References
- J. Agler and M. Stankus, m-isometric transformations of Hilbert space. I, Integral Equa-tions and Operator Theory 21 (1995), no. 4, 383-429. https://doi.org/10.1007/BF01222016
- J. Agler and M. Stankus, m-isometric transformations of Hilbert space. II, Integral Equations and Oper-ator Theory 23 (1995), no. 1, 1-48. https://doi.org/10.1007/BF01261201
- J. Agler and M. Stankus, m-isometric transformations of Hilbert space. III, Integral Equations and Op-erator Theory 24 (1996), no. 4, 379-421. https://doi.org/10.1007/BF01191619
- F. Bayart, m-isometries on Banach spaces, Math. Nachr. 284 (2011), no. 17-18, 2141-2147. https://doi.org/10.1002/mana.200910029
- E. Boasso, On the Moore-Penrose inverse, EP Banach space operators, and EP Banach algebra elements, J. Math. Anal. Appl. 339 (2008), no. 2, 1003-1014. https://doi.org/10.1016/j.jmaa.2007.07.059
- F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and Elements of Normed Algebras, Cambridge Univ. Press, London, 1971.
- A. A. Bourhim, M. Burgos, and V. S. Shulman, Linear maps preserving the minimum and reduced minimum moduli, J. Funct. Anal. 285 (2010), no. 1, 50-66.
- A. Bourhim and M. Mabrouk, Numerical radius and product of elements in C*-algebras, Linear Multilinear Algebra 65 (2017), no. 6, 1108-1116. https://doi.org/10.1080/03081087.2016.1228818
- A. Browder, On Bernstein's inequality and the norm of hermitian operators, Amer. Math. Monthly 78 (1971), no. 8, 871-873. https://doi.org/10.2307/2316478
- M. Fernandez-Miranda and J. PH. Labrousse, Moore-penrose inverses and finite range elements in a C*-algebra, Rev. Roumaine Math. Pures Appl. 45 (2000), 609-630.
- T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1996.
- M. Mbekhta, Conorme et inverse generalise dans les C*-algebres, Canad. Math. Bull. 35 (1995), no. 4, 515-522. https://doi.org/10.4153/CMB-1992-068-8
- M. Mbekhta, Partial isometries and generalized inverses, Acta. Sci. Math. (Szeged) 70 (2004), no. 3-4, 767-781.
- D. Mosic and D. S. Djordjevic, Partial isometries and EP elements in Banach algebras, Abstr. Appl. Anal. 2011 (2011), Art. ID 540212, 9 pp.
- R. Penrose, A generalized inverse for matrices, Mathematical proceedings of the Cam-bridge philosophical society, vol. 51, pp. 406-413, Cambridge Univ Press, 1955.
- C. Schmoeger, On a question of Mbekhta, Extracta Math. 20 (2005), no. 3, 281-290.
- C. Schmoeger, Generalized projections in Banach algebras, Linear Algebra Appl. 430 (2009), no. 2-3, 601-608. https://doi.org/10.1016/j.laa.2008.07.020
- X. H. Sun and Y. Li, The reduced minimum modulus of left multiplicative operators, J. Shandong Univ. Nat. Sci. 45 (2010), no. 2, 54-57.
- M. A. Taoudi, On a generalization of partial isometries on Banach spaces, Georgian Math. J. 15 (2008), no. 1, 177-188.
- Y. Xue, Stable perturbations of operators and related topics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.