over all representations of the form ®(z,y) =
Zé‘:o Pj(x)¢;(y — x) with d; is the degree of P; and m; is the degree of homo-
geneity of ¢;.

Obviously, if d(®) = 0, then Tfj’k*f(x) =T, ,f(x). Therefore, by Lemma 2.3,
Theorem 1.2 holds for all ® with d(®) = 0. Now we assume that Theorem 1.2
holds for all ® with d(®) < N. Given ®(z,y) = Y5, P;(2)¢;(y — z) with
d(®) = N+1, let &5(x,y) be as before. By the same arguments as in the proof
of Theorem 1.1, we need only to prove

Ds, *
1755 " Fllp < C (14 12 Lgogt Lyr+1(s7-1)) 1Bl Bro@n 1 fll, 1 <p < o0,
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where the definition of qu))‘;c’* (z) is as in (1.4) replaced ®(z,y) by Ps(z,y).
Similarly to the proof of Theorem 4 in [10], we write

Tf‘,i’* (x) < sup

0Zens
ol o e

< sup /1 e €230 [b(z) — b )]’fffx(x_ yf,?f(y)dy
n /H|>1 1B @) () — b(y)]kwjf (y)dy
e b LS

= TS (@) + | T ™ (@) + T s @)

Then by (3.9), it suffices to prove that both ng;’g and Tlf,j;’:o are bounded on
LP(R™) for all 1 < p < oo, with bound C(1+ HQ||L(10g+L)k+1(Sn—1))Hb||]k3Mo(Rn).

By the method similar to proving (3.8), we can easily prove the desired
conclusion on qu; 20"

Now we estimate | Ty3 % f|l,. For each fixed & > 1, we have unique J € N
such that 277! < e < 27. Thus

T f()
Qz —y)|

<o [ ib(a) — o) FEHE =Dl 1y
27-1< |z —y| <27 |z —yl

JeN

Yy

JeENj=J+1

kQ(SU )
|z —y|”

Lo e b b R )

Lo ) o) F)dy

o}

< OM} f(x) + Z
j

0

By Lemma 2.1 and the method similar to proving (3.9), we obtain
D5, *
IT5 0 5 Fllp < C (14 19 Laogt Lye+1 sm-1)) 18l Baio @) 1/ llp:
which completes the proof of Theorem 1.2. O
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