• Title/Summary/Keyword: B-algebra

Search Result 324, Processing Time 0.025 seconds

SELF-ADJOINT INTERPOLATION FOR OPERATORS IN TRIDIAGONAL ALGEBRAS

  • Kang, Joo-Ho;Jo, Young-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.423-430
    • /
    • 2002
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_{}i$ = $Y_{i}$ for i/ = 1,2,…, n. In this article, we obtained the following : Let X = ($x_{i\sigma(i)}$ and Y = ($y_{ij}$ be operators in B(H) such that $X_{i\sigma(i)}\neq\;0$ for all i. Then the following statements are equivalent. (1) There exists an operator A in Alg L such that AX = Y, every E in L reduces A and A is a self-adjoint operator. (2) sup ${\frac{\parallel{\sum^n}_{i=1}E_iYf_i\parallel}{\parallel{\sum^n}_{i=1}E_iXf_i\parallel}n\;\epsilon\;N,E_i\;\epsilon\;L and f_i\;\epsilon\;H}$ < $\infty$ and $x_{i,\sigma(i)}y_{i,\sigma(i)}$ is real for all i = 1,2, ....

DERIVATION MODULES OF GROUP RINGS AND INTEGERS OF CYCLOTOMIC FIELDS

  • Chung, I.Y.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.31-36
    • /
    • 1983
  • Let R be a commutative ring with 1, and A a unitary commutative R-algebra. By a derivation module of A, we mean a pair (M, d), where M is an A-module and d: A.rarw.M and R-derivation, i.e., d is an R-linear mapping such that d(ab)=a)db)+b(da). A derivation module homomorphism f:(M,d).rarw.(N, .delta.) is an A-homomorphism f:M.rarw.N such that f.d=.delta.. A derivation module of A, (U, d), there exists a unique derivation module homomorphism f:(U, d).rarw.(M,.delta.). In fact, a universal derivation module of A exists in the category of derivation modules of A, and is unique up to unique derivation module isomorphisms [2, pp. 101]. When (U,d) is a universal derivation module of R-algebra A, the A-module U is denoted by U(A/R). For out convenience, U(A/R) will also be called a universal derivation module of A, and d the R-derivation corresponding to U(A/R).

  • PDF

DISCUSSIONS ON PARTIAL ISOMETRIES IN BANACH SPACES AND BANACH ALGEBRAS

  • Alahmari, Abdulla;Mabrouk, Mohamed;Taoudi, Mohamed Aziz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.485-495
    • /
    • 2017
  • The aim of this paper is twofold. Firstly, we introduce the concept of semi-partial isometry in a Banach algebra and carry out a comparison and a classification study for this concept. In particular, we show that in the context of $C^*$-algebras this concept coincides with the notion of partial isometry. Our results encompass several earlier ones concerning partial isometries in Hilbert spaces, Banach spaces and $C^*$-algebras. Finally, we study the notion of (m, p)-semi partial isometries.

ON THE TOPOLOGY OF THE DUAL SPACE OF CROSSED PRODUCT C*-ALGEBRAS WITH FINITE GROUPS

  • Kamalov, Firuz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.391-397
    • /
    • 2017
  • In this note we extend our previous result about the structure of the dual of a crossed product $C^*$-algebra $A{\rtimes}_{\sigma}G$, when G is a finite group. We consider the space $\tilde{\Gamma}$ which consists of pairs of irreducible representations of A and irreducible projective representations of subgroups of G. Our goal is to endow $\tilde{\Gamma}$ with a topology so that the orbit space e $G{\backslash}{\tilde{\Gamma}}$ is homeomorphic to the dual of $A{\rtimes}_{\sigma}G$. In particular, we will show that if $\widehat{A}$ is Hausdorff then $G{\backslash}{\tilde{\Gamma}}$ is homeomorphic to $\widehat{A{\rtimes}_{\sigma}G}$.

JORDAN DERIVATIONS ON NONCOMMUTATIVE BANACH ALGEBRAS

  • Park, Kyoo-Hong;Kim, Byung-Do;Byun, Sang-Hun
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.995-1004
    • /
    • 2000
  • In this paper we shall give a slight generalization of J. Vukman's Theorem. And show from the result that the image of a continuous linear Jordan derivation on a noncommutative Banach algebra A is contained in the radical under the condition [D(x),x]E(x) ${\in}$ rad(A) for all $x{\in}A$ . And we show some properties of the derivations on noncommutative Banach algebras.

INVARIANTS OF THE SYMMETRIC GROUP

  • Lee, Hyang-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.2
    • /
    • pp.293-300
    • /
    • 1995
  • Let $R = k[y_1,\cdots,y_n] \otimes E[x_1, \cdots, x_n]$ with characteristic $k = p > 2$ (odd prime), where $$\mid$y_i$\mid$ = 2, $\mid$x_i$\mid$ = 1$ and $y_i = \betax_i, \beta$ is the Bockstein homomorphism. Topologically, $R = H^*(B(Z/p)^n,k)$. For a symmetric group $\sum_n, R^{\sum_n} = k[\sigma_1,\cdots,\sigma_n] \otimes E[d\sigma_1, \cdots, d\sigma_n]$ where d is the derivation satisfying $d(y_i) = x_i$ and $d(x_iy_i) = x_iy_i + x_jy_i, 1 \leq i, j \leq n$. We give a direct proof of this theorem by using induction.

  • PDF

HYERS-ULAM STABILITY OF DERIVATIONS IN FUZZY BANACH SPACE: REVISITED

  • Lu, Gang;Jin, Yuanfeng;Wu, Gang;Yun, Sungsik
    • The Pure and Applied Mathematics
    • /
    • v.25 no.2
    • /
    • pp.135-147
    • /
    • 2018
  • Lu et al. [27] defined derivations on fuzzy Banach spaces and fuzzy Lie Banach spaces and proved the Hyers-Ulam stability of derivations on fuzzy Banach spaces and fuzzy Lie Banach spaces. It is easy to show that the definitions of derivations on fuzzy Banach spaces and fuzzy Lie Banach spaces are wrong and so the results of [27] are wrong. Moreover, there are a lot of seroius problems in the statements and the proofs of the results in Sections 2 and 3. In this paper, we correct the definitions of biderivations on fuzzy Banach algebras and fuzzy Lie Banach algebras and the statements of the results in [27], and prove the corrected theorems.

ON THE GEOMETRY OF VECTOR BUNDLES WITH FLAT CONNECTIONS

  • Abbassi, Mohamed Tahar Kadaoui;Lakrini, Ibrahim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1219-1233
    • /
    • 2019
  • Let $E{\rightarrow}M$ be an arbitrary vector bundle of rank k over a Riemannian manifold M equipped with a fiber metric and a compatible connection $D^E$. R. Albuquerque constructed a general class of (two-weights) spherically symmetric metrics on E. In this paper, we give a characterization of locally symmetric spherically symmetric metrics on E in the case when $D^E$ is flat. We study also the Einstein property on E proving, among other results, that if $k{\geq}2$ and the base manifold is Einstein with positive constant scalar curvature, then there is a 1-parameter family of Einstein spherically symmetric metrics on E, which are not Ricci-flat.

BRACKET FUNCTIONS ON GROUPOIDS

  • Allen, Paul J.;Kim, Hee Sik;Neggers, Joseph
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.375-381
    • /
    • 2019
  • In this paper, we introduce an operation denoted by [$Br_e$], a bracket operation, which maps an arbitrary groupoid ($X,{\ast}$) on a set X to another groupoid $(X,{\bullet})=[Br_e](X,{\ast})$ which on groups corresponds to sending a pair of elements (x, y) of X to its commutator $xyx^{-1}y^{-1}$. When applied to classes such as d-algebras, BCK-algebras, a variety of results is obtained indicating that this construction is more generally useful than merely for groups where it is of fundamental importance.

ON THE POCKLINGTON-PERALTA SQUARE ROOT ALGORITHM IN FINITE FIELDS

  • Chang Heon, Kim;Namhun, Koo;Soonhak, Kwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1523-1537
    • /
    • 2022
  • We present a new square root algorithm in finite fields which is a variant of the Pocklington-Peralta algorithm. We give the complexity of the proposed algorithm in terms of the number of operations (multiplications) in finite fields, and compare the result with other square root algorithms, the Tonelli-Shanks algorithm, the Cipolla-Lehmer algorithm, and the original Pocklington-Peralta square root algorithm. Both the theoretical estimation and the implementation result imply that our proposed algorithm performs favorably over other existing algorithms. In particular, for the NIST suggested field P-224, we show that our proposed algorithm is significantly faster than other proposed algorithms.