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Lp-BOUNDEDNESS FOR THE COMMUTATORS OF ROUGH
OSCILLATORY SINGULAR INTEGRALS WITH

NON-CONVOLUTION PHASES

Huoxiong Wu

Abstract. In this paper, the author studies the k-th commutators of
oscillatory singular integral operators with a BMO function and phases
more general than polynomials. For 1 < p < ∞, the Lp-boundedness of
such operators are obtained provided their kernels belong to the spaces
L(log+L)k+1(Sn−1). The results of the corresponding maximal operators
are also established.

1. Introduction

Let us consider the following oscillatory singular integral operator

(1.1) TΦf(x) = p.v.
∫

Rn

eiΦ(x,y) Ω(x− y)
|x− y|n f(y)dy,

where Rn denotes the n-dimensional Euclidean space (n ≥ 2), Φ(x, y) is a
suitable mapping on Rn×Rn, Ω(x) is homogeneous of degree zero and has mean
value zero on the unit sphere Sn−1 of Rn. As well-known, operators of the type
(1.1) have arisen in the study of singular integrals on lower dimensional varieties
and the singular Radon transform. For the background information about these
operators, we refer the readers to consult [12, 13, 14]. When Φ(x, y) = P (x, y)
is a real-valued polynomial mapping on Rn × Rn, we denote TΦ by TP . The
class of operators TP was first studied by Ricci and Stein [12]. They proved
that the operator TP is bounded on Lp(Rn) for all 1 < p < ∞ provided
that Ω ∈ C1(Sn−1). Later on, the condition Ω ∈ C1(Sn−1) was relaxed to
Ω ∈ Lq(Sn−1) for some q > 1 by Lu and Zhang [10]. Subsequently, this result
was improved by many authors (see [1, 2, 7, 9] et al.). It is worth pointing out
that Al-Salman et al [1, 2] studied a more general class of oscillatory singular
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integral operators TΦ for phase functions Φ of the form

(1.2) Φ(x, y) =
l∑

j=0

Pj(x)φj(y − x),

where φj : Rn −→ R is a homogeneous function which is real analytic on
Sn−1, and Pj is a real-valued polynomial on Rn. It is clear that the class
of such functions Φ contains properly the class of all real-valued polynomial
mapping P on Rn × Rn. Al-Salman et al [1, 2] proved that TΦ is bounded on
Lp(Rn) for 1 < p < ∞, provided Ω ∈ Llog+L(Sn−1) or B0,0

q (Sn−1) for some
q > 1, where B0,0

q denotes the block space introduced by Jiang and Lu [8].
The purpose of this paper is to study the higher order commutators related

the oscillatory singular operators defined by (1.1). Let k be a positive integer,
b ∈ BMO(Rn). Define the k-th order commutator TΦ

b,k generated by TΦ and b
as follows:

(1.3) TΦ
b,kf(x) = p.v.

∫

Rn

eiΦ(x,y)[b(x)− b(y)]k
Ω(x− y)
|x− y|n f(y)dy,

where Φ(x, y) satisfies (1.2). When Φ(x, y) = P (x, y) is a real-valued polyno-
mial mapping on Rn × Rn, we denote TΦ

b,k by TP
b,k.

For b ∈ BMO(R+) (the radial BMO function class), Ding and Lu [4] (resp.,
Lu and Wu [9]) gave the weighted Lp-boundedness of TP

b,k (1 < p < ∞), if
Ω ∈ Llog+L(Sn−1) (resp., Ω ∈ B0,0

q (Sn−1)). For the general b ∈ BMO(Rn),
Ding [3] showed that TP

b,k is bounded on Lp(Rn) (1 < p < ∞) with bound
C‖b‖k

BMO(Rn) independent of the coefficients of P (x, y) (also see [5]), if Ω ∈⋃
r>1 L

r(Sn−1). Subsequently, Ma and Hu [11] extended the result in [3] to
the case of Ω ∈ L(log+L)k+1(Sn−1) for p = 2 (also see [15] for the other
improvement). A natural question is whether Ω ∈ L(log+L)k+1(Sn−1) is also
sufficient for implying the Lp-boundedness of TP

b,k for p 6= 2, 1 < p < ∞. In
this paper, we will give a affirmative answer for this question. In fact, we shall
establish the more general result as follows.

Theorem 1.1. Let k ≥ 1, N0 denote the set of all nonnegative integers, Ω
be homogeneous of degree zero with mean value zero on Sn−1, b ∈ BMO(Rn).
Suppose that Ω ∈ L(log+L)k+1(Sn−1), {dj , mj : 0 ≤ j ≤ l} ⊂ N0 and that
Φ(x, y) =

∑l
j=0 Pj(x)φj(y − x), where φj : Rn −→ R is a homogeneous of

degree mj which is real analytic on Sn−1, and Pj(x) is a real-valued polynomial
on Rn with degree dj. If φj is constant function whenever mj = 0, then for
1 < p <∞,

‖TΦ
b,kf‖p ≤ Cp

(
1 + ‖Ω‖L(log+L)k+1(Sn−1)

) ‖b‖k
BMO(Rn)‖f‖p,

where Cp is independent of the coefficients of the polynomials {Pj : 0 ≤ j ≤ l}.
Remark 1.1. From [1, 2], the class of such functions Φ in Theorem 1.1 contains
properly the class of all real-valued polynomial mappings on Rn × Rn. For
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example, for x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn),

Φ(x, y) =





(yn − xn)sin


(yn − xn)3




n∑

j=1

(yj − xj)2



−3/2








n∏

j=1

x2
j

satisfies the assumptions in Theorem 1.1, but it is not a polynomial. Therefore,
Theorem 1.1 extends the result of [11] by both expanding the range of the phase
function “Φ” and the range of “p”.

In addition, for the corresponding maximal operator defined by

(1.4) TΦ,∗
b, k f(x) = sup

ε>0

∣∣∣∣∣
∫

|x−y|>ε

eiΦ(x,y)[b(x)− b(y)]k
Ω(x− y)
|x− y|n f(y)dy

∣∣∣∣∣ ,

we will also establish the following result.

Theorem 1.2. Under the same assumptions as in Theorem 1.1, we have

‖TΦ,∗
b, k f‖p ≤ Cp

(
1 + ‖Ω‖L(log+L)k+1(Sn−1)

) ‖b‖k
BMO(Rn)‖f‖p, 1 < p <∞,

where Cp is independent of the coefficients of the polynomials {Pj : 0 ≤ j ≤ l}.
This paper is organized as follows. In Section 2, we shall give some auxiliary

lemmas. The proof of Theorem 1.1 will be given in Section 3. Finally, we will
prove Theorem 1.2 in Section 4. We would remark that our some ideas in the
proof of the main theorem are taken from [2, 10, 12]. Throughout this paper,
we always use the letter C to denote a positive constant that may vary at each
occurrence but is independent of the essential variable.

2. Auxiliary lemmas

In this section, we give some auxiliary lemmas, which will be needed in the
proof of our main result.

Lemma 2.1 (see [6]). Let Ω, b, k be as in Theorem 1.1. The the maximal
operator MΩ

b,k defined by

MΩ
b,kf(x) = sup

r>0

1
rn

∫

|x−y|<r

|b(x)− b(y)|k|Ω(x− y)f(y)|dy

satisfies
∥∥MΩ

b,kf
∥∥

p
≤ C

(
1 + ‖Ω‖L(log+L)k+1(Sn−1)

) ‖b‖k
BMO(Rn)‖f‖p.

Lemma 2.2 (see [6]). Let Ω̃ ∈ L∞(Sn−1) be homogeneous of degree zero, k be
a positive integer and b ∈ BMO(Rn). Define the operator MeΩ; b,k by

MeΩ; b,kf(x) = sup
r>0

1
rn

∫

|x−y|<r

|b(x)− b(y)|k|Ω̃(x− y)f(y)|dy
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and let

λeΩ,k = inf

{
λ > 0 :

‖Ω̃‖1
λ

logk

(
2 +

‖Ω̃‖∞
λ

)
≤ 1

}
.

Then MeΩ; b,k is bounded on Lp(Rn) with bound CλeΩ,k‖b‖k
BMO(Rn) for all 1 <

p <∞.

Lemma 2.3 (see [6]). Let Ω, b, k be as in Theorem 1.1. Then the k-th order
commutator of singular integral operator T b,k defined by

T b,kf(x) = p.v
∫

Rn

[b(x)− b(y)]k
Ω(x− y)
|x− y|n f(y)dy

and the corresponding maximal operator defined by

T
∗
b,kf(x) = sup

ε>0

∣∣∣∣∣
∫

|x−y|>ε

[b(x)− b(y)]k
Ω(x− y)
|x− y|n f(y)dy

∣∣∣∣∣
are bounded on Lp(Rn) for 1 < p <∞, with norm bounded by

C(1 + ‖Ω‖L(log+L)k+1(Sn−1))‖b‖BMO(Rn).

Lemma 2.4. Let Ω, b, k, Φ be as in Theorem 1.1. If TΦ
b,k is bounded on Lp(Rn)

for 1 < p < ∞, with norm bounded by C‖b‖BMO(Rn). Then for any ε > 0, the
truncated operator

TΦ
ε,b,kf(x) = p.v.

∫

|x−y|≤ε

eiΦ(x,y)[b(x)− b(y)]k
Ω(x− y)
|x− y|n f(y)dy

is also bounded on Lp(Rn) with bound C(1+ ‖Ω‖L(log+L)k+1(Sn−1))‖b‖BMO(Rn).

Proof. Decompose Rn as Rn = ∪dId, where each Id is a cube having side length
ε/8n and these cubes {Id} have disjoint interiors. Set fd = fχId

. Since the
support of TΦ

ε,b,kfd is contained in a fixed multiple of Id, the supports of the
various terms TΦ

ε,b,kfd have bounded overlaps and so we have

‖TΦ
ε;b,kf‖p

p ≤ C
∑

d

‖TΦ
ε; b,kfd‖p

p.

Thus we may assume that supp(f) ⊂ I for some cube I with side length ε/8n
and center at x0. Write

∫

Rn

|TΦ
ε; b,kf(x)|pdx

=

(∫

|x−x0|≤ε/4n

+
∫

ε/4n<|x−x0|≤3ε

+
∫

3ε<|x−x0|

)
|TΦ

ε; b,kf(x)|pdx.

Since |x − x0| < ε/4n and |y − x0| ≤ ε/8n imply |x − x0| ≤ ε, we have
TΦ

ε; b,kf(x) = TΦ
b,kf(x). Thus, for the first term, by the Lp-boundedness of TΦ

b, k,
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the result holds in this case. When ε/4n < |x − x0| ≤ 3ε, by |y − x0| ≤ ε/8n,
we have c0ε ≤ |x− y| ≤ c1ε for some constants c0 and c1. Therefore

|TΦ
ε;b,kf(x)| ≤

∫

c0ε≤|x−y|≤c1ε

|b(x)− b(y)|k |Ω(x− y)|
|x− y|n |f(y)|dy ≤ CMΩ

b,kf(x).

By Lemma 2.1, we get

‖TΦ
ε;b,kf‖p ≤ C‖MΩ

b,kf‖p ≤ C
(
1 + ‖Ω‖L(log+L)k+1(Sn−1)

) ‖b‖k
BMO(Rn)‖f‖p,

which is the estimate for the second term. When 3ε < |x − x0|, we get
TΦ

ε;b,kf(x) = 0 and complete the proof of Lemma 2.4. ¤

3. Proof of Theorem 1.1

Employing the ideas of [2, 10], which originated from [12], we shall use
induction on

d(Φ) := inf max
0≤j≤l

{dj +mj},
where the infimum is taken over all representations of the form Φ(x, y) =∑l

j=0 Pj(x)φj(y − x) with dj is the degree of Pj and mj is the degree of ho-
mogeneity of φj . Following the notation and the procedure in the proof of [2,
Theorem 1.1], we proceed now to the proof as follows.

It is clear that if d(Φ) = 0, then |TΦ
b,kf(x)| = |T b,kf(x)|. Therefore, Theo-

rem 1.1 directly follows from Lemma 2.3. Now we assume that Theorem 1.1
holds for all Φ with d(Φ) ≤ N . As the same as in [2], given Φ(x, y) =∑l

j=0 Pj(x)φj(y−x) with d(Φ) = N+1, let j1, j2, . . . , jk be all 0 ≤ j ≤ l with
dj +mj = N + 1. For 1 ≤ s ≤ k, let

hs(x) =
∑

|αjs |=djs

aαjs
xαjs and H(x, y) =

k∑
s=1

hs(x)φjs(y − x).

Without loss of generality, we may assume that deg(φjs) = mjs > 0. A straight-
forward calculation shows that

(3.1) H(x, y) =
M∑

µ=1

λµψµ(x, y)

for some integers M > 0, constants {λµ : 1 ≤ µ ≤M} with

(3.2)
M∑

µ=1

|λµ| =
k∑

s=1

∑

|αjs |=djs

|aαjs
|,

and functions ψµ, 1 ≤ µ ≤ M , of the form xαη(y − x) for some multi-index α
and a homogeneous function η of degree N + 1− |α| which is real analytic on
Sn−1. Then

(3.3) Φ(x, y) =
M∑

µ=1

λµψµ(x, y) +
∑

0≤j≤l, dj+mj≤N

Pj(x)φj(y − x).
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Now set δ = (
∑M

µ=1 |λµ|)1/(N+1),

Φδ(x, y) =
M∑

µ=1

λµδ
−(N+1)ψµ(x, y) +

∑

0≤j≤l, dj+mj≤N

Pj(δ−1x)φj(δ−1(y − x)),

and fδ(x) = f(δ−1x). It is easy to see that the following hold:

(3.4) Φ(x, y) = Φδ(δx, δy),

(3.5)
M∑

µ=1

λµδ
−(N+1) = 1,

(3.6) ‖TΦ
b,kf‖p = δ−n/p‖TΦδ

b,kfδ‖p.

Notice that δ−n/p‖fδ‖p = ‖f‖p and ‖b‖BMO(Rn) = ‖b(δ−1·)‖BMO(Rn), in order
to complete the proof of our theorem, by (3.6) we need only to show that

(3.7) ‖TΦδ

b,kf‖p ≤ C
(
1 + ‖Ω‖L(log+L)k+1(Sn−1)

) ‖b‖k
BMO(Rn)‖f‖p

for all 1 < p <∞, where C is a constant independent of δ and the coefficients
of the polynomials Pj . Write

TΦδ

b,kf(x) = TΦδ,0
b, k f(x) + TΦδ,∞

b, k f(x),

where

TΦδ,∞
b, k f(x) =

∫

|x−y|≥1

eiΦδ(x,y)[b(x)− b(y)]k
Ω(x− y)
|x− y|n f(y)dy.

To prove (3.7), it suffices to show that

(3.8) ‖TΦδ,0
b, k f‖p ≤ C

(
1 + ‖Ω‖L(log+L)k+1(Sn−1)

) ‖b‖k
BMO(Rn)‖f‖p

and

(3.9) ‖TΦδ,∞
b, k f‖p ≤ C

(
1 + ‖Ω‖L(log+L)k+1(Sn−1)

) ‖b‖k
BMO(Rn)‖f‖p

for all 1 < p <∞, where C is a constant independent of δ and the coefficients
of the polynomials Pj .

At first, we prove (3.8). For h ∈ Rn, let

(3.10)
Ψh,δ(x, y) =

M∑
µ=1

λµδ
−(d+1){ψµ(x, y)− ψµ(x− h, y − h)}

+
∑

0≤j≤l, dj+mj≤N

Pj(δ−1x)φj(δ−1(y − x)).

Since Ψh,δ satisfies the induction assumption, by Lemma 2.4 we have

(3.11) ‖TΨh,δ,0
b, k f‖p ≤ C

(
1 + ‖Ω‖L(log+L)k+1(Sn−1)

) ‖b‖k
BMO(Rn)‖f‖p
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for all 1 < p <∞, where C is a constant independent of δ and the coefficients
of the polynomials Pj , and hence of h. By (3.11) and the fact that

TΦδ,0
b, k f(x) = T

Ψh,δ,0
b, k f(x) + (TΦδ,0

b, k − T
Ψh,δ,0
b, k )(f)(x),

to prove (3.8), we need only to prove
(3.12)

‖(TΦδ,0
b, k − T

Ψh,δ,0
b, k )(f)‖p ≤ C

(
1 + ‖Ω‖L(log+L)k+1(Sn−1)

) ‖b‖k
BMO(Rn)‖f‖p

for all 1 < p <∞, where C is as in (3.11).
Note that∣∣∣eiΦδ(x,y) − eiΨh,δ(x,y)

∣∣∣

≤ C

∣∣∣∣∣
M∑

µ=1

λµδ
−(N+1)ψµ(x− h, y − h)

∣∣∣∣∣ = Cδ−(N+1)|H(x− h, y − h)|

= Cδ−(N+1)

∣∣∣∣∣∣

k∑
s=1

∑

|αjs |=djs

aαjs
(x− h)αjsφjs

(y − x)

∣∣∣∣∣∣

≤ C max
1≤s≤k

‖φjs‖L∞(Sn−1)

k∑
s=1

∑

|αjs |=djs

|aαjs
||x− h||αjs |δ−(N+1)|y − x|mjs ,

by (3.2) and (3.5), for |x− h| < 1/4, we have∣∣∣(TΦδ,0
b, k − T

Ψh,δ,0
b, k )(f)(x)

∣∣∣

=

∣∣∣∣∣
∫

|x−y|<1

[
eiΦδ(x,y) − eiΨh,δ(x,y)

]
[b(x)− b(y)]k

Ω(x− y)
|x− y|n f(y)dy

∣∣∣∣∣

≤ C

k∑
s=1

∑

|αjs |=djs

|aαjs
|δ−(N+1)

∫

|x−y|<1

|x− h||αjs ||x− y|mjs−n

× |Ω(x− y)[b(x)− b(y)]kf(y)|dy

≤ C

k∑
s=1

∑

|αjs |=djs

|aαjs
|δ−(N+1)

∫

|x−y|<1

|x− y|mjs−n

× |Ω(x− y)[b(x)− b(y)]kf(y)|dy
≤ CMΩ

b, kf̃(x),

where f̃(x) = f(x)χ{|x−h|<5/4}(x). Therefore, it follows from Lemma 2.1 that
∫

|x−h|<1/4

∣∣∣(TΦδ,0
b, k − T

Ψh,δ,0
b, k )(f)(x)

∣∣∣
p

dx

≤ C
(
1 + ‖Ω‖L(log+L)k+1(Sn−1)

) ‖b‖k
BMO(Rn)

∫

|y−h|<5/4

|f(y)|pdy
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holds for all h ∈ Rn, with bound independent of h. Integrating the above
inequality with respect to h yields (3.12). This completes the proof of (3.8).

It remains to prove (3.9). Let E0 = {x′ ∈ Sn−1 : |Ω(x′)| ≤ 2} and El =
{x′ ∈ Sn−1 : 2l < |Ω(x′) ≤ 2l+1} for positive integer l. Denote by Ωl the
restriction of Ω on El, that is, Ωl(x′) = Ω(x′)χEl

(x′). Then

(3.13) Ω(x′) =
∞∑

l=0

Ωl(x′),

and our hypothesis on Ω now shows that
∑

l≥1l
k+1‖Ωl‖1< ‖Ω‖L(log+L)k+1(Sn−1)

<∞. By (3.13), we have

(3.14) TΦδ,∞
b, k f(x) =

∞∑

l=0

∞∑

j=0

TΦδ; l
b,k; jf(x),

where

TΦδ; l
b,k; jf(x) =

∫

2j≤|x−y|<2j+1
eiΦδ(x,y)[b(x)− b(y)]k

Ωl(x− y)
|x− y|n f(y)dy.

Consequently,

(3.15) ‖TΦδ,∞
b,k f‖p ≤

∞∑

l=0

∞∑

j=0

‖TΦδ, l
b,k; jf‖p.

Invoking Lemma 2.2, we have the following crude estimates

(3.16) ‖TΦδ; l
b,k; jf‖p ≤ C‖MΩl;b,kf‖p ≤ CλΩl, k‖b‖k

BMO(Rn)‖f‖p, 1 < p <∞.

Next we shall establish a refined L2-estimate on TΦδ; l
b,k; jf . Precisely, we shall

show that there exists a positive constant ε = ε(n,N) such that

(3.17) ‖TΦδ; l
b,k; jf‖2 ≤ C2−εj‖Ωl‖∞‖b‖k

BMO(Rn)‖f‖2.
To prove (3.17), we turn our attention to the following operators

T̃Φδ; l
b,k; jf(x) =

∫

1≤|x−y|<2

eiΦδ(2jx,2jy)[b(x)− b(y)]k
Ωl(x− y)
|x− y|n f(y)dy,

and

T̃Φδ; l
j f(x) =

∫

1≤|x−y|<2

eiΦδ(x,y) Ωl(x− y)
|x− y|n f(y)dy.

By dilation-invariance, it is easy to see that the proof of (3.17) can be reduced
to showing that

(3.18) ‖T̃Φδ; l
b,k; jf‖2 ≤ C2−εj‖Ωl‖∞‖b‖k

BMO(Rn)‖f‖2.
As in the proof of Lemma 2.4, we decompose Rn into Rn = ∪dId, where Id is

a cube with side length 1 and the cubes have disjoint interiors. Set fd = fχId
.

Similarly to the proof of Lemma 2.4, we have

‖T̃Φδ; l
b,k; jf‖22 ≤ C

∑

d

‖T̃Φδ; l
b,k; jfd‖22.
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Thus we may assume supp(f) ⊂ I for cube I with side length 1. Choose
ϕ ∈ C∞0 (Rn), 0 ≤ ϕ ≤ 1, ϕ is identically one on 50nI and vanishes outside
100nI. Write I = 100nI and b̃(x) = (b(x) −mI(b))ϕ(x), where mI(b) is the
mean value of b on I. When y ∈ I and x in the support of T̃Φδ; l

b,k; jf , we have

(b(x)− b(y))k =
k∑

m=0

(−1)k−mCm
k b̃

m(x)̃bk−m(y).

Consequently,

(3.19) T̃Φδ; l
b,k; jf(x) =

k∑
m=0

(−1)k−mCm
k b̃

m(x)T̃Φδ; l
j (̃bk−mf)(x).

We first claim that for 1 < q < 2, there exists ε > 0 such that

(3.20) ‖T̃Φδ; l
j f‖q′ ≤ C2−εj‖Ωl‖∞‖f‖q, 1/q + 1/q′ = 1.

Indeed, let us consider the operator

TΦδ; l
j f(x) =

∫

2j≤|x−y|<2j+1
eiΦδ(x,y) Ωl(x− y)

|x− y|n f(y)dy.

From [2, p. 577, (3.24)-(3.25)], it is easy to see that for some θ > 0,

‖TΦδ; l
j f‖2 ≤ C2−θj‖Ωl‖∞‖f‖2,

and
‖TΦδ; l

j f‖∞ ≤ C‖Ωl‖∞‖f‖1.
Then (3.20) is obtained by the interpolation and the dilation-invariance.

Now we estimate ‖T̃Φδ; l
b,k; jf‖2. Choose q ∈ (1, 2), p0, p1 ∈ (1, ∞) such that

1/q′ + 1/p0 = 1/2 and 1/q = 1/2 + 1/p1. Notice that for each fixed integer m,
0 ≤ m ≤ k, supp(T̃Φδ; l

j (̃bk−mf)) ⊂ 20nI, by Hölder’s inequality and (3.20) we
have

‖b̃mT̃Φδ; l
j (̃bk−mf)‖2 ≤ ‖b̃m‖p0‖T̃Φδ; l

j (|̃bk−mf |)‖q′

≤ C2−εj‖Ωl‖∞‖b‖m
BMO(Rn)‖b̃k−mf‖q

≤ C2−εj‖Ωl‖∞‖b‖m
BMO(Rn)‖b̃k−m‖p1‖f‖2

≤ C2−εj‖Ωl‖∞‖b‖k
BMO(Rn)‖f‖2.

Summing over m, we obtain (3.18) and complete the proof of (3.17).
Note that λΩl, k ≤ C‖Ωl‖∞ (see [6, Lemma 3]), it follows from interpolation

between (3.16) and (3.17) that

(3.21) ‖TΦδ; l
b,k; jf‖p ≤ C2−βj‖Ωl‖∞‖b‖k

BMO(Rn)‖f‖p

for any 1 < p <∞ and some β > 0.
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Let r be a large positive integer such that r > 2β−1. Combining (3.15),
(3.16) and (3.21) gives

‖TΦδ,∞
b,k f‖p

≤
∞∑

j=0

‖TΦδ, 0
b,k; j f‖p +

∞∑

l>0

∑

j>rl

‖TΦδ, l
b,k; jf‖p +

∞∑

l>0

∞∑

j≤rl

‖TΦδ, l
b,k; jf‖p

≤ C

∞∑

j=0

2−βj‖Ω0‖∞‖b‖k
BMO(Rn)‖f‖p + C

∑

l>0

∑

j>rl

2−βjΩl‖∞‖b‖k
BMO(Rn)‖‖f‖p

+ C
∑

l>0

∑

j≤rl

λΩl,k‖b‖k
BMO(Rn)‖f‖p

≤ C‖b‖k
BMO(Rn)‖f‖p + C

∑

l>0

2l
∑

j>rl

2−βj‖b‖k
BMO(Rn)‖f‖p

+ C
∑

l>0

lλΩl,k‖b‖k
BMO(Rn)‖f‖p

≤ C
(
1 + ‖Ω‖L(log+L)k+1(Sn−1)

) ‖b‖k
BMO(Rn)‖f‖p,

where the last inequality follows from the following fact

∑

l>0

lλΩl,k ≤ C
∑

l>0

lk+1‖Ωl‖1 +C
∑

l>0

l2−l ≤ C
(‖Ω‖L(log+L)k+1(Sn−1) + 1

)
<∞.

This completes the proof of Theorem 1.1. ¤

4. Proof of Theorem 1.2

As in the proof of Theorem 1.1, we shall use induction on

d(Φ) := inf max
0≤j≤l

{dj +mj},

where the infimum is taken over all representations of the form Φ(x, y) =∑l
j=0 Pj(x)φj(y−x) with dj is the degree of Pj and mj is the degree of homo-

geneity of φj .
Obviously, if d(Φ) = 0, then TΦ, ∗

b, k f(x) = T
∗
b,kf(x). Therefore, by Lemma 2.3,

Theorem 1.2 holds for all Φ with d(Φ) = 0. Now we assume that Theorem 1.2
holds for all Φ with d(Φ) ≤ N . Given Φ(x, y) =

∑l
j=0 Pj(x)φj(y − x) with

d(Φ) = N +1, let Φδ(x, y) be as before. By the same arguments as in the proof
of Theorem 1.1, we need only to prove

‖TΦδ, ∗
b, k f‖p ≤ C

(
1 + ‖Ω‖L(log+L)k+1(Sn−1)

) ‖b‖k
BMO(Rn)‖f‖p, 1 < p <∞,
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where the definition of TΦδ, ∗
b, k f(x) is as in (1.4) replaced Φ(x, y) by Φδ(x, y).

Similarly to the proof of Theorem 4 in [10], we write

TΦδ,∗
b, k f(x) ≤ sup

0<ε<1

∣∣∣∣∣
∫

|x−y|>ε

eiΦδ(x,y)[b(x)− b(y)]k
Ω(x− y)
|x− y|n f(y)dy

∣∣∣∣∣

+ sup
ε≥1

∣∣∣∣∣
∫

|x−y|>ε

eiΦδ(x,y)[b(x)− b(y)]k
Ω(x− y)
|x− y|n f(y)dy

∣∣∣∣∣

≤ sup
0<ε<1

∣∣∣∣∣
∫

1>|x−y|>ε

eiΦδ(x,y)[b(x)− b(y)]k
Ω(x− y)
|x− y|n f(y)dy

∣∣∣∣∣

+

∣∣∣∣∣
∫

|x−y|≥1

eiΦδ(x,y)[b(x)− b(y)]k
Ω(x− y)
|x− y|n f(y)dy

∣∣∣∣∣

+ sup
ε>1

∣∣∣∣∣
∫

|x−y|>ε

eiΦδ(x,y)[b(x)− b(y)]k
Ω(x− y)
|x− y|n f(y)dy

∣∣∣∣∣

:= TΦδ, ∗
b, k; 0f(x) +

∣∣∣TΦδ,∞
b, k f(x)

∣∣∣ + TΦδ, ∗
b, k;∞f(x).

Then by (3.9), it suffices to prove that both TΦδ, ∗
b,k; 0 and TΦδ, ∗

b,k;∞ are bounded on
Lp(Rn) for all 1 < p <∞, with bound C(1+ ‖Ω‖L(log+L)k+1(Sn−1))‖b‖k

BMO(Rn).
By the method similar to proving (3.8), we can easily prove the desired

conclusion on TΦδ, ∗
b, k; 0.

Now we estimate ‖TΦδ, ∗
b,k;∞f‖p. For each fixed ε > 1, we have unique J ∈ N

such that 2J−1 ≤ ε < 2J . Thus

TΦδ, ∗
b,k;∞f(x)

≤ sup
J∈N

∫

2J−1≤|x−y|<2J

|b(x)− b(y)|k |Ω(x− y)|
|x− y|n |f(y)|dy

+
∑

J∈N

∞∑

j=J+1

∣∣∣∣∣
∫

2j−1≤|x−y|<2j

eiΦδ(x,y)[b(x)− b(y)]k
Ω(x− y)
|x− y|n f(y)dy

∣∣∣∣∣

≤ CMΩ
b, kf(x) +

∞∑

j=0

∣∣∣∣∣
∫

2j−1≤|x−y|<2j

eiΦ(x,y)[b(x)− b(y)]k
Ω(x− y)
|x− y|n f(y)dy

∣∣∣∣∣ .

By Lemma 2.1 and the method similar to proving (3.9), we obtain

‖TΦδ, ∗
b,k;∞f‖p ≤ C

(
1 + ‖Ω‖L(log+L)k+1(Sn−1)

) ‖b‖k
BMO(Rn)‖f‖p,

which completes the proof of Theorem 1.2. ¤
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