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ON THE TOPOLOGY OF THE DUAL SPACE OF CROSSED
PRODUCT C*-ALGEBRAS WITH FINITE GROUPS

Firuz KAMALOV

ABSTRACT. In this note we extend our previous result about the structure
of the dual of a crossed product C*-algebra A X, G, when G is a finite
group. We consider the space I which consists of pairs of irreducible rep-
resentations of A and irreducible projective representations of subgroups
of G. Our goal is to endow T with a topology so that the orbit space G\f
is homeomorphic to the dual of A X, G. In particular, we will show that
if A is Hausdorff then G\f is homeomorphic to A/NJ\G.

1. Introduction

The dual space of a crossed product A x, G has a rich and deep structure.
Describing this structure in a general setting is a difficult task. To gain any
meaningful insight about A/NU\G one has had to impose various conditions on
A and G [1, 2, 4, 5, 7, 8]. Recently Echterhoff and Williams gave a concrete
description of the dual space in the case of a strictly proper action on a contin-
uous trace C*-algebra [3]. In this paper, we investigate the topology of A/><1—g\G
when G is finite. -

The first step in understanding the structure of A X, G is to describe it as
a set. Let T be the set of all pairs (7, W), where m € A and W is an irreducible
projective representation of G associated to a certain 2-cocycle w,. There
exists a natural action of G on I'. If G is finite, then A/><IU\G corresponds
bijectively, via a certain map ®, to the orbit space G\I" as a set [4]. The next
step is to equip I' with a suitable topology so that A/NU\G is homeomorphic
to G\I'. Indeed, this is the main goal of the paper. We will show that if Ais
Hausdorff, then G\f is homeomorphic to A/xl—g\G.

We define the topology on G\I" based on the approach used in [3]. In Propo-
sition 4, we show that the map @ is continuous. In Lemma 5 and Lemma 6, we
show that if A is a Hausdorff space, then ® is a closed map. Our main result
is stated in Theorem 8.
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2. Preliminaries

In this section, we give a brief overview of the correspondence between the
set I' and A/><1—(,\G. We refer the reader to [4] for further details. Let G be a
finite group acting on a C*-algebra A and let (A, G,0) be the corresponding
dynamical system. We will assume throughout this paper that A is a separable
C*-algebra. The action of G on A induces an action of G on A given by
[7] — [moo,) for all [1] € Aand s € G. Let G denote the stability group at each
[7] € A. Then for each s € G there is a unitary V; such that VomV)* = moos.
The map s +— V; defines a projective representation of G,. Let w be the
multiplier of the projective representation V. Let é,r denote the set of all
irreducible w-representations of G. Then for each W € @W we can construct
a corresponding covariant representation of (A4, Gy, o)

1) (7@ 1, V@ W),

Let I = {(m,W) : 7 € A,W € G.}. As shown above, for each (m, W) €
T, there exists a representation of (A4,Gr,0). Recall that we can induce a
representation (,U) of (4, G, o) to a representation (7, U)% of (A, G, o) via
induced representations [6]. Thus we obtain a map ® from I' into the set of
equivalence classes of irreducible covariant representations of (A, G, o) defined

by
(2) O(m, W) = (1@ L, VO W*)C.

Let T be the set of all equivalence classes in I'. Then the map & factors
through from [ into A/xlg\G. Moreover, ® is surjective.

There exists a natural action of G on the set I'. For each s € G, we have
Groos, = 8 'Grs. So given a projective representation W & @W we can con-
struct a projective representation of Gros, by (s- W)(s7lts) = W(t) for all
t € G;. Thus we can define the action of G on I' by

(m,W) = (moos,s-W).

Let G\f be the set of orbits in I' under the group action. Then the map ®
defines a bijective correspondence between G\I' and the dual space A x, G [4].

3. Topology on r

We endow the set I' with the same topology as in [3, Theorem 4.1]. This
topology is defined in terms of convergent sequences.

Definition 1. Let (m,, W,,) be a sequence in I'. We say that (,,, W,,) converges
to (mp, Wo) € I with respect to the topology € if

(a) m, — mo

(b) there is N € N such that G, < Gr, and W,, <Wylg, foralln> N.
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We will show that the map & : (f, Q) — A/NG\G is continuous. Furthermore,
we will show that if A is Hausdorff, then ® is a closed map. First, we need a
few of ancillary results.

Lemma 2. Let (A,G,0) be a dynamical system where G is finite. Let Q be in
Prim(A). Suppose there is a sequence P, € Prim(A) such that ((\,cq $Pn)n
converges to (\,cq Q. Then there exists a subsequence Py, and so € G such
that P,, converges to so@ for some so € G.

Proof. Since ((\,;cq 5Pn)n converges to [, . sQ it follows that
() sP) <€ ) s@.
n seG s€eG

Let J =), Pn. Then (,.;sJ € Q. Since Q is a prime ideal, then soJ C Q
for some sy € G. In particular, [, soP, € Q. Let I be an ideal of A such that
I ¢ Q and let Oy = {I' € Prim(A) : I ¢ I'} denote the corresponding open
set in Prim(A). Suppose, for contradiction, that soP, ¢ O for all n. Then
I C 5P, for all n and I C Q. It follows that for every open set O containing
@ there exists so Py, such that soP,, € Or. O

The next tool we need is the Forbenius Reciprocity Theorem for crossed
products. The proof of the theorem is similar to the classical proof for the case
of groups.

Theorem 3 (Frobenius Reciprocity). Let A X, G be a crossed product where

G is finite. Let H be a subgroup of G. Let wx,U be a representation of Ax, G

on a Hilbert space H and 6 X, A a representation of A X, H on KC. Then
Hom (M, KY) = Homax, (M, K).

In this isomorphism the A X, G-module homomorphism © : H — K% corre-
sponds to the A X, H-module homomorphism 0 : H — K, by the following
formulae

0(§) =O(w)(1), O(w)(g) =0(U(g)w).
Proof. Suppose that © is an A x, G-module homomorphism. We will show
that 6 is an A x, H-module homomorphism. Indeed, for each a € A/h € H
and ¢ € H, we have

0(n(a)U(R)€) = O(n(a)U(R)E)(1)
= (09(@“(e(8)(1)
= 0(a)O()(h)
= d(@)A(h)(B()(1))
= 0(a)A(h)0(&)-

Conversely, suppose that 6 is an A x, H-module homomorphism. Then, for
eacha € A,{ € H and g,s € G, we have

O(m(a)U(9)§)(s) = 0(U(s)m(a)U(9)S)
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= (69(a)X“(9)©(€)(s). O

Induced representations give us a natural map from the set of representations
of A x, H to that of A x, G. There exists a corresponding map Ind$ :
I(A %, H) = Z(A %, G) between the ideal spaces. We equip Z(A x, G) with
the topology with subbasic open sets indexed by J € Z(A %, G) given by

Oyj={I€Z(Ax,G):JEI}.
The map Indg is continuous with respect to the above topology [8, §5.3].

Proposition 4. Let (A,G,0) be a dynamical system where G is finite. Let
O :(1,9Q) = Ax, G be as above. Then ® is a continuous map.

Proof. Let (m,, W,,) be a sequence in r converging to (mg, Wp) € I'. Denote
(Fn, Wp) = (mn ® 1,V,, ® W) to be the corresponding representations of
(A,Gy,,0). Since G is finite we can assume G, = H < G, and W, =
W < Wy|g for all n. Then 7, X, W, converge to Ty X W. In particular,
ker(T, X, Wp) — ker(%o o W) in Prim(A x, H). Since the map Indg’ro is
continuous it follows that

Indg"o ker (7, Xo W) — Indg"o ker (7o x5 W).

Also since T ¥y W < (Fo ¥ Wo)|ax,n, then by the Frobenius Theorem
o Xo WO < Indg’”’ (fo X W) Then

Indf{ro ker (7, Xy W) — ker(Tg x5 Wo).
Therefore,
Indgker(ﬁn o W) — Indg7ro ker (7o x5 Wo).

It follows that ®(m,, W,) converges to ®(mo, Wp). O

It remains to show that ® is a closed map. Let V' be a closed set in T and
let p € A%, G be a limit point of ®(V'). Let (m,, Wy,) € V be a sequence such
that ®(m,, W,,) — p. We need to show that there exists (o, Wo) € I such that
®(mo, Wo) = p and (m,, Wy,) — (mo, Wo) in (T, Q).

Lemma 5. Let p € A/>40\G. Suppose there is a sequence (w,, Wy,) € T such

that ®(mn, Wy) — p. Then there exists (w, W) € I such that ®(x, W) = p and
TTn, —> T.
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Proof. Let (mo,Wp) € T such that ®(m, W) = p. Then ker (m, ® 1) —ker
(mo ®1) in Z(A). In particular, ((,cq s(ker m,))n — (\,eq s(ker m). Then by
Lemma 3, there is a subsequence nj and sy € G such that

ker m,, — so(ker mp).

It follows that 7, converges to mgoos,. Since ®(my, W) = ®(mpo0s,, So-Wo),
then, after reindexing, we get that m, converges to 7y o o5, and (w0 o, So
Wo) = p. u

Lemma 6. In the context of Lemma 5, suppose there is a sequence (my, Wp,) €
T and a point (w9, Wy) € T’ such that ®(w,, W,,) = ®(mg, Wy). If A is Haus-
dorff, then there exists N such that Gr, < Gr, and W, < WO|GM for all

n>N.

Proof. Since ®(m,, W,,) — ®(mg, Wy), then by Lemma 5, m, — m. Since
A s Hausdorff, then by the continuity of the group action there exists N
such that G, < G, for all n > N. To prove the second part of the claim,
suppose for contradiction that there exists a subsequence (m,, , Wy, ) such that
Wh, £ WO|GMk. Since G is finite, after passing to a subsequence, we may

assume that G, = H for all n € N. Further, since H?(H, T) is finite as well,
we may assume that w,, =w and W,, =W jé Wo|m are also constant for all
n € N. Then for each m, we may choose an w-representation V;, of H such
that ®(m,, W) = (1, ® 1,V,, @ W*)¥ for all n € N. Let (1, ® 1,V,, @ W*)
and (mo ® 1,V ® W() denote the covariant representations of (A, H, o) and
(A, G, ,0) respectively, as defined in Equation 1.

Let (V,, ® W*)%=0 denote the induced representation of G,. Since W £
Wholm, then by the Frobenius Reciprocity theorem the representation (V,, ®
W*)%o is disjoint from the representation Vo @ W (see Remark 7). Therefore,
for each n, there exists an x,, € C*(G,) such that (V,, ® W*)%o (z,,) = 0 and
(Vo @ W§)(xn) # 0. Since Gy, is finite, after passing to a subsequence, we may
assume that each (V;, ® W*)%m0 decomposes into the same direct sum of irre-
ducible representations up to multiplicity. Furthermore, (V;, @ W*)%o (x,,) = 0
if an only if p(z,,) = 0 for all irreducible subrepresentations p of (V;, @ W*)&mo.,
It follows that there exists an xg € C*(Gy,) such that (V;, @ W*)%o (2) = 0
and (Vo @ W) (zo) # 0 for all n.

Since A is Hausdorff there exist disjoint open sets N and M containing
the point my and the set {r;(ker m)}r,es respectively, where S is the set of
representatives for G, \G which are not in G,. We claim that there exists ag €
A such that mg(ag) # 0 and p(ag) = 0 for all p € M. Suppose for contradiction
that mo(ao) = 0 whenever p(ag) = 0 for all p € M. Then (), (ker p) C ker mo
and ker 7 is in the closure of the set {ker p},cns in the hull-kernel topology.
It follows that 7 is in the closure of M which contradicts our choice of N and
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M. Define (ap ®@ z9) : G — A by

aoxo(t) ifte Gp,
(ao®zo)(t){ 0 0 if t ¢ Gry.

Recall that by induction in stages

G
O(mp, W) = (1, ®1,V,, @ W*)¢ = ((wn LV, ® W*)Gm) .

For each n, let H,, denote the Hilbert space corresponding to the representation
(1, ® 1,V,, @ W*)Go. Then the representation ®(m,, W) can be viewed as
acting on the direct sum @®,,H,, where {r;} is a set of representatives for
G, \G. In addition, ®(7,) is the diagonal operator @&,,7;(m, ® 1)%m and
O(V,, ® W*) is a generalized permutation matrix with the 1 x 1 entry given
by (V,, @ W*)%o (see [1]). Note that (7, ® 1)%0 = @;t(m, ® 1), where the
direct sum is taken over set of representatives for H\Gr,. Since m, — mo,
then 7’1'(7'(” & ].)G"U — Ti[@tt(ﬂo o] ].)] = Ti[@H\Gﬂ-O (7T0 o] ].)] Let N and M
be the disjoint open sets containing the point 7y and the set {r;(ker m9)},,es
respectively and ag € A such that mo(ag) # 0 and p(ag) = 0 for all p € M.
Since 7;(m, ® 1)%m0 — @r;(mo ® 1), then, for each r; € S, eventually r;(7, ®
1)%0(ag) = 0. Tt follows that ®(m,)(ag) — (mo ® 1)(ag) @ 0. Then we get
that ®(m,,, W) (a0 ®@x0) — (mo@1)(ag)(V;, @ W*)Gro (24) = 0. Similarly, let Ho
denote the Hilbert space corresponding to the representation (mo® 1, Vo @ W().
Then the representation ®(mg, Wy) can be viewed as acting on the direct sum
@, Ho, where {r;} is a set of representatives for G,,\G. Likewise, ®(m) is the
diagonal operator &,,r;(mo ® 1) and ®(Vo @ W) is a generalized permutation
matrix. Since ®(mg)(ag) = (7o ® 1)(ag) P 0, then ®(my, Wo)(ag ® x¢) = (7o ®
1)(ao)(Vo ® W{§)(xo) # 0. It follows that ®(m,, W,,) does not converge to
®(mp, Wo) which contradicts the hypothesis of the lemma. O

Remark 7. In the context of Lemma 6, by the Forbenius Reciprocity theorem
the representation (V,@W*)%o is disjoint from Vo@W¢ if and only if V,,@W* is
disjoint from (Vo@W;)|m. Since G is finite we have a direct sum decomposition
Vo @W* = @;(v,, ® W*), where each vy, is an irreducible subrepresentation of
V... Similarly, we can decompose (Vo ® W{)|n into a direct sum of irreducible
representations @; j(vo, ® wo, ), where each v, is an irreducible subrepresen-
tation of Vy|g and each wy, is an irreducible subrepresentation of Wi|g. If
V., ® W* is not disjoint from (Vo @ Wi)|m, then (v,, ® W*) is equivalent to
(vo; ® wo,,) for some i, j, k. It would follow that Wy is equivalent wy, for some
k.

We summarize our results in the following theorem.

Theorem 8. Let G be a finite group acting on a separable C*-algebra A. Let
®: Ax, G— G\I be the canonical bijection. Then the map ® is continuous.
Moreover, if A is Hausdorff, then ® is in fact a homeomorphism.
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