
Bull. Korean Math. Soc. 59 (2022), No. 6, pp. 1523–1537

https://doi.org/10.4134/BKMS.b210870

pISSN: 1015-8634 / eISSN: 2234-3016

ON THE POCKLINGTON-PERALTA SQUARE ROOT

ALGORITHM IN FINITE FIELDS

Chang Heon Kim, Namhun Koo, and Soonhak Kwon

Abstract. We present a new square root algorithm in finite fields which

is a variant of the Pocklington-Peralta algorithm. We give the complexity
of the proposed algorithm in terms of the number of operations (multi-

plications) in finite fields, and compare the result with other square root
algorithms, the Tonelli-Shanks algorithm, the Cipolla-Lehmer algorithm,

and the original Pocklington-Peralta square root algorithm. Both the

theoretical estimation and the implementation result imply that our pro-
posed algorithm performs favorably over other existing algorithms. In

particular, for the NIST suggested field P-224, we show that our pro-

posed algorithm is significantly faster than other proposed algorithms.

1. Introduction

Computing square roots in finite fields is a classical problem in computa-
tional number theory. For example, it can be applied in point compression
in elliptic curves over finite fields. In this paper, we consider the problem of
computing square roots in the finite field Fq of q elements where q is a power of
an odd prime, and we write q−1 = 2st, where t is odd and s > 0. The Tonelli-
Shanks algorithm [13,14] is the most well known square root algorithm, and is
efficient for small s. However, there are some cases that finite fields with large
s are necessary. For example, NIST P-224 elliptic curve [3] is defined over the
prime finite field Fq with q = 2224 − 296 + 1, where s = 96 is relatively large to
apply Tonelli-Shanks algorithm. In this case, Cipolla-Lehmer algorithm [2, 6]
can be an alternative because its complexity does not depend on s.

Received December 2, 2021; Revised February 20, 2022; Accepted April 1, 2022.
2020 Mathematics Subject Classification. 11T06, 11Y16, 68W40.
Key words and phrases. Square root algorithm, finite field, Pocklington-Peralta algo-

rithm, Tonelli-Shanks algorithm, Cipolla-Lehmer algorithm.
This work was supported by the National Research Foundation of Korea(NRF) grant

funded by the Korea government(MSIP) (No. 2016R1A5A1008055). Namhun Koo was sup-

ported by the National Research Foundation of Korea (NRF) grant funded by the Korea

government (MSIT) (No. 2021R1C1C2003888). Soonhak Kwon was supported by the Na-
tional Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
(No. 2019R1F1A1058920 and No. 2021R1F1A1050721).

c©2022 Korean Mathematical Society

1523

1524 C. KIM, N. KOO, AND S. KWON

Pocklington [11] proposed another square root algorithm and it was rediscov-
ered by Peralta [10] who was unaware of the work of Pocklington (see also [1]).
The complexity of Pocklington-Peralta square root algorithm does not depend
on s nor the Hamming weight of q, like Cipolla-Lehmer algorithm. In this pa-
per, we propose a refinement of Pocklington-Peralta square root algorithm. We
give a complexity analysis about our proposed algorithm so that the complexity
of our proposed algorithm does not depend on s and the Hamming weight of q.
We also compare with several known square root algorithms including the orig-
inal Pocklington-Peralta square root algorithm by implementation results via
SageMath. By implementation results, we can see that our proposed algorithm
is at least 1.67 times faster than the original Pocklington-Peralta algorithm.

The remainder of this paper is organized as follows. In Section 2, we re-
view Pocklington-Peralta square root algorithm and several known square root
algorithms. In Section 3, we propose our refinement of Pocklington-Peralta
square root algorithm. In Section 4, we analyze the theoretical complexity of
our proposed algorithm and give the implementation results, using SageMath,
of our algorithm and other existing algorithms. Finally, in Section 5, we give
a concluding remark.

2. Some special cases and Pocklington-Peralta method

Though Pocklington [11] and Peralta considered the finite field Fq with odd
prime q, their approaches are also good for the general finite field. Therefore we
assume that q is a power of a prime and let Fq be a finite field with q elements.
Let c 6= 0 ∈ Fq be a square in Fq, i.e., there exists x ∈ Fq such that x2 = c.

Note that if q ≡ 3 (mod 4), a square root of c ∈ Fq is given as c
q+1
4 . Also if

q ≡ 5 (mod 8), then a square root of c is given as c
q+3
8 if c

q−1
4 = 1, and is given

as c
q+3
8 ξ if c

q−1
4 = −1, where ξ2 = −1 (i.e., a primitive 4-th root of unity which

can be precomputed). In fact, if q ≡ 2s + 1 (mod 2s+1), a square root of c is

given as c
q+2s−1

2s+1 ξu for some suitable 0 ≤ u < 2s−1, where u is depending on the

(multiplicative) order of c
q−1
2s . Note that the condition q ≡ 2s + 1 (mod 2s+1)

automatically implies that s is the greatest integer satisfying 2s | q − 1. This
approach of finding a square root is only effective when s is small, since it
involves a discrete logarithmic problem in the subgroup of F×

q of order 2s. For
a detailed explanation of above arguments, see [4,5]. From now on, we assume
q ≡ 1 (mod 4) (i.e., s ≥ 2), and will especially focus on the case where s is
slightly large, say s ≥ 5. Since s is the largest power satisfying 2s | q − 1, we
write q − 1 = 2st with t odd.

For a given square c ∈ Fq, −c is also square in Fq since q ≡ 1 (mod 4), and
by letting x ∈ Fq be a square root of −c, we have the factorizaton X2 + c =
(X − x)(X + x) ∈ Fq[X]. Now we briefly summarize the Pocklington-Peralta
method [10, 11] on square root computation in Fq. One chooses a random
a + X ∈ Fq[X]/〈X2 + c〉, where a ∈ Fq and the ring Fq[X]/〈X2 + c〉 has

ON THE POCKLINGTON-PERALTA SQUARE ROOT ALGORITHM 1525

the structure of addition and multiplication modulo X2 + c. Now compute
(a+X)t = A+BX ∈ Fq[X]/〈X2 + c〉 and check whether A or B is zero. If so,
then choose another a until one has AB 6= 0. From the relation (A+BX)2 =
(A2−B2c)+2ABX, one has (A+BX)2 ∈ Fq if and only if AB = 0. Therefore,

assuming AB 6= 0, the condition (A+BX)2m ∈ Fq implies that there is a unique

1 ≤ j < m such that (A + BX)2j ∈ Fq · X, where Fq · X = {bX | b ∈ Fq} ⊂
Fq[X]/〈X2 + c〉. Since (a + X)q−1 = 1, there exists the least positive integer
1 ≤ j ≤ s− 1 such that

(a+X)t2
j

∈ Fq ·X.(1)

Then letting A1 +B1X = (a+X)t2
j−1

, one has (a+X)t2
j

= (A1 +B1X)2 =
(A2

1−B2
1c) + 2A1B1X ∈ Fq ·X. Therefore one deduces A2

1−B2
1c = 0 and gets

a square root of c as c =
(
A1

B1

)2

.

Algorithm 1 Pocklington-Peralta Square Root Algorithm (Algorithm 2 in
[10])

Input: A prime q ≡ 1 (mod 4) and a quadratic residue c (mod q)
Output: A square root of c (mod q)

1: Choose a random a (mod q)
2: if a2 = −c then go to STEP 1
3: Compute (a+X)t = A+BX (mod X2 + c)
4: if either A = 0 or B = 0 then go to STEP 1

5: Compute (A + BX)2i

(mod X2 + c) for i = 1, 2, . . . by repeated squaring

until (A+BX)2i

= 0 + kX (mod X2 + c) for some k

6: Let (A+BX)2i−1

= A1 +B1X (mod X2 + c) (Then A2
1 −B2

1c = 0)
7: return A1/B1 (mod q)

The complexity of the above Pocklington-Peralta algorithm is O(log3 q) but
it uses a heavy ring arithmetic in Fq[X]/〈X2 + c〉. When compared with the
Tonelli-Shanks square root algorithm which uses an arithmetic only in Fq, the
Pocklington-Peralta algorithm only achieves the computational advantage over
the Tonelli-Shanks when s is quite large where q − 1 = 2st with t odd. The
complexity of the Tonelli-Shanks algorithm is O(log3 q + s2 log2 q). Therefore
when s ≈ log q, it achieves the worst-case complexity O(log4 q). More precisely,
it is shown in [7,9] that the average number of Fq-multiplications of the Tonelli-

Shanks is 2 log q + 2H(q − 1) + s2

4 + O(s), where H(q − 1) is the Hamming
weight (i.e., the number of ones in the binary representation) of q − 1. To
put it simply, based on the square and multiply method for an exponentiation

in Fq, the average cost of the Tonelli-Shanks is two exponentiations plus s2

4
multiplications in Fq, where two exponentiations come from 2(log q+H(q−1)).

1526 C. KIM, N. KOO, AND S. KWON

3. New refined algorithm

Since the original version of the Pocklington-Peralta algorithm requires ring
multiplications in Fq[X]/〈X2 + c〉 such as

(2)
(a1 + b1X)(a2 + b2X) = (a1a2 − b1b2c) + (a1b2 + a2b1)X,

(a+ bX)2 = a2 − b2c+ 2abX,

the cost of such single multiplication in Fq[X]/〈X2 + c〉 is very high compared
with the cost of single multiplication in Fq even if we use some special techniques
like Karatsuba type multiplications in the above equations in (2), i.e., a1b2 +
a2b1 = (a1 + b1)(a2 + b2)− a1a2 − b1b2.

Our new idea will exploit the properties of ring structure of Fq[X]/〈X2 + c〉
and its related linear recurrences having characteristic polynomials with roots
in Fq[X]/〈X2 + c〉. Using linear recurrences, we transform exponentiations in
Fq[X]/〈X2 + c〉 into compact Fq-multiplications with reduced cost compared
with naive methods in (2) or its Karatsuba type variants. Letting x ∈ Fq be a
square root of −c 6= 0, one has the following isomorphism of rings

Fq[X]/〈X2 + c〉 ∼= Fq × Fq,

where the isomorphism is given as

ϕ : Fq[X]/〈X2 + c〉 −→ Fq × Fq
a+ bX 7→ (a+ bx, a− bx).(3)

We define the conjugate of θ = a + bX ∈ Fq[X]/〈X2 + c〉 as θ̄ = a − bX, and
we also define the trace and the norm of θ as

Tr(θ) = θ + θ̄ = 2a, N(θ) = θθ̄ = a2 + b2c,

where Tr(θ), N(θ) ∈ Fq. In fact, for a given θ = a + bX ∈ Fq[X]/〈X2 + c〉,
the trace and the norm of θ is the usual trace and determinant of the linear
transformation `θ : Fq[X]/〈X2 +c〉 −→ Fq[X]/〈X2 +c〉 defined by `θ(w) = wθ.

We denote the set of invertible elements in each field and ring as F∗
q and

(Fq[X]/〈X2 + c〉)∗. Then we have

N(θ) 6= 0⇐⇒ ϕ(z) ∈ F∗
q × F∗

q ,

which implies that we also have the (multiplicative) isomorphism between the
sets of invertible elements;

ϕ : (Fq[X]/〈X2 + c〉)∗ ∼= F∗
q × F∗

q .(4)

Recall, from the previous section, that one has a2 − b2c = 0 if and only if
θ2 = (a+ bX)2 ∈ Fq ·X, which is also equivalent to the condition Tr(θ2) = 0.

Therefore the condition of θ2jt ∈ Fq ·X can be detected by checking Tr(θ2jt) =
0.

ON THE POCKLINGTON-PERALTA SQUARE ROOT ALGORITHM 1527

3.1. Applying Lucas sequence over the ring Fq[X]/〈X2 + c〉

Now we define two sequences {ak} and {bk} over Fq as

ak + bkX = θk = (a+ bX)k ∈ Fq[X]/〈X2 + c〉, k = 0, 1, 2,(5)

Our purpose is to compute ak and bk as efficiently as possible, where the
Lucas type recurrence relations are extensively used. Note that θ = a+ bX ∈
Fq[X]/〈X2+c〉 is a root of the polynomial f(Y) = Y 2−Tr(θ)Y +N(θ) ∈ Fq[Y].
Thus Tr(θk) = θk + θ̄k can be computed via the second order linear relation
determined by f(Y). It is well known that [8], if f(Y) = Y 2 − hY + 1, the
computation of the Lucas sequence Vk defined by

V0 = 2, V1 = h, Vk+2 − hVk+1 + Vk = 0 (k ≥ 0)

can be efficiently computed by the relation

V2k = V 2
k − 2, V2k+1 = VkVk+1 − h.(6)

To use the above mentioned trick, we assume N(θ) = a2 + b2c = 1. We will
explain how to choose such θ in the next subsection. Then, letting f(Y) =
Y 2 − 2aY + 1, we get f(θ) = 0 and thus we have Tr(θk) = Vk for all k, since
Tr(θ0) = 2 = V0, T r(θ

1) = 2a = V1 and both Tr(θk) and Vk satisfy the same
recurrence relation determined by f(Y).

From the expression θk = ak+bkX in the equation (5), we get Tr(θk) = 2ak
and thus the sequence ak = 1

2Tr(θ
k) = 1

2Vk can be efficiently computed. Now
the question is whether we can apply a similar method to the sequence bk.

We answer this question affirmatively since all three sequences {ak}, {bk}
and {Tr(θk)} are determined by the same characteristic polynomial f(Y) =
Y 2 − 2aY + 1 with different initial input values. This can be explained as
follows. Again from θk = ak + bkX, we get

0 = θk(θ2 − 2aθ + 1)

= θk+2 − 2aθk+1 + θk

= (ak+2 − 2aak+1 + ak) + (bk+2 − 2abk+1 + bk)X,

which implies

ak+2 − 2aak+1 + ak = 0, bk+2 − 2abk+1 + bk = 0,

and thus {ak} and {bk} satisfy the same recurrence relation determined by
f(Y).

Once Vk = Tr(θk) is computed, no extra cost (multiplication or division) is
required for ak = 1

2Tr(θ
k) (half of the Lucas sequence). For bk, the situation

is slightly complicated but we want the cost of computing bk negligible also.
One may use the same trick of using the formula (6) to compute {bk} because

bk satisfies the same recurrence relation but different initial inputs b0 = 0, b1 =
b. However, this method again requires the same number of multiplications as
the case of ak, which doubles the total computational cost. Our new idea is that
the computation of bk can be accomplished almost freely from the information

1528 C. KIM, N. KOO, AND S. KWON

of ak and ak+1, so the total cost of computing both ak and bk is equal to the
cost of evaluating ak only.

For the time being, assume that the sequence {bk} can be written as

bk = Tr(βθk) for some β ∈ Fq[X]/〈X2 + c〉(7)

for the time being, and we want to find a (unique) β ∈ Fq[X]/〈X2+c〉 satisfying
the above relation for all k ≥ 0. Since β ∈ Fq[X]/〈X2 + c〉, we may also write
β = d0 + d1θ with d0, d1 ∈ Fq and the equation (7) is written as

(8)
bk = Tr(βθk) = Tr((d0 + d1θ)θ

k)

= d0Tr(θ
k) + d1Tr(θ

k+1).

If the above relation (8) holds for k = 0, 1, then the relation holds for all k ≥ 0
since {bk} and {Tr(θk)} satisfy the same recurrence relation. Now writing the
relation for k = 0 and k = 1,

0 = b0 = d0Tr(θ
0) + d1Tr(θ

1) = 2d0 + 2ad1,

b = b1 = d0Tr(θ
1) + d1Tr(θ

2) = 2ad0 + 2(a2 − b2c)d1,

and solving the above system of linear equations, the solution exists if and only
if bc 6= 0, and we get

d0 =
a

2bc
, d1 = − 1

2bc
.(9)

Therefore, for our initial choice of such d0 and d1, bk is expressed as

bk = d0Tr(θ
k) + d1Tr(θ

k+1) = 2d0ak + 2d1ak+1 =
aak − ak+1

bc
.(10)

The detailed process of computation of Tr(θk) using the idea mentioned
above is described in Algorithm 2. This algorithm requires log t multiplications
and log t squarings for computing Tr(θt).

Algorithm 2 Lucas Sequence Computation

Input: V0, V1 and t =
∑l−1
j=0 tj2

j

Output: Tr(θt), T r(θt+1)

1: V ← 2, W ← 2a (V = V0,W = V1)
2: for j from l − 1 down to 0 do
3: if tj = 0, then W ← VW − 2a, V ← V 2 − 2 (i.e., W = V2k+1, V = V2k)
4: if tj = 1, then V ← VW −2a, W ←W 2−2 (i.e., V = V2k+1,W = V2k+2)
5: return V,W

ON THE POCKLINGTON-PERALTA SQUARE ROOT ALGORITHM 1529

3.2. Selecting θ ∈ Fq[X]/〈X2 + c〉 with N(θ) = 1

Define a subgroup S of (Fq[X]/〈X2 + c〉)∗ as

S = {θ ∈ (Fq[X]/〈X2 + c〉)∗ |N(θ) = 1}.
Then one has

S = {θ ∈ (Fq[X]/〈X2 + c〉)∗ | θ =
a+ bX

a− bX
with a2 + b2c 6= 0}

because the condition N(θ)=1 is equivalent to θ= τ
τ̄ for some τ ∈(Fq[X]/〈X2 +

c〉)∗. This fact is just a simple analogue of Hilbert Theorem 90. More precisely,
when N(a+ bX) = a2 + b2c = 1, then a+ bX can be expressed as

a+ bX =


a+ 1 + bX

a+ 1− bX
if a 6= −1,

X

−X
if a = −1,

since a = −1 implies b = 0.
We claim that S is isomorphic to F∗

q via the map ϕ0 : S → F∗
q with ϕ0(a+

bX) = a+ bx, where the isomorphism ϕ0 is induced from ϕ in the equation (3)
restricted on S,

S
ϕ−→ F∗

q × F∗
q

a+ bX 7→ (a+ bx, a− bx) = (a+ bx,
1

a+ bx
),(11)

such that ϕ(S) = {(d, 1
d) | d ∈ F∗

q} (F∗
q × F∗

q . Injectivity of ϕ0 is clear since ϕ
is injective. For the surjectivity of ϕ0, given d ∈ F∗

q , one can solve the system
of the equations

a+ bx = d, a− bx =
1

d
to find unique a = 1

2 (d + 1
d) and b = 1

2x (d − 1
d) satisfying the above relations

because x 6= 0 (i.e., c 6= 0).

3.3. Our proposed algorithm

Let θ ∈ S and suppose that θt = d ∈ Fq. Then from 1 = N(θ)t = N(θt) =
d2, one has d = ±1. Therefore the probability that a randomly chosen θ ∈ S
satisfies θt ∈ Fq is same to the probability that a randomly chosen θ ∈ S
satisfies θt = ±1. The condition θt = ±1 is equivalent to the condition θ2t = 1
because θ ∈ S ∼= F∗

q . Since there are 2t possible such θ ∈ S satisfying θt = ±1,

we find that the probability that a randomly chosen θ ∈ S satisfies θt ∈ Fq is
2t
q−1 = 2t

2st = 1
2s−1 .

Now we need to derive the other probabilities in view of the equation (1).

Proposition 3.1. Let q be a prime power with q − 1 = 2st and gcd(2, t) = 1.
Let 0 ≤ m ≤ s − 2 and Pm be the probability that a randomly chosen θ ∈ S
satisfies θ2mt ∈ Fq ·X. Then Pm = 1

2s−m−1 .

1530 C. KIM, N. KOO, AND S. KWON

Proof. We have to find the probability that θ2mt = hX for some h ∈ Fq. Due
to the isomorphism in the equation (4), we may assume ϕ(θ) = (d, 1

d) ∈ F∗
q×F∗

q

and

(hx,−hx) = ϕ(θ2mt) = ϕ(θ)2mt = (d2mt,
1

d2mt
).

Thus we get d2m+1t = −1 and since there are exactly 2m+2t possibilities of

d ∈ F∗
q
∼= S satisfying d2m+2t = 1 when 2m+2t | q − 1, there are exactly 2m+1t

possibilities of d satisfying d2m+1t = −1 for any 0 ≤ m ≤ s− 2. Consequently
there are 2m+1t possibilities of θ ∈ S satisfying θ2mt ∈ Fq ·X, and the desired

probability Pm is 2m+1t
q−1 = 1

2s−m−1 . �

Remark 3.2. Note that the condition N(θ) = 1 implies that θ2s−1t = ±1 ∈ Fq.
Therefore, in the above proposition, the case m = s− 1 (i.e., the case θ2s−1t ∈
Fq ·X) does not happen.

Remark 3.3. As a special case, when m = 0, we get the probability that
θt = btX as 1

2s−1 . We also remark that one can find a square root of c if
θt ∈ Fq ·X. That is, if θt = btX for some bt ∈ Fq, then by taking the norm, one
has 1 = N(θ)t = btX · (−btX) = b2t c. Thus c = (1

bt
)2. In view of the equations

(9), (10), we have bt = −Tr(θ
t+1)

2bc so that we get c =
(

2bc
Tr(θt+1)

)2

.

Since we already showed that the probability that a randomly chosen θ ∈ S
satisfies θt ∈ Fq is 1

2s−1 in the statement just before Proposition 3.1, we have

total s possible cases (θt ∈ Fq or θ2mt ∈ Fq ·X for m = 0, 1, 2, . . . , s − 2) and
the sum of all these probabilities is

1

2s−1
+

(
1

2s−1
+

1

2s−2
+

1

2s−3
+ · · ·+ 1

22
+

1

2

)
= 1

as is expected.
Our observations in Proposition 3.1 and Remark 3.3 lead to a new square

root algorithm shown in Algorithm 3, whose complexity is O(log3 q) where the
cost of the algorithm is one exponentiation in Fq, which will be explained in
detail in Section 4. In the algorithm, we try random θ = a+X ∈ Fq[X]/〈X2+c〉
with N(θ) = 1 until we find θ satisfying θt 6= ±1, i.e., V 6= ±2 at the end of
STEP 8. Then, we apply repeated squaring to θt until we have θ2mt ∈ Fq ·X
for some 0 ≤ m ≤ s − 2. The condition θ2mt ∈ Fq · X is equivalent to the
condition V = 0 in the Algorithm 3 and is being checked in STEPS 10-14.
STEP 10 is the case θt ∈ Fq · X (i.e., m = 0) where the square root 2bc

W is
obtained from the Remark 3.3. The while loop (STEPS 11-14) is terminated
after m-iterations when θ2mt ∈ Fq ·X. From the Remark 1, we know that such
m with 0 ≤ m ≤ s−2 always exists. The final output x in STEP 15 is obtained
using the equations (9), (10).

ON THE POCKLINGTON-PERALTA SQUARE ROOT ALGORITHM 1531

Algorithm 3 Proposed Pocklington-Peralta Algorithm

Input: A square c in Fq where q−1 = 2st with q ≡ 1 (mod 4), gcd(2, t) =

1, and a binary representation of t =

n−1∑
j=0

tj2
j with tn−1 = 1

Output: x satisfying x2 = c in Fq
1: Choose random a ∈ Fq and let θ = a+X ∈ Fq[X]/〈X2 + c〉
2: if N(θ) = 0 then go to STEP 1 # if a square root of −1 is precomputed,

then we are done

3: a+ bX ← a+X

a−X
#
a+X

a−X
=
a2 − c+ 2aX

a2 + c
4: V ← 2a,W ← V 2 − 2 # V = Tr(θ1),W = Tr(θ2) where θ = a+ bX
5: for j from n− 1 down to 0 do
6: if tj = 0, then W ← VW − 2a, V ← V 2 − 2 # W = V2j+1, V = V2j

7: else then V ← VW − 2a,W ←W 2 − 2 # V = V2j+1,W = V2j+2

8: end for # V = Tr(θt),W = Tr(θt+1) where θt = at + btX
9: if V = ±2, then go to STEP 1 # This is the case θt ∈ Fq

10: else if V = 0, then x← 2bc

W
and return x # This is the case θt ∈ Fq ·X

11: while V 6= 0 do
12: W0 ←W,V0 ← V

13: W ← V0W0 − 2a, V ← V 2
0 − 2 # V = Tr(θt2

j

),W = Tr(θt2
j+1)

14: end while

15: x← V0bc

aV0 −W0
and return x

4. Complexity analysis and comparison

Because of Proposition 3.1 (see also Remark 3.3), the probability of having
θt ∈ Fq · X in STEP 10 is 1

2s−1 , and the probability of having θ2mt ∈ Fq · X
exactly immediately after m-th iteration of the while-loop (STEPS 11-14) is

1
2s−m−1 for 1 ≤ m ≤ s− 2. Therefore the expected number of iterations of the
while-loop is

(12)

s−2∑
m=1

m · 1

2s−m−1
=

1

2s−2
+

2

2s−3
+ · · ·+ s− 3

22
+
s− 2

2

= s− 3 +
1

2s−2
(s ≥ 3)

and the average cost of the STEPS 11-14 is

2(s− 3 +
1

2s−2
) ≈ 2(s− 3)(13)

Fq-multiplications, i.e., at each iteration, one multiplication and one squaring
is executed.

1532 C. KIM, N. KOO, AND S. KWON

On the other hand, the cost of the for-loop (STEPS 5-8) is

2n ≤ 2(blog tc+ 1) ≈ 2 log t = 2 log
q − 1

2s
≈ 2 log q − 2s(14)

Fq-multiplications. Since the probability that one has V 6= ±2 (i.e., θt 6∈ Fq)
at the end of the for-loop is 1− 1

2s−1 , the expected number of the iterations of

the for-loop is 2s−1

2s−1−1 ≈ 1.
For other steps, we require 4 multiplications and one inversion in Fq in STEP

3, and 3 multiplications and one inversion in Fq for STEP 15. (Note that we
do not have to consider the cost of STEP 10 because it is vastly dominated by
the cost of STEPS 11-15.)

Consequently, combining the expression (13) and (14), the total number
of necessary Fq-multiplications (except two inversions in Fq) of the proposed
Algorithm when s is slightly large (say s ≥ 4) is

2 log q − 2s+ 2(s− 3) + 7 ≈ 2 log q,

which is the cost of just ONE exponentiation in Fq and independent of s.
In Section 2, we mentioned that the number of the necessary multiplications

of the Tonelli-Shanks algorithm is 2 log q+ 2H(q− 1) + s2

4 +O(s). Comparing
with our proposed Pocklington-Peralta algorithm, the Tonelli-Shanks requires

2H(q − 1) + s2

4 extra multiplications in Fq (if we ignore the cost of two Fq-
inversions of our proposed algorithm).

We compared our proposed algorithm with several well-known square root al-
gorithms in the finite field Fq; the Tonelli-Shanks algorithm [13,14], the Cipolla-
Lehmer algorithm [2,6] and original Pocklington-Peralta algorithm [10,11].

For convenience, we used prime fields Fq with 2000 bits primes. Tables 1, 2
and 3 show the implementation results with SAGE of the above mentioned three
algorithms and our proposed algorithm for the Hamming weight of q(=H(q))
by < 10, ≈ 300, ≈ 1000, respectively. The implementation was performed on
Intel Core i7-4770 3.40GHz with 8GB memory. Average timings of the square
root computations for 100 different inputs of quadratic residue a ∈ Fq are
computed for those cases s ≈ 5, 10, 50, 100, 200, 300 etc. When we choose each
prime, we first choose a random integer p0 such that 2s | (p0 − 1) and p0 has
Hamming weight satisfying given condition. Then we add 2s to p0 until it is
a prime. If the Hamming weight of chosen prime is significantly different from
given condition, we try again until satisfying it.

The second row of each table contains the results of revised Tonelli-Shanks
algorithm when a quadratic nonresidue (that is randomly chosen in the original
Tonelli-Shanks algorithm) is given and hence requires only one exponentiation.
The fifth row of each Table gives the results to run square root mod prime(a, q)
built in SAGE program [12]. As one can see in the tables, the timings of the
Tonelli-Shanks algorithm increase drastically as s becomes larger, while the
timings of other existing algorithms and our algorithm are independent of s.
Also, the timings of our proposed algorithm show that our proposed algorithm

ON THE POCKLINGTON-PERALTA SQUARE ROOT ALGORITHM 1533

Table 1. Running time (in ms) for square root computation
with q ≈ 22000 and H(q) < 10

s ≈ 5 10 50 100 200 300
H(q) 7 9 9 7 7 9

Tonelli-Shanks [13,14] 8.259 8.291 9.484 13.296 27.679 52.076
Tonelli-Shanks (precom.) [13,14] 4.058 4.120 5.371 9.406 23.844 48.227

SageMath [12] 5.070 5.095 6.988 13.004 36.508 74.398
Cipolla-Lehmer [2, 6] 14.709 14.660 14.666 14.692 14.675 14.663

original Pocklington-Peralta [10,11] 14.937 14.671 14.657 14.901 14.669 14.672
Proposed Alg. 8.963 8.803 8.782 8.879 8.799 8.822

Table 2. Running time (in ms) for square root computation
with q ≈ 22000 and H(q) ≈ 300

s ≈ 5 10 50 100 200 300
H(q) 299 305 299 300 305 303

Tonelli-Shanks [13,14] 9.604 9.804 11.038 14.555 30.013 54.436
Tonelli-Shanks (precom.) [13,14] 4.732 4.837 6.221 9.928 25.039 50.770

SageMath [12] 5.474 5.582 7.738 13.188 37.297 75.737
Cipolla-Lehmer [2, 6] 15.697 15.794 15.890 15.772 15.810 15.865

original Pocklington-Peralta [10,11] 15.993 15.785 15.761 15.811 15.809 15.866
Proposed Alg. 9.103 8.989 8.991 9.012 8.989 9.040

Table 3. Running time (in ms) for square root computation
with q ≈ 22000 and H(q) ≈ 1000

s ≈ 5 10 50 100 200 300
H(q) 1002 998 1002 999 1000 1001

Tonelli-Shanks [13,14] 12.157 12.638 13.706 17.498 32.029 56.054
Tonelli-Shanks (precom.) [13,14] 6.045 6.295 7.526 11.355 26.640 49.815

SageMath [12] 5.779 5.883 7.691 13.470 36.371 74.815
Cipolla-Lehmer [2, 6] 17.244 17.630 17.697 17.745 17.715 17.652

original Pocklington-Peralta [10,11] 17.779 17.759 17.628 17.752 17.758 17.631
Proposed Alg. 8.982 8.944 8.968 9.013 8.979 8.940

does not depend on the Hamming weight of q, but the timings of the other algo-
rithms increase as the Hamming weight of q higher. The tables also show that
our proposed algorithm is consistently faster than Cipolla-Lehmer algorithm
and the original Pocklington-Peralta algorithm. In particular, the average tim-
ings 8.84, 9.02, 8.97(ms) of the proposed algorithm are about 1.67, 1.76, 1.98
times faster than the average timing 14.75, 15.84, 17.72(ms) of the original
Pocklington-Peralta algorithm when HW (q) < 10 or when HW (q) ≈ 300, 1000,
respectively.

1534 C. KIM, N. KOO, AND S. KWON

Table 4. Running time (in ms) for square root computation
with NIST curves P-224 and P-521 over Fq with q = 2224 −
296 + 1, 2521 − 1 (For P-521, since q ≡ 3 (mod 4) and thus

s = 1, a square root of c is c
q+1
4 , which is used in SageMath).

q P-224 P-521

Tonelli-Shanks [13,14] 1.212 1.130
Tonelli-Shanks (precom.) [13,14] 1.031 0.511

SageMath [12] 0.695 0.071
Cipolla-Lehmer [2, 6] 0.333 1.393

original Pocklington-Peralta [10,11] 0.319 2.282
Proposed Alg. 0.176 1.351

In Table 4, we show the implementation results of some practical cases for
the NIST suggested fields Fq with q = 2224 − 296 + 1 and q = 2521 − 1, i.e., for
P-224 and P-521. When q = 2224−296 +1, we get s = 96 and HW (q−1) = 128
and hence both s and HW (q−1) are relatively large. As is already explained in
our complexity estimation, we see that our proposed algorithm is indeed quite
efficient than other existing algorithms in this case of P-224. When q = 2521−1,
one has s = 1 and HW (q − 1) = 520. This is the case of q ≡ 3 (mod 4) and,

as is mentioned in Section 2, a square root of c is given as c
q+1
4 ∈ Fq. Since

SageMath uses special methods (such as c
q+1
4 when s = 1) to compute a square

root when s is very small, the running time of SageMath is the shortest in
Table 4 for the field P-521.

Figures 1, 2 and 3 are the graphs of timings of Tables 1, 2 and 3, respectively.
In our implementation results, the timings of the original Pocklington-Peralta
are roughly the same with those of the Cipolla-Lehmer, so the graphs of the two
algorithms almost overlap with each other and one sees only 5 graphs (instead
of 6) in each figures.

5. Conclusion

We proposed a new square root algorithm in Fq which is a refinement of
Pocklington-Peralta algorithm [10,11]. By using linear recurrences arising from
quadratic (but reducible over Fq) polynomials, we showed that the cost of our
algorithm is essentially one exponentiation in Fq, that is, our algorithm needs
2 log q multiplications in Fq. Our algorithm does not depend on s nor on the
Hamming weight of q, while the Tonelli-Shanks algorithm depends on both s
and HW (q − 1).

By the implementation via SageMath, we showed that, even for the medium
size NIST suggested field Fq with q = 2224 − 296 + 1, our proposed algorithm
is the fastest one when compared with other algorithms. Implementation over
general finite fields imply that our proposed algorithm is at least 1.67 times

ON THE POCKLINGTON-PERALTA SQUARE ROOT ALGORITHM 1535

Figure 1. Running time (in ms) for square root computation
q ≈ 22000 and H(q) < 10

Figure 2. Running time (in ms) for square root computation
q ≈ 22000 and H(q) ≈ 300

Figure 3. Running time (in ms) for square root computation
q ≈ 22000 and H(q) ≈ 1000

1536 C. KIM, N. KOO, AND S. KWON

faster than the original Pocklington-Peralta square root algorithm. Our imple-
mentation also shows that the proposed algorithm is superior to the Tonelli-
Shanks algorithm when s > 10.

References

[1] D. Bernstein, Faster square roots in annoying finite fields, preprint, available at
http://cr.yp.to/papers/ sqroot.pdf

[2] M. Cipolla, Un metodo per la risolutione della congruenza di secondo grado, Rendiconto
dell’Accademia Scienze Fisiche e Matematiche, Napoli, Ser. 3, vol. IX, pp. 154–163, 1903.

[3] Digital Signature Standard(DSS), Federal information processing standards publication

186–4, Information Technology Laboratory, National Institute of Standards and Tech-
nology, 2013. http://doi.org/10.6028/NIST.FIPS.186-4

[4] N. Koo, G. H. Cho, and S. Kwon, Square root algorithm in Fq for q ≡ 2s+1 (mod 2s+1),

Electronics Letters 49 (2013), no. 7, 467–468. https://doi.org/10.1049/el.2012.4239
[5] N. Koo, G. H. Cho, and S. Kwon, On r-th root extraction algorithm in Fq for q ≡ lrs+1

(mod rs+1) with 0 < ` < r and small s, IEEE Trans. Comput. 65 (2016), no. 1, 322–325.

https://doi.org/10.1109/TC.2015.2417562

[6] D. H. Lehmer, Computer technology applied to the theory of numbers, in Studies in

Number Theory, 117–151, Math. Assoc. America, Buffalo, NY, 1969.

[7] S. Lindhurst, An analysis of Shanks’s algorithm for computing square roots in finite
fields, in Number theory (Ottawa, ON, 1996), 231–242, CRM Proc. Lecture Notes, 19,

Amer. Math. Soc., Providence, RI, 1999. https://doi.org/10.1090/crmp/019/21
[8] S. Müller, On the computation of square roots in finite fields, Des. Codes Cryptogr. 31

(2004), no. 3, 301–312. https://doi.org/10.1023/B:DESI.0000015890.44831.e2

[9] I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of
Numbers, fifth edition, John Wiley & Sons, Inc., New York, 1991.

[10] R. C. Peralta, A simple and fast probabilistic algorithm for computing square roots

modulo a prime number, IEEE Trans. Inform. Theory 32 (1986), no. 6, 846–847. https:
//doi.org/10.1109/TIT.1986.1057236

[11] H. C. Pocklington, The direct solution of the quadratic and cubic binomial congruences

with prime moduli, Proceedings of the Cambridge Philosophical Society, vol. 19, pp.
57–59, 1917.

[12] Sage Reference Manual, Elements of Z/nZ, available at http://doc.sagemath.org/

html/en/reference/finite rings/sage/rings/finite rings/integer mod.html.

[13] D. Shanks, Five number-theoretic algorithms, in Proceedings of the Second Manitoba

Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1972), 51–70.
Congressus Numerantium, VII, Utilitas Math., Winnipeg, MB, 1973.

[14] A. Tonelli, Bemerkung über die Auflösung Quadratischer Congruenzen, Göttinger

Nachrichten, pp. 344–346, 1891.

Chang Heon Kim
Applied Algebra & Optimization Research Center

Sungkyunkwan University

Suwon 16419, Korea
Email address: chhkim@skku.edu

Namhun Koo
Institute of Mathematical Sciences

Ewha Womans University

Seoul 03760, Korea
Email address: nhkoo@ewha.ac.kr

http://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.1049/el.2012.4239
https://doi.org/10.1109/TC.2015.2417562
https://doi.org/10.1090/crmp/019/21
https://doi.org/10.1023/B:DESI.0000015890.44831.e2
https://doi.org/10.1109/TIT.1986.1057236
https://doi.org/10.1109/TIT.1986.1057236

ON THE POCKLINGTON-PERALTA SQUARE ROOT ALGORITHM 1537

Soonhak Kwon

Applied Algebra & Optimization Research Center

Sungkyunkwan University
Suwon 16419, Korea

Email address: shkwon@skku.edu

