• Title/Summary/Keyword: Asynchronous SAR

Search Result 10, Processing Time 0.033 seconds

A 10-bit 10-MS/s 0.18-um CMOS Asynchronous SAR ADC with Time-domain Comparator (시간-도메인 비교기를 이용하는 10-bit 10-MS/s 0.18-um CMOS 비동기 축차근사형 아날로그-디지털 변환기)

  • Jeong, Yeon-Hom;Jang, Young-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.88-90
    • /
    • 2012
  • This paper describes a 10-bit 10-MS/s asynchronous successive approximation register (SAR) analog-to-digital converter (ADC) with a rail-to-rail input range. The proposed SAR ADC consists of a capacitor digital-analog converter (DAC), a SAR logic and a comparator. To reduce the frequency of an external clock, the internal clock which is asynchronously generated by the SAR logic and the comparator is used. The time-domain comparator with a offset calibration technique is used to achieve a high resolution. To reduce the power consumption and area, a split capacitor-based differential DAC is used. The designed asynchronous SAR ADC is fabricated by using a 0.18 um CMOS process, and the active area is $420{\times}140{\mu}m^2$. It consumes the power of 0.818 mW with a 1.8 V supply and the FoM is 91.8 fJ/conversion-step.

  • PDF

A 10-bit 20-MS/s Asynchronous SAR ADC using Self-calibrating CDAC (자체 보정 CDAC를 이용한 10비트 20MS/s 비동기 축차근사형 ADC)

  • Youn, Eun-ji;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.35-43
    • /
    • 2019
  • A capacitor self-calibration is proposed to improve the linearity of the capacitor digital-to-analog converter (CDAC) for an asynchronous successive approximation register (SAR) analog-to-digital converter (ADC) with 10-bit resolution. The proposed capacitor self-calibration is performed so that the value of each capacitor of the upper 5 bits of the 10-bit CDAC is equal to the sum of the values of the lower capacitors. According to the behavioral simulation results, the proposed capacitor self-calibration improves the performances of differential nonlinearity (DNL) and integral nonlinearity (INL) from -0.810/+0.194 LSBs and -0.832/+0.832 LSBs to -0.235/+0.178 LSBs and -0.227/+0.227 LSBs, respectively, when the maximum capacitor mismatch of the CDAC is 4%. The proposed 10-bit 20-MS/s asynchronous SAR ADC is implemented using a 110-nm CMOS process with supply of 1.2 V. The area and power consumption of the proposed asynchronous SAR ADC are $0.205mm^2$ and 1.25 mW, respectively. The proposed asynchronous SAR ADC with the capacitor calibration has a effective number of bits (ENOBs) of 9.194 bits at a sampling rate of 20 MS/s about a $2.4-V_{PP}$ differential analog input with a frequency of 96.13 kHz.

A 10-bit 10-MS/s Asynchronous SAR analog-to-digital converter with digital-to-analog converter using MOM capacitor (MOM 커패시터를 사용한 디지털-아날로그 변환기를 가진 10-bit 10-MS/s 비동기 축차근사형 아날로그-디지털 변환기)

  • Jeong, Yeon-Ho;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.129-134
    • /
    • 2014
  • This paper presents a 10-bit 10-MS/s asynchronous successive approximation register (SAR) analog-to-digital converter (ADC) which consists of a digital-to-analog converter (DAC), a SAR logic, and a comparator. The designed asynchronous SAR ADC with a rail-to-rail input range uses a binary weighted DAC using metal-oxide-metal (MOM) capacitor to improve sampling rate. The proposed 10-bit 10-MS/s asynchronous SAR ADC is fabricated using a 0.18-${\mu}m$ CMOS process and its active area is $0.103mm^2$. The power consumption is 0.37 mW when the voltage of supply is 1.1 V. The measured SNDR are 54.19 dB and 51.59 dB at the analog input frequency of 101.12 kHz and 5.12 MHz, respectively.

A 12-b Asynchronous SAR Type ADC for Bio Signal Detection

  • Lim, Shin-Il;Kim, Jin Woo;Yoon, Kwang-Sub;Lee, Sangmin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.108-113
    • /
    • 2013
  • This paper describes a low power asynchronous successive approximation register (SAR) type 12b analog-to-digital converter (ADC) for biomedical applications in a 0.35 ${\mu}m$ CMOS technology. The digital-to-analog converter (DAC) uses a capacitive split-arrays consisting of 6-b main array, an attenuation capacitor C and a 5-b sub array for low power consumption and small die area. Moreover, splitting the MSB capacitor into sub-capacitors and an asynchronous SAR reduce power consumption. The measurement results show that the proposed ADC achieved the SNDR of 68.32 dB, the SFDR of 79 dB, and the ENOB (effective number of bits) of 11.05 bits. The measured INL and DNL were 1.9LSB and 1.5LSB, respectively. The power consumption including all the digital circuits is 6.7 ${\mu}W$ at the sampling frequency of 100 KHz under 3.3 V supply voltage and the FoM (figure of merit) is 49 fJ/conversion-step.

Design of a Low-Power 8-bit 1-MS/s CMOS Asynchronous SAR ADC for Sensor Node Applications (센서 노드 응용을 위한 저전력 8비트 1MS/s CMOS 비동기 축차근사형 ADC 설계)

  • Jihun Son;Minseok Kim;Jimin Cheon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.454-464
    • /
    • 2023
  • This paper proposes a low-power 8-bit asynchronous SAR ADC with a sampling rate of 1 MS/s for sensor node applications. The ADC uses bootstrapped switches to improve linearity and applies a VCM-based CDAC switching technique to reduce the power consumption and area of the DAC. Conventional synchronous SAR ADCs that operate in synchronization with an external clock suffer from high power consumption due to the use of a clock faster than the sampling rate, which can be overcome by using an asynchronous SAR ADC structure that handles internal comparisons in an asynchronous manner. In addition, the SAR logic is designed using dynamic logic circuits to reduce the large digital power consumption that occurs in low resolution ADC designs. The proposed ADC was simulated in a 180-nm CMOS process, and at a 1.8 V supply voltage and a sampling rate of 1 MS/s, it consumed 46.06 𝜇W of power, achieved an SNDR of 49.76 dB and an ENOB of 7.9738 bits, and obtained a FoM of 183.2 fJ/conv-step. The simulated DNL and INL are +0.186/-0.157 LSB and +0.111/-0.169 LSB.

A 10-bit 10-MS/s 0.18-㎛ CMOS Asynchronous SAR ADC with split-capacitor based differential DAC (분할-커패시터 기반의 차동 디지털-아날로그 변환기를 가진 10-bit 10-MS/s 0.18-㎛ CMOS 비동기 축차근사형 아날로그-디지털 변환기)

  • Jeong, Yeon-Ho;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.414-422
    • /
    • 2013
  • This paper describes a 10-bit 10-MS/s asynchronous successive approximation register (SAR) analog-to-digital converter (ADC) using a split-capacitor-based differential digital-to-analog converter (DAC). SAR logic and comparator are asynchronously operated to increase the sampling frequency. The time-domain comparator with an offset calibration technique is used to achieve a high resolution. The proposed 10-bit 10-MS/s asynchronous SAR ADC with the area of $140{\times}420{\mu}m^2$ is fabricated using a 0.18-${\mu}m$ CMOS process. Its power consumption is 1.19 mW at 1.8 V supply. The measured SNDR is 49.95 dB for the analog input frequency of 101 kHz. The DNL and INL are +0.57/-0.67 and +1.73/-1.58, respectively.

Brief Overview on Design Techniques and Architectures of SAR ADCs

  • Park, Kunwoo;Chang, Dong-Jin;Ryu, Seung-Tak
    • Journal of Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.99-108
    • /
    • 2021
  • Successive Approximation Register (SAR) Analog-to-Digital Converters (ADC) seem to become the hottest ADC architecture during the past decade in implementing energy-efficient high performance ADCs. In this overview, we will review what kind of circuit techniques and architectural advances have contributed to place the SAR ADC architecture at its current position, beginning from a single SAR ADC and moving to various hybrid architectures. At the end of this overview, a recently reported compact and high-speed SAR-Flash ADC is introduced as one design example of SAR-based hybrid ADC architecture.

The ATM SAR Processor Optimized for VoDSL Service (VoDSL 서비스에 최적화된 ATM SAR 프로세서)

  • 손윤식;정정화
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.10
    • /
    • pp.9-16
    • /
    • 2003
  • In this paper, we propose an ATM processor suitable for VoDSL subscriber's equipments. The processor is composed of ATM block, AAL protocol block and ATS scheduler, and provides up to 4 VCC which service data and voice traffics on the ATM network. The proposed ATS scheduler can guarantee QoS of the voice traffic and supports multiple AAL2 packet. The ATM processor is manufactured on the 0.35 micron fabrication line of HYNIX semiconductor and provides the maximum data transfer rate of up to 52 Mbps. We implement the LAD, which is the VoDSL subscriber's equipment. The experimental results on the test bed network shows that the proposed hardware scheme successfully services most of the applications of the VoDSL services.

Analog Front-End Circuit Design for Bio-Potential Measurement (생체신호 측정을 위한 아날로그 전단 부 회로 설계)

  • Lim, Shin-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.130-137
    • /
    • 2013
  • This paper presents analog front-end(AFE) circuits for bio-potential measurement. The proposed AFE is composed of IA(instrument amplifier), BPF(band-pass filter), VGA(variable gain amplifier) and SAR(successive approximation register) type ADC. The low gm(LGM) circuits with current division technique and Miller capacitance with high gain amplifier enable IA to implement on-chip AC-coupling without external passive components. Spilt capacitor array with capacitor division technique and asynchronous control make the 12-b ADC with low power consumption and small die area. The total current consumption of proposed AFE is 6.3uA at 1.8V.

A Study of Transmission Time of ACL Packet in Bluetooth Wireless Link (블루투스 무선 링크에서 ACL 패킷의 전송 시간에 관한 연구)

  • Moon, Il-Young;Cho, Sung-Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.590-593
    • /
    • 2005
  • In this paper, it is analyzed a transmission time of ACL Packet in bluetooth wireless link. In order for segment to improve the transfer capability in bluetooth system, it is fragmented in TCP total messages that are coming down from upper layer and then the packets are sent one at time in baseband. And it is studied that transmission time for bluetooth wireless link according to DM1, DM3 or DM5 packet type in bluetooth piconet environment. From the results, we were able to obtain ACL packet transmission time, optimal TCP packet size and DM packet size.

  • PDF