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ON THE TOPOLOGY OF THE DUAL SPACE OF CROSSED

PRODUCT C
∗-ALGEBRAS WITH FINITE GROUPS

Firuz Kamalov

Abstract. In this note we extend our previous result about the structure
of the dual of a crossed product C∗-algebra A ⋊σ G, when G is a finite

group. We consider the space Γ̃ which consists of pairs of irreducible rep-
resentations of A and irreducible projective representations of subgroups

of G. Our goal is to endow Γ̃ with a topology so that the orbit space G\Γ̃
is homeomorphic to the dual of A⋊σ G. In particular, we will show that

if Â is Hausdorff then G\Γ̃ is homeomorphic to Â ⋊σ G.

1. Introduction

The dual space of a crossed product A⋊σ G has a rich and deep structure.
Describing this structure in a general setting is a difficult task. To gain any

meaningful insight about Â⋊σ G one has had to impose various conditions on
A and G [1, 2, 4, 5, 7, 8]. Recently Echterhoff and Williams gave a concrete
description of the dual space in the case of a strictly proper action on a contin-

uous trace C∗-algebra [3]. In this paper, we investigate the topology of Â⋊σ G

when G is finite.
The first step in understanding the structure of Â⋊σ G is to describe it as

a set. Let Γ be the set of all pairs (π,W ), where π ∈ ̂A and W is an irreducible
projective representation of Gπ associated to a certain 2-cocycle ωπ. There

exists a natural action of G on Γ. If G is finite, then Â⋊σ G corresponds
bijectively, via a certain map Φ, to the orbit space G\Γ as a set [4]. The next

step is to equip Γ with a suitable topology so that Â⋊σ G is homeomorphic

to G\Γ. Indeed, this is the main goal of the paper. We will show that if ̂A is

Hausdorff, then G\˜Γ is homeomorphic to Â⋊σ G.
We define the topology on G\Γ based on the approach used in [3]. In Propo-

sition 4, we show that the map Φ is continuous. In Lemma 5 and Lemma 6, we

show that if ̂A is a Hausdorff space, then Φ is a closed map. Our main result
is stated in Theorem 8.
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2. Preliminaries

In this section, we give a brief overview of the correspondence between the

set Γ and Â⋊σ G. We refer the reader to [4] for further details. Let G be a
finite group acting on a C∗-algebra A and let (A,G, σ) be the corresponding
dynamical system. We will assume throughout this paper that A is a separable

C∗-algebra. The action of G on A induces an action of G on ̂A given by

[π] 7→ [π◦σs] for all [π] ∈ ̂A and s ∈ G. LetGπ denote the stability group at each

[π] ∈ ̂A. Then for each s ∈ Gπ there is a unitary Vs such that VsπV
∗
s = π ◦ σs.

The map s 7→ Vs defines a projective representation of Gπ. Let ω be the

multiplier of the projective representation V . Let ̂Gπ denote the set of all

irreducible ω-representations of Gπ. Then for each W ∈ ̂Gπ we can construct
a corresponding covariant representation of (A,Gπ , σ)

(1) (π ⊗ 1m, V ⊗W ∗).

Let Γ = {(π,W ) : π ∈ ̂A,W ∈ ̂Gπ}. As shown above, for each (π,W ) ∈
Γ, there exists a representation of (A,Gπ , σ). Recall that we can induce a
representation (π, U) of (A,Gπ , σ) to a representation (π, U)G of (A,G, σ) via
induced representations [6]. Thus we obtain a map Φ from Γ into the set of
equivalence classes of irreducible covariant representations of (A,G, σ) defined
by

(2) Φ(π,W ) = (π ⊗ 1m, V ⊗W ∗)G.

Let ˜Γ be the set of all equivalence classes in Γ. Then the map Φ factors

through from ˜Γ into Â⋊σ G. Moreover, Φ is surjective.
There exists a natural action of G on the set Γ. For each s ∈ G, we have

Gπ◦σs
= s−1Gπs. So given a projective representation W ∈ ̂Gπ we can con-

struct a projective representation of Gπ◦σs
by (s · W )(s−1ts) = W (t) for all

t ∈ Gπ . Thus we can define the action of G on Γ by

(π,W ) 7→ (π ◦ σs, s ·W ).

Let G\˜Γ be the set of orbits in ˜Γ under the group action. Then the map Φ

defines a bijective correspondence between G\˜Γ and the dual space Â⋊σ G [4].

3. Topology on ˜Γ

We endow the set ˜Γ with the same topology as in [3, Theorem 4.1]. This
topology is defined in terms of convergent sequences.

Definition 1. Let (πn,Wn) be a sequence in ˜Γ. We say that (πn,Wn) converges

to (π0,W0) ∈ ˜Γ with respect to the topology Ω if

(a) πn → π0

(b) there is N ∈ N such that Gπn
≤ Gπ0 and Wn ≤ W0|Gπn

for all n ≥ N.
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We will show that the map Φ : (˜Γ,Ω) → Â⋊σ G is continuous. Furthermore,

we will show that if ̂A is Hausdorff, then Φ is a closed map. First, we need a
few of ancillary results.

Lemma 2. Let (A,G, σ) be a dynamical system where G is finite. Let Q be in

Prim(A). Suppose there is a sequence Pn ∈ Prim(A) such that (
⋂

s∈G sPn)n
converges to

⋂

s∈G sQ. Then there exists a subsequence Pnk
and s0 ∈ G such

that Pnk
converges to s0Q for some s0 ∈ G.

Proof. Since (
⋂

s∈G sPn)n converges to
⋂

s∈G sQ it follows that
⋂

n

(
⋂

s∈G

sPn) ⊆
⋂

s∈G

sQ.

Let J =
⋂

n Pn. Then
⋂

s∈G sJ ⊆ Q. Since Q is a prime ideal, then s0J ⊆ Q

for some s0 ∈ G. In particular,
⋂

n s0Pn ⊆ Q. Let I be an ideal of A such that
I * Q and let OI = {I ′ ∈ Prim(A) : I * I ′} denote the corresponding open
set in Prim(A). Suppose, for contradiction, that s0Pn /∈ OI for all n. Then
I ⊆ s0Pn for all n and I ⊆ Q. It follows that for every open set OI containing
Q there exists s0Pn0 such that s0Pn0 ∈ OI . �

The next tool we need is the Forbenius Reciprocity Theorem for crossed
products. The proof of the theorem is similar to the classical proof for the case
of groups.

Theorem 3 (Frobenius Reciprocity). Let A ⋊σ G be a crossed product where

G is finite. Let H be a subgroup of G. Let π⋊σU be a representation of A⋊σG

on a Hilbert space H and δ ⋊σ λ a representation of A⋊σ H on K. Then

HomA⋊σG(H,KG) = HomA⋊σH(H,K).

In this isomorphism the A⋊σ G-module homomorphism Θ : H → KG corre-

sponds to the A⋊σ H-module homomorphism θ : H → K, by the following

formulae

θ(ξ) = Θ(ω)(1), Θ(ω)(g) = θ(U(g)ω).

Proof. Suppose that Θ is an A⋊σ G-module homomorphism. We will show
that θ is an A⋊σ H-module homomorphism. Indeed, for each a ∈ A, h ∈ H

and ξ ∈ H, we have

θ(π(a)U(h)ξ) = Θ(π(a)U(h)ξ)(1)

= (δG(a)λG(h)Θ(ξ))(1)

= δ(a)Θ(ξ)(h)

= δ(a)λ(h)(Θ(ξ)(1))

= δ(a)λ(h)θ(ξ).

Conversely, suppose that θ is an A ⋊σ H-module homomorphism. Then, for
each a ∈ A, ξ ∈ H and g, s ∈ G, we have

Θ(π(a)U(g)ξ)(s) = θ(U(s)π(a)U(g)ξ)



394 F. KAMALOV

= θ(π(σsa)U(sg)ξ)

= δ(σsa)θ(U(sg)ξ)

= δ(σsa)Θ(ξ)(sg)

= δ(σsa)(λ
G(g)Θ(ξ)(s))

= (δG(a)λG(g)Θ(ξ))(s).
�

Induced representations give us a natural map from the set of representations
of A ⋊σ H to that of A ⋊σ G. There exists a corresponding map IndGH :
I(A⋊σ H) → I(A⋊σ G) between the ideal spaces. We equip I(A⋊σ G) with
the topology with subbasic open sets indexed by J ∈ I(A⋊σ G) given by

OJ = {I ∈ I(A⋊σ G) : J * I}.

The map IndGH is continuous with respect to the above topology [8, §5.3].

Proposition 4. Let (A,G, σ) be a dynamical system where G is finite. Let

Φ : (˜Γ,Ω) → Â⋊σ G be as above. Then Φ is a continuous map.

Proof. Let (πn,Wn) be a sequence in ˜Γ converging to (π0,W0) ∈ ˜Γ. Denote
(πn,Wn) = (πn ⊗ 1, Vn ⊗ W ∗

n) to be the corresponding representations of
(A,Gπn

, σ). Since G is finite we can assume Gπn
= H ≤ Gπ0 and Wn =

W ≤ W0|H for all n. Then πn ⋊σ Wn converge to π0 ⋊σ W . In particular,

ker(πn ⋊σ Wn) → ker(π0 ⋊σ W ) in Prim(A ⋊σ H). Since the map Ind
Gπ0

H is
continuous it follows that

Ind
Gπ0

H ker(πn ⋊σ Wn) → Ind
Gπ0

H ker(π0 ⋊σ W ).

Also since π0 ⋊σ W ≤ (π0 ⋊σ W 0)|A⋊σH , then by the Frobenius Theorem

π0 ⋊σ W 0 ≤ Ind
Gπ0

H (π0 ⋊σ W ). Then

Ind
Gπ0

H ker(πn ⋊σ Wn) → ker(π0 ⋊σ W 0).

Therefore,

IndGHker(πn ⋊σ Wn) → IndGGπ0
ker(π0 ⋊σ W 0).

It follows that Φ(πn,Wn) converges to Φ(π0,W0). �

It remains to show that Φ is a closed map. Let V be a closed set in ˜Γ and

let ρ ∈ Â⋊σ G be a limit point of Φ(V ). Let (πn,Wn) ∈ V be a sequence such

that Φ(πn,Wn) → ρ. We need to show that there exists (π0,W0) ∈ ˜Γ such that

Φ(π0,W0) = ρ and (πn,Wn) → (π0,W0) in (˜Γ,Ω).

Lemma 5. Let ρ ∈ Â⋊σ G. Suppose there is a sequence (πn,Wn) ∈ ˜Γ such

that Φ(πn,Wn) → ρ. Then there exists (π,W ) ∈ ˜Γ such that Φ(π,W ) = ρ and

πn → π.
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Proof. Let (π0,W0) ∈ ˜Γ such that Φ(π0,W0) = ρ. Then ker (πn ⊗ 1) →ker
(π0 ⊗ 1) in I(A). In particular, (

⋂

s∈G s(ker πn))n → ⋂

s∈G s(ker π0). Then by
Lemma 3, there is a subsequence nk and s0 ∈ G such that

ker πnk
→ s0(ker π0).

It follows that πnk
converges to π0 ◦σs0 . Since Φ(π0,W0) = Φ(π0 ◦σs0 , s0 ·W0),

then, after reindexing, we get that πn converges to π0 ◦ σs0 and Φ(π0 ◦ σs0 , s0 ·
W0) = ρ. �

Lemma 6. In the context of Lemma 5, suppose there is a sequence (πn,Wn) ∈
˜Γ and a point (π0,W0) ∈ ˜Γ such that Φ(πn,Wn) → Φ(π0,W0). If ̂A is Haus-

dorff, then there exists N such that Gπn
≤ Gπ0 and Wn ≤ W0|Gπn

for all

n ≥ N .

Proof. Since Φ(πn,Wn) → Φ(π0,W0), then by Lemma 5, πn → π0. Since
̂A is Hausdorff, then by the continuity of the group action there exists N

such that Gπn
≤ Gπ0 for all n ≥ N . To prove the second part of the claim,

suppose for contradiction that there exists a subsequence (πnk
,Wnk

) such that
Wnk

� W0|Gπnk
. Since G is finite, after passing to a subsequence, we may

assume that Gπn
= H for all n ∈ N. Further, since H2(H,T) is finite as well,

we may assume that ωπn
= ω and Wn = W � W0|H are also constant for all

n ∈ N. Then for each πn we may choose an ω-representation Vn of H such
that Φ(πn,W ) = (πn ⊗ 1, Vn ⊗ W ∗)G for all n ∈ N. Let (πn ⊗ 1, Vn ⊗ W ∗)
and (π0 ⊗ 1, V0 ⊗ W ∗

0 ) denote the covariant representations of (A,H, σ) and
(A,Gπ0 , σ) respectively, as defined in Equation 1.

Let (Vn ⊗ W ∗)Gπ0 denote the induced representation of Gπ0 . Since W �
W0|H , then by the Frobenius Reciprocity theorem the representation (Vn ⊗
W ∗)Gπ0 is disjoint from the representation V0⊗W ∗

0 (see Remark 7). Therefore,
for each n, there exists an xn ∈ C∗(Gπ0) such that (Vn ⊗W ∗)Gπ0 (xn) = 0 and
(V0⊗W ∗

0 )(xn) 6= 0. Since Gπ0 is finite, after passing to a subsequence, we may
assume that each (Vn ⊗W ∗)Gπ0 decomposes into the same direct sum of irre-
ducible representations up to multiplicity. Furthermore, (Vn⊗W ∗)Gπ0 (xn) = 0
if an only if ρ(xn) = 0 for all irreducible subrepresentations ρ of (Vn⊗W ∗)Gπ0 .
It follows that there exists an x0 ∈ C∗(Gπ0) such that (Vn ⊗W ∗)Gπ0 (x0) = 0
and (V0 ⊗W ∗

0 )(x0) 6= 0 for all n.

Since ̂A is Hausdorff there exist disjoint open sets N and M containing
the point π0 and the set {ri(ker π0)}ri∈S respectively, where S is the set of
representatives forGπ0\G which are not in Gπ0 . We claim that there exists a0 ∈
A such that π0(a0) 6= 0 and ρ(a0) = 0 for all ρ ∈ M . Suppose for contradiction
that π0(a0) = 0 whenever ρ(a0) = 0 for all ρ ∈ M . Then

⋂

ρ∈M (ker ρ) ⊆ ker π0

and ker π0 is in the closure of the set {ker ρ}ρ∈M in the hull-kernel topology.
It follows that π0 is in the closure of M which contradicts our choice of N and
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M . Define (a0 ⊗ x0) : G → A by

(a0 ⊗ x0)(t) =

{

a0x0(t) if t ∈ Gπ0

0 if t /∈ Gπ0 .

Recall that by induction in stages

Φ(πn,W ) = (πn ⊗ 1, Vn ⊗W ∗)G =

(

(πn ⊗ 1, Vn ⊗W ∗)Gπ0

)G

.

For each n, let Hn denote the Hilbert space corresponding to the representation
(πn ⊗ 1, Vn ⊗ W ∗)Gπ0 . Then the representation Φ(πn,W ) can be viewed as
acting on the direct sum ⊕riHn, where {ri} is a set of representatives for
Gπ0\G. In addition, Φ(πn) is the diagonal operator ⊕riri(πn ⊗ 1)Gπ0 and
Φ(Vn ⊗ W ∗) is a generalized permutation matrix with the 1 × 1 entry given
by (Vn ⊗ W ∗)Gπ0 (see [1]). Note that (πn ⊗ 1)Gπ0 = ⊕tt(πn ⊗ 1), where the
direct sum is taken over set of representatives for H\Gπ0 . Since πn → π0,
then ri(πn ⊗ 1)Gπ0 → ri[⊕tt(π0 ⊗ 1)] = ri[⊕H\Gπ0

(π0 ⊗ 1)]. Let N and M

be the disjoint open sets containing the point π0 and the set {ri(ker π0)}ri∈S

respectively and a0 ∈ A such that π0(a0) 6= 0 and ρ(a0) = 0 for all ρ ∈ M .
Since ri(πn ⊗ 1)Gπ0 → ⊕ri(π0 ⊗ 1), then, for each ri ∈ S, eventually ri(πn ⊗
1)Gπ0 (a0) = 0. It follows that Φ(πn)(a0) → (π0 ⊗ 1)(a0)

⊕

0. Then we get
that Φ(πn,W )(a0⊗x0) → (π0⊗1)(a0)(Vn⊗W ∗)Gπ0 (x0) = 0. Similarly, let H0

denote the Hilbert space corresponding to the representation (π0⊗1, V0⊗W ∗
0 ).

Then the representation Φ(π0,W0) can be viewed as acting on the direct sum
⊕riH0, where {ri} is a set of representatives for Gπ0\G. Likewise, Φ(π0) is the
diagonal operator ⊕riri(π0 ⊗ 1) and Φ(V0 ⊗W ∗

0 ) is a generalized permutation
matrix. Since Φ(π0)(a0) = (π0 ⊗ 1)(a0)

⊕

0, then Φ(π0,W0)(a0 ⊗ x0) = (π0 ⊗
1)(a0)(V0 ⊗ W ∗

0 )(x0) 6= 0. It follows that Φ(πn,Wn) does not converge to
Φ(π0,W0) which contradicts the hypothesis of the lemma. �

Remark 7. In the context of Lemma 6, by the Forbenius Reciprocity theorem
the representation (Vn⊗W ∗)Gπ0 is disjoint from V0⊗W ∗

0 if and only if Vn⊗W ∗ is
disjoint from (V0⊗W ∗

0 )|H . Since G is finite we have a direct sum decomposition
Vn⊗W ∗ = ⊕i(vni

⊗W ∗), where each vni
is an irreducible subrepresentation of

Vn. Similarly, we can decompose (V0 ⊗W ∗
0 )|H into a direct sum of irreducible

representations ⊕i,j(v0j ⊗ w0k), where each v0j is an irreducible subrepresen-
tation of V0|H and each w0k is an irreducible subrepresentation of W ∗

0 |H . If
Vn ⊗ W ∗ is not disjoint from (V0 ⊗ W ∗

0 )|H , then (vni
⊗ W ∗) is equivalent to

(v0j ⊗w0k) for some i, j, k. It would follow that W ∗
0 is equivalent w0k for some

k.

We summarize our results in the following theorem.

Theorem 8. Let G be a finite group acting on a separable C∗-algebra A. Let

Φ : Â⋊σ G → G\˜Γ be the canonical bijection. Then the map Φ is continuous.

Moreover, if ̂A is Hausdorff, then Φ is in fact a homeomorphism.
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