Browse > Article
http://dx.doi.org/10.4134/BKMS.b210870

ON THE POCKLINGTON-PERALTA SQUARE ROOT ALGORITHM IN FINITE FIELDS  

Chang Heon, Kim (Applied Algebra & Optimization Research Center Sungkyunkwan University)
Namhun, Koo (Institute of Mathematical Sciences Ewha Womans University)
Soonhak, Kwon (Applied Algebra & Optimization Research Center Sungkyunkwan University)
Publication Information
Bulletin of the Korean Mathematical Society / v.59, no.6, 2022 , pp. 1523-1537 More about this Journal
Abstract
We present a new square root algorithm in finite fields which is a variant of the Pocklington-Peralta algorithm. We give the complexity of the proposed algorithm in terms of the number of operations (multiplications) in finite fields, and compare the result with other square root algorithms, the Tonelli-Shanks algorithm, the Cipolla-Lehmer algorithm, and the original Pocklington-Peralta square root algorithm. Both the theoretical estimation and the implementation result imply that our proposed algorithm performs favorably over other existing algorithms. In particular, for the NIST suggested field P-224, we show that our proposed algorithm is significantly faster than other proposed algorithms.
Keywords
Square root algorithm; finite field; Pocklington-Peralta algorithm; Tonelli-Shanks algorithm; Cipolla-Lehmer algorithm;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. C. Pocklington, The direct solution of the quadratic and cubic binomial congruences with prime moduli, Proceedings of the Cambridge Philosophical Society, vol. 19, pp.57-59, 1917.
2 Sage Reference Manual, Elements of Z/nZ, available at http://doc.sagemath.org/html/en/reference/finite_rings/sage/rings/finite_rings/integer_mod.html.
3 D. Shanks, Five number-theoretic algorithms, in Proceedings of the Second Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1972), 51-70. Congressus Numerantium, VII, Utilitas Math., Winnipeg, MB, 1973.
4 A. Tonelli, Bemerkung uber die Auflosung Quadratischer Congruenzen, Gottinger Nachrichten, pp. 344-346, 1891.
5 D. Bernstein, Faster square roots in annoying finite fields, preprint, available at http://cr.yp.to/papers/ sqroot.pdf
6 N. Koo, G. H. Cho, and S. Kwon, On r-th root extraction algorithm in 𝔽q for q ≡ lrs +1 (mod rs+1) with 0 < ℓ < r and small s, IEEE Trans. Comput. 65 (2016), no. 1, 322-325. https://doi.org/10.1109/TC.2015.2417562   DOI
7 M. Cipolla, Un metodo per la risolutione della congruenza di secondo grado, Rendiconto dell'Accademia Scienze Fisiche e Matematiche, Napoli, Ser. 3, vol. IX, pp. 154-163, 1903.
8 Digital Signature Standard(DSS), Federal information processing standards publication 186-4, Information Technology Laboratory, National Institute of Standards and Technology, 2013. http://doi.org/10.6028/NIST.FIPS.186-4   DOI
9 N. Koo, G. H. Cho, and S. Kwon, Square root algorithm in 𝔽q for q ≡ 2s+1 (mod 2s+1), Electronics Letters 49 (2013), no. 7, 467-468. https://doi.org/10.1049/el.2012.4239   DOI
10 D. H. Lehmer, Computer technology applied to the theory of numbers, in Studies in Number Theory, 117-151, Math. Assoc. America, Buffalo, NY, 1969.
11 S. Lindhurst, An analysis of Shanks's algorithm for computing square roots in finite fields, in Number theory (Ottawa, ON, 1996), 231-242, CRM Proc. Lecture Notes, 19, Amer. Math. Soc., Providence, RI, 1999. https://doi.org/10.1090/crmp/019/21   DOI
12 S. Muller, On the computation of square roots in finite fields, Des. Codes Cryptogr. 31 (2004), no. 3, 301-312. https://doi.org/10.1023/B:DESI.0000015890.44831.e2   DOI
13 I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of Numbers, fifth edition, John Wiley & Sons, Inc., New York, 1991.
14 R. C. Peralta, A simple and fast probabilistic algorithm for computing square roots modulo a prime number, IEEE Trans. Inform. Theory 32 (1986), no. 6, 846-847. https://doi.org/10.1109/TIT.1986.1057236   DOI