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BRACKET FUNCTIONS ON GROUPOIDS

Paul J. Allen, Hee Sik Kim, and Joseph Neggers

Abstract. In this paper, we introduce an operation denoted by [Bre],

a bracket operation, which maps an arbitrary groupoid (X, ∗) on a set X
to another groupoid (X, •) = [Bre](X, ∗) which on groups corresponds to

sending a pair of elements (x, y) of X to its commutator xyx−1y−1. When

applied to classes such as d-algebras, BCK-algebras, a variety of results
is obtained indicating that this construction is more generally useful than

merely for groups where it is of fundamental importance.

1. Introduction

The notions of BCK-algebras and BCI-algebras were introduced by Y.
Imai and K. Iséki ([5, 6]). The class of BCK-algebras is a proper subclass
of the class of BCI-algebras. We refer useful textbooks for BCK-algebras
and BCI-algebras to [4, 11, 16]. J. Neggers and H. S. Kim [13] introduced the
notion of d-algebras which is another useful generalization of BCK-algebras,
and then investigated several relations between d-algebras and BCK-algebras
as well as several other relations between d-algebras and oriented digraphs. J.
Neggers and H. S. Kim introduced and investigated a class of algebras, called
a B-algebra [14], which is related to several classes of algebras of interest such
as BCH/BCI/BCK-algebras and which seems to have rather nice properties
without being excessively complicated otherwise. H. S. Kim and J. Neggers
[9] introduced the notion of Bin(X) and obtained a semigroup structure. H.
F. Fayoumi [3] introduced the notion of the center ZBin(X) in the semigroup
Bin(X) of all binary systems on a set X, and showed that a groupoid (X, •) ∈
ZBin(X) if and only if it is a locally-zero groupoid.

In this paper, we introduce an operation denoted by [Bre], a bracket opera-
tion, which maps an arbitrary groupoid (X, ∗) on a set X to another groupoid
(X, •) = [Bre](X, ∗) which on groups corresponds to sending a pair of ele-
ments (x, y) of X to its commutator xyx−1y−1. When applied to classes such
as d-algebras, BCK-algebras, a variety of results is obtained indicating that
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this construction is more generally useful than merely for groups where it is of
fundamental importance.

2. Preliminaries

A d-algebra [13] is a non-empty set X with a constant 0 and a binary oper-
ation “ ∗ ” satisfying the following axioms:

(I) x ∗ x = 0,
(II) 0 ∗ x = 0,

(III) x ∗ y = 0 and y ∗ x = 0 imply x = y

for all x, y ∈ X. For more information on d-algebras we refer to [2, 7, 10,12].
A B-algebra [14] is a non-empty set X with a constant 0 and a binary

operation “∗” satisfying the following axioms:

(I) x ∗ x = 0,
(IV) x ∗ 0 = x,
(V) (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y))

for all x, y, z in X. A B-algebra (X, ∗, 0) is said to be 0-commutative if x ∗ (0 ∗
y) = y ∗ (0 ∗ x) for all x, y ∈ X. For more information on B-algebras, we refer
to [8, 15].

Given a non-empty setX, two groupoids (X, ∗), (X, •) are said to be Smaran-
dache disjoint [1] if X has both an (X, ∗)-structure and an (X, •)-structure,
then |X| = 1. The notion of “Smarandache disjoint” means that, given a
groupoid (X, ∗), if we add another groupoid (X, •) to it, then it becomes a
trivial groupoid.

Given a non-empty set X, we let Bin(X) denote the collection of all group-
oids (X, ∗), where ∗ : X × X → X is a map and where ∗(x, y) is written in
the usual product form. Given elements (X, ∗) and (X, •) of Bin(X), define a
product “�” on these groupoids as follows:

(X, ∗)� (X, •) = (X,�)

where

x� y = (x ∗ y) • (y ∗ x)

for any x, y ∈ X. Using that notion, H. S. Kim and J. Neggers proved the
following theorem.

Theorem 2.1 ([9]). (Bin(X), �) is a semigroup, i.e., the operation “ �” as
defined in general is associative. Furthermore, the left-zero-semigroup is the
identity for this operation.

3. Bracket image algebras

Given a set X, let [Bre] : Bin(X) → Bin(X) be defined by [Bre]((X, ∗))
:= (X, •), where for any e, x, y ∈ X we have

x • y := (x ∗ (e ∗ y)) ∗ (y ∗ (e ∗ x)).(1)
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We denote x • y by [x, y]e for specific mention. We may have other bracket
mappings. For example, [x, y]e = (x∗y)∗((e∗x)∗(e∗y)), [x, y]e = (x∗y)∗((e∗
y) ∗ x) can be useful functions to investigate some properties in this fashion.

Let (X, ·, e) be a group and (X, ∗, e) be its associated B-algebra, where
x ∗ y = x · y−1. Then we determine

x • y = (x(ey−1)−1)(y(ex−1)−1)−1 = xyx−1y−1,(2)

i.e., it is the standard commutator of the group theory.
The advantage of formula (1) is that it extends the notion of “commutator”

quite enormously to arbitrary groupoids. In fact, we no longer need to deal
with inverses directly at all if we use formula (1) as our point of departure. We
consider [Bre] to be a bracket function on Bin(X). Obviously, if (X, ∗) is any
groupoid whatsoever, we may define [Bre](x, y) = (x ∗ (e ∗ y)) ∗ (y ∗ (e ∗ x)) =
[x, y]e = x•y for any e ∈ X. Thus we may define a mapping [Bre] : Bin(X)→
Bin(X) as a mapping [Bre]((X, ∗)) = (X, •) where x•y = [Bre](x, y) as above.
We call (X, •) a e-bracket image algebra of a groupoid (X, ∗).

Proposition 3.1. The e-bracket image algebra (X, •) of a left-zero-semigroup
(X, ∗) is the left-zero-semigroup (X, ∗) itself for any e ∈ X, i.e., [Bre]((X, ∗)) =
(X, ∗).

Proof. For any x, y ∈ X, we have x • y = (x ∗ (e ∗ y)) ∗ (y ∗ (e ∗ x)) = x ∗ y = x,
proving that [Bre]((X, ∗)) = (X, ∗). �

Proposition 3.2. The e-bracket image algebra (X, •) of a right-zero-semigroup
(X, ∗) is a left-zero-semigroup for any e ∈ X.

Proof. For any x, y ∈ X, we have x•y = (x∗(e∗y))∗(y∗(e∗x)) = (x∗y)∗(y∗x) =
y ∗ x = x, showing that (X, •) is a left-zero-semigroup. �

Proposition 3.3. The 0-bracket image algebra [Bre]((X, ∗)) = (X, •) of a
BCK-algebra (X, ∗, 0) is the BCK-algebra (X, ∗, 0) itself.

Proof. Since (X, ∗, 0) is a BCK-algebra, we have x ∗ 0 = x for all x ∈ X. It
follows that x • y = (x ∗ (0 ∗ y)) ∗ (y ∗ (0 ∗ x)) = (x ∗ 0) ∗ (y ∗ 0) = x ∗ y, proving
the proposition. �

An algebra, e.g., one of the left-zero-semigroups or a BCK-algebra (when
e = 0) as described above, is said to be a bracket-fixed algebra.

Theorem 3.4. There is no non-trivial group (X, ·) with identity e which is
also an e-bracket-fixed algebra.

Proof. Assume that there is a non-trivial group (X, ·) with identity e which is
also an e-bracket-fixed algebra. Then x · y = (x · (e · y)) · (y · (e · x)) and hence
y = y2 · x since (X, ·) is a group, which shows that y · x = e for all x, y ∈ X.
If we take y := e, then x = e · x = e for all x ∈ X, proving that X = 1, a
contradiction. �
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Theorem 3.4 showed that the class of e-bracket-fixed algebras and the class
of groups with identity e are Smarandache disjoint.

Proposition 3.5. If (X, ∗, 0) is a d-algebra with (x ∗ 0) ∗ (y ∗ 0) = x ∗ y for
any x, y ∈ X, then its 0-bracket image algebra [Br0]((X, ∗)) = (X, •) is a
bracket-fixed algebra.

Proof. If (X, ∗, 0) is a d-algebra, then for any x, y ∈ X, we have x • y =
(x ∗ (0 ∗ y)) ∗ (y ∗ (0 ∗ x)) = (x ∗ 0) ∗ (y ∗ 0) = x ∗ y. �

If (X, ∗, 0) is an edge d-algebra or a BCK-algebra, then x ∗ 0 = x for all
x ∈ X, and hence Proposition 3.5 follows.

Proposition 3.6. Let (X, ∗, 0) be a d-algebra. If we assume that (x ∗ 0) ∗ (y ∗
0) = 0 implies x ∗ y = 0 for any x, y ∈ X, then its 0-bracket image algebra
(X, •) = [Br0]((X, ∗)) is also a d-algebra.

Proof. Since (X, ∗, 0) is a d-algebra, we have

x • y = (x ∗ (0 ∗ y)) ∗ (y ∗ (0 ∗ x)) = (x ∗ 0) ∗ (y ∗ 0).(3)

If we let y := x in (3), then x • x = 0, and if we let x := 0, y := x in (3), then
0•x = 0. Suppose that x•y = y•x = 0. Then (x∗0)∗(y∗0) = (y∗0)∗(x∗0) = 0
and hence x ∗ y = 0 = y ∗ x by assumption. Since (X, ∗, 0) is a d-algebra, we
obtain x = y, proving that (X, •) is a d-algebra. �

Note that the condition “(x ∗ 0) ∗ (y ∗ 0) = x ∗ y” holds for BCK-algebras.

Theorem 3.7. Let (K,+, ·) be a field of characteristic zero. Define a binary
operation “∗” on K by x ∗ y := xn(x − y),∀x, y ∈ K, where n is even (≥ 2).
Then its 0-bracket image algebra (K, •) = [Br0]((K, ∗)) is a d-algebra.

Proof. We claim that (K, ∗, 0) is a d-algebra. In fact, x ∗ x = xn(x − x) = 0
and 0 ∗ x = 0n(0− x) = 0 for any x ∈ K. Assume x ∗ y = 0 = y ∗ x and x 6= y.
Then xn(x − y) = 0 = yn(y − x). It follows that xn = yn = 0. Since K is of
characteristic zero, we obtain x = y, a contradiction. This shows that (K, ∗, 0)
is a d-algebra.

Since x•y = (x∗(0∗y))∗(y∗(0∗x)) = xn(n+1)(xn+1−yn+1) for any x, y ∈ K,
we have x • x = 0 • x = 0 for all x ∈ K. Assume x • y = y • x = 0. Then
xn(n+1)[xn+1 − yn+1] = 0 = yn(n+1)[yn+1 − xn+1]. Since K is of characteristic
zero, we obtain x = 0 = y, proving that (K, •, 0) is a d-algebra. �

The assumption “xn+1 = yn+1,∀x, y ∈ K =⇒ x = y” does not hold in
general. If we define a binary operation “∗” on the set R of all real numbers
by x ∗ y := x(x − y), for any x, y ∈ R, then (R, •) is not a d-algebra, since
x2 = y2 does not imply x = y.

In Proposition 3.3, it is shown that every BCK-algebra is a 0-bracket-fixed
algebra. We introduce a bracket-fixed d-algebra, which is not a BCK-algebra.
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Example 3.8. ConsiderX := [0,∞) and x∗y :=
√
x|
√
x−√y|, where x, y ∈ X.

Then x ∗ x = 0 ∗ x = 0. Also, if x ∗ y = y ∗ x = 0, then
√
x 6= √y means√

x =
√
y = 0, and x = y. Thus (X, ∗, 0) is a d-algebra. Since x ∗ 0 = x,

we have (x ∗ 0) ∗ (y ∗ 0) = x ∗ y. By Proposition 3.3, it is a 0-bracket-fixed
algebra. If we let x := 9, y := 4 in (x ∗ (x ∗ y)) ∗ y, then (9 ∗ (9 ∗ 4)) ∗ 4 =√

9− 3
√

3
∣∣√9− 3

√
3− 2

∣∣ 6= 0, so that the d-algebra is not a BCK-algebra.

Note that not every d-algebra is a 0-bracket-fixed algebra, even if its 0-
bracket image algebra is a d-algebra.

Example 3.9. Let R be the set of all real numbers and let x ∗ y := x2(x− y)
for any x, y ∈ R. Then x • y = (x ∗ 0) ∗ (y ∗ 0) = x3 ∗ y3 = x6(x3 − y3) yields a
d-algebra (X, •, 0) which is not the same as the original d-algebra.

4. B-algebras and e-bracket abelian groupoids

From the connection between B-algebras and groups, it is evident that the
condition (X, •, e) is an abelian group is tantamount to saying that if (X, ∗, e)
is an e-commutative B-algebra, then we shall prove that x • y = (x ∗ (e ∗ y)) ∗
(y∗(e∗x)) = e for all x, y ∈ X, i.e., (X, •) is a trivial groupoid (See Proposition
4.2). Thus we consider (X, ∗) to be e-bracket-abelian if [Bre]((X, ∗)) = (X, •)
is e-trivial, i.e., x • y = e for all x, y ∈ X. A groupoid (X, ∗) is said to be
e-bracket-almost-abelian if [Bre]((X, ∗)) = (X, •) is trivial, i.e., for some t ∈ X,
x • y = t for all x, y ∈ X. An e-bracket-almost-abelian groupoid becomes an
e-bracket-abelian groupoid when t = e.

Proposition 4.1. Let (X, ∗, e) be an e-commutative B-algebra. Then it is
e-bracket-abelian.

Proof. If (X, ∗, e) is a 0-commutative B-algebra, then, for any x, y ∈ X, we
have x•y = (x∗(e∗y))∗(y∗(e∗x)) = (x∗(e∗y))∗(x∗(e∗y)) = e, which shows
that (X, •) is a trivial groupoid, and hence (X, ∗) is e-bracket-abelian. �

Proposition 4.2. If a B-algebra (X, ∗, e) is e-bracket-almost-abelian, then
(X, ∗) is e-bracket-abelian and its associated group (X,�) is abelian.

Proof. If a B-algebra (X, ∗, e) is e-bracket-almost-abelian, then there is an
element t ∈ X such that x • y = t for any x, y ∈ X, i.e.,

x • y = (x ∗ (e ∗ y)) ∗ (y ∗ (e ∗ x)) = t.(4)

If we let y := x in (4), then t = e, i.e., (X, ∗, e) is e-bracket-abelian. If (X,�, e)
is its associated group, then e∗y = e�y−1 = y−1, x∗(e∗y) = x�(y−1)−1 = x�y
and hence e = t = x • y = (x ∗ (e ∗ y)) ∗ (y ∗ (e ∗ x)) = (x � y) ∗ (y • x) =
(x • y) • (y • x)−1. It follows that x • y = y • x for any x, y ∈ X, proving that
(X,�) is commutative. �
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5. Mappings [Brα](x, y)

Given a groupoid (X, ∗, e), we consider a mapping [Brα] : X × X → X
defined by

[Brα](x, y) := (x ∗ (α ∗ y)) ∗ (y ∗ (α ∗ x)),(5)

where α ∈ X.

Proposition 5.1. If (X, ∗, e) is a B-algebra, then [Bre](x, y) = [Brα](x, y) for
any α ∈ X where x, y ∈ X.

Proof. If we use the group structure associated with (X, ∗, e), then x∗ (α∗y) =
x·(α·y−1)−1 = x·y·α−1, and (x∗(α∗y))∗(y∗(α∗x)) = (x·y·α−1)·(y·x·α−1)−1 =
(xyα−1) · (αx−1y−1) = x · y · x−1 · y−1 = (x ∗ (e ∗ y)) ∗ (y ∗ (e ∗ x)), i.e., we have
Bre(x, y) = Brα(x, y). �

By Proposition 5.1, we can see that the class of groupoids (X, ∗) such that
[Bre](x, y) = [Brf ](x, y) for all e, f ∈ X where x, y ∈ X, contains the class of
B-algebras. We note next that this class of groupoids is Smarandache disjoint
from the class of d-algebras.

Theorem 5.2. The d-algebras and the groupoids (X, ∗) such that [Bre](x, y) =
[Brf ](x, y) for all e, f ∈ X where x, y ∈ X are Smarandache disjoint.

Proof. Let (X, ∗, 0) be a d-algebra with [Bre](x, y) = [Brf ](x, y) for all e, f ∈ X
where x, y ∈ X. Then we have, for all x, y ∈ X,

(x ∗ (e ∗ y)) ∗ (y ∗ (e ∗ x)) = (x ∗ (f ∗ y)) ∗ (y ∗ (f ∗ x)).(6)

If we let e := 0 in (6), then

(x ∗ 0) ∗ (y ∗ 0) = (x ∗ (f ∗ y)) ∗ (y ∗ (f ∗ x)).(7)

If we let y := 0 in (7), then

(x ∗ 0) ∗ 0 = (x ∗ (f ∗ 0)) ∗ 0.(8)

If we let x := f ∗ 0 in (8), then

((f ∗ 0) ∗ 0) ∗ 0 = 0 ∗ 0 = 0(9)

so that (f ∗ 0) ∗ 0 = 0, f ∗ 0 = 0 and f = 0. But f is arbitrary, we conclude
|X| = 1. This proves the theorem. �

6. Comments

In this paper we have developed a theory of what we have called bracket
functions as a generalization of the theory of commutators on groups. The
initial results prove to be interesting and highly non-trivial for several classes
of algebras other than groups, viz., the class of d-algebras (containing the class
of BCK-algebras and the class of B-algebras which again behaves somewhat
differently than the class of groups as (indirectly) illustrated by Theorem 3.4.
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[6] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon.

23 (1978/79), no. 1, 1–26.
[7] Y. B. Jun, J. Neggers, and H. S. Kim, Fuzzy d-ideals of d-algebras, J. Fuzzy Math. 8

(2000), no. 1, 123–130.

[8] C. B. Kim and H. S. Kim, Another axiomatization of B-algebras, Demonstratio Math.
41 (2008), no. 2, 259–262.

[9] H. S. Kim and J. Neggers, The semigroups of binary systems and some perspectives,
Bull. Korean Math. Soc. 45 (2008), no. 4, 651–661.

[10] Y. C. Lee and H. S. Kim, On d∗-subalgebras of d-transitive d∗-algebras, Math. Slovaca

49 (1999), no. 1, 27–33.
[11] J. Meng and Y. B. Jun, BCK-Algebras, Kyung Moon Sa, Seoul, 1994.

[12] J. Neggers, Y. B. Jun, and H. S. Kim, On d-ideals in d-algebras, Math. Slovaca 49

(1999), no. 3, 243–251.
[13] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), no. 1, 19–26.

[14] , On B-algebras, Mat. Vesnik 54 (2002), no. 1-2, 21–29.

[15] A. Walendziak, Some axiomatizations of B-algebras, Math. Slovaca 56 (2006), no. 3,
301–306.

[16] H. Yisheng, BCI-Algebra, Science Press, Beijing, 2006.

Paul J. Allen
Department of Mathematics

University of Alabama

Tuscaloosa, AL 35487-0350, USA
Email address: pallen@ua.edu

Hee Sik Kim
Research Institute for Natural Sci.

Department of Mathematics

Hanyang University
Seoul 04763, Korea

Email address: heekim@hanyang.ac.kr

Joseph Neggers

Department of Mathematics

University of Alabama
Tuscaloosa, AL 35487-0350, USA

Email address: jneggers@ua.edu


