DOI QR코드

DOI QR Code

Brief Overview on Design Techniques and Architectures of SAR ADCs

  • Received : 2020.12.07
  • Accepted : 2021.01.04
  • Published : 2021.03.31

Abstract

Successive Approximation Register (SAR) Analog-to-Digital Converters (ADC) seem to become the hottest ADC architecture during the past decade in implementing energy-efficient high performance ADCs. In this overview, we will review what kind of circuit techniques and architectural advances have contributed to place the SAR ADC architecture at its current position, beginning from a single SAR ADC and moving to various hybrid architectures. At the end of this overview, a recently reported compact and high-speed SAR-Flash ADC is introduced as one design example of SAR-based hybrid ADC architecture.

Keywords

References

  1. B. Murmann, "ADC Performance Survey 1997-2020," [Online]. Available: http://web.stanford.edu/-murmann/adcsurvey.html.
  2. M. Seo, Y. Roh, D. Chang, W. Kim, Y. Kim and S. Ryu, "A Reusable Code-Based SAR ADC Design With CDAC Compiler and Synthesizable Analog Building Blocks," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 12, pp. 1904-1908, Dec. 2018. https://doi.org/10.1109/tcsii.2018.2822811
  3. B. Razavi, "The StrongARM Latch [A Circuit for All Seasons]," in IEEE Solid-State Circuits Magazine, vol. 7, no. 2, pp. 12-17, Spring 2015. https://doi.org/10.1109/MSSC.2015.2418155
  4. S. M. Chen and R. W. Brodersen, "A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-µm CMOS," in IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2669-2680, Dec. 2006. https://doi.org/10.1109/JSSC.2006.884231
  5. S. Cho, C. Lee, S. Lee and S. Ryu, "A Two-Channel Asynchronous SAR ADC With Metastable-Then-Set Algorithm," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 4, pp. 765-769, April 2012. https://doi.org/10.1109/TVLSI.2011.2109743
  6. L. Kull et al., "A 3.1 mW 8b 1.2 GS/s Single-Channel Asynchronous SAR ADC With Alternate Comparators for Enhanced Speed in 32 nm Digital SOI CMOS," in IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3049-3058, Dec. 2013. https://doi.org/10.1109/JSSC.2013.2279571
  7. T. Jiang, W. Liu, F. Y. Zhong, C. Zhong, K. Hu and P. Y. Chiang, "A Single-Channel, 1.25-GS/s, 6-bit, 6.08-mW Asynchronous Successive-Approximation ADC With Improved Feedback Delay in 40-nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 47, no. 10, pp. 2444-2453, Oct. 2012. https://doi.org/10.1109/JSSC.2012.2204543
  8. B. Verbruggen, M. Iriguchi, and J. Craninckx, "A 1.7 mW 11b 250 MS/s 2-times interleaved fully dynamic pipelined SAR ADC in 40 nm Digital CMOS," IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 2880-2887, Dec. 2012. https://doi.org/10.1109/JSSC.2012.2217873
  9. B. P. Ginsburg and A. P. Chandrakasan, "An energy-efficient charge recycling approach for a SAR converter with capacitive DAC," in Proc. IEEE Int. Symp. Circuits and Systems, 2005, vol. 1, pp. 184-187.
  10. W.-Y. Pang et al., "A 10-bit 500-KS/s low power SAR ADC with splitting comparator for bio-medical applications," in Proc. IEEE A-SSCC, 2009, pp. 149-152.
  11. Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, "A 10-bit 100-MS/s reference-free SAR ADC in 90 nmCMOS," IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, Jun. 2010. https://doi.org/10.1109/JSSC.2010.2048498
  12. V. Hariprasath, J. Guerber, S.-H. Lee, and U.-K. Moon, "Merged capacitor switching based SAR ADC with highest switching energy-efficiency," Electron. Lett., vol. 46, no. 9, Apr. 2010.
  13. Sang-Hyun Cho, Chang-Kyo Lee, Jong-Kee Kwon, and Seung-Tak Ryu, "A 550μW 10b 40MS/s SAR ADC with Multistep Addition-only Digital Error Correction," IEEE Journal of Solid-State Circuits, vol. 46, no. 8, pp. 1881-1892, 2011. https://doi.org/10.1109/JSSC.2011.2151450
  14. C. Liu, S. Chang, G. Huang and Y. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010. https://doi.org/10.1109/JSSC.2010.2042254
  15. G.-Y. Huang, S.-J. Chang, C.-C. Liu, and Y.-Z. Lin, "A 1-uW 10-bit 200-kS/s SAR ADC With a Bypass Window for Biomedical Applications," IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2783-2795, Nov. 2012. https://doi.org/10.1109/JSSC.2012.2217635
  16. C.-Y. Liou and C.-C. Hsieh, "A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge-average switching DAC in 90nm CMOS," in IEEE ISSCC Dig. Tech. Papers, pp. 280-281, Feb. 2013.
  17. F. M. Yaul and A. P. Chandrakasan, "A 10 bit SAR ADC With Data-Dependent Energy Reduction Using LSB-First Successive Approximation," IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 2825-2834, Dec. 2014. https://doi.org/10.1109/JSSC.2014.2352304
  18. H. Tai, Y. Hu, H. Chen and H. Chen, "11.2 A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS," 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 196-197.
  19. Y. Hu, K. Lin and H. Chen, "A 510nW 12-bit 200kS/s SAR-assisted SAR ADC using a re-switching technique," 2017 Symposium on VLSI Circuits, Kyoto, 2017, pp. C238-C239.
  20. R. H. Walden, "Analog-to-digital converter survey and analysis," in IEEE Journal on Selected Areas in Communications, vol. 17, no. 4, pp. 539-550, April 1999. https://doi.org/10.1109/49.761034
  21. P. Harpe, C. Zhou, Y. Bi, N. van der Meijs, X. Wang, K. Philips, G. Dolmans, and H. de Groot, "A 26 W 8 bit 10 MS/s asynchronous SAR ADC for low energy radios," IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1585-1595, Jul. 2011. https://doi.org/10.1109/JSSC.2011.2143870
  22. P. Harpe, E. Cantatore and A. van Roermund, "A 10 b/12 b 40 kS/s SAR ADC with data-driven noise reduction achieving up to 10.1 b ENOB at 2.2 fJ/conversion-step", IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3011-3018, Dec. 2013. https://doi.org/10.1109/JSSC.2013.2278471
  23. W. Kim et al., "A 0.6 V 12 b 10 MS/s Low-Noise Asynchronous SAR-Assisted Time-Interleaved SAR (SATI-SAR) ADC," in IEEE Journal of Solid-State Circuits, vol. 51, no. 8, pp. 1826-1839, Aug. 2016. https://doi.org/10.1109/JSSC.2016.2563780
  24. V. Giannini, P. Nuzzo, V. Chironi, A. Baschirotto, G. Van der Plas and J. Craninckx, "An 820μW 9b 40MS/s Noise-Tolerant Dynamic-SAR ADC in 90nm Digital CMOS," 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, 2008, pp. 238-610.
  25. K. Bacrania, "A 12-bit successive-approximation-type ADC with digital error correction," in IEEE Journal of Solid-State Circuits, vol. 21, no. 6, pp. 1016-1025, Dec. 1986. https://doi.org/10.1109/JSSC.1986.1052644
  26. C. Liu et al., "A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation," 2010 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, 2010, pp. 386-387.
  27. S. Baek, J. Lee and S. Ryu, "An 88-dB Max-SFDR 12-bit SAR ADC With Speed-Enhanced ADEC and Dual Registers," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 9, pp. 562-566, Sept. 2013. https://doi.org/10.1109/TCSII.2013.2268434
  28. F. Kuttner, "A 1.2V 10b 20MSample/s non-binary successive approximation ADC in 0.13pm CMOS", IEEE Int. Solid-State Circuits Conf., pp. 176-177, Feb. 2002.
  29. C. Liu, C. Kuo and Y. Lin, "A 10 bit 320 MS/s Low-Cost SAR ADC for IEEE 802.11ac Applications in 20 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 50, no. 11, pp. 2645-2654, Nov. 2015. https://doi.org/10.1109/JSSC.2015.2466475
  30. Hae-Seung Lee and D. Hodges, "Self-calibration technique for A/D converters," in IEEE Transactions on Circuits and Systems, vol. 30, no. 3, pp. 188-190, March 1983. https://doi.org/10.1109/TCS.1983.1085339
  31. H. -. Lee, D. A. Hodges and P. R. Gray, "A self-calibrating 15 bit CMOS A/D converter," in IEEE Journal of Solid-State Circuits, vol. 19, no. 6, pp. 813-819, Dec. 1984. https://doi.org/10.1109/JSSC.1984.1052231
  32. D. Chang, W. Kim, M. Seo, H. Hong and S. Ryu, "Normalized-Full-Scale-Referencing Digital-Domain Linearity Calibration for SAR ADC," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 2, pp. 322-332, Feb. 2017. https://doi.org/10.1109/TCSI.2016.2612692
  33. K. Doris, E. Janssen, C. Nani, A. Zanikopoulos, and G. van der Weide, "A 480 mW 2.6 GS/s 10b Time-Interleaved ADC With 48.5 dB SNDR up to Nyquist in 65 nm CMOS," IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2821-2833, Dec. 2011. https://doi.org/10.1109/JSSC.2011.2164961
  34. M. J. Kramer, E. Janssen, K. Doris, and B. Murmann, "A 14 b 35 MS/s SAR ADC Achieving 75 dB SNDR and 99 dB SFDR With Loop-Embedded Input Buffer in 40 nm CMOS," IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 2891-2900, Dec. 2015. https://doi.org/10.1109/JSSC.2015.2463110
  35. T.-W. Kim, and Y.-C Chae, "A 2MHz BW Buffer-Embedded Noise-Shaping SAR ADC Achieving 73.8dB SNDR and 87.3dB SFDR," IEEE Custom Integrated Circuits Conference (CICC), Apr. 2019.
  36. M. -J. Seo, D. -H. Jin, Y. -D. Kim, J. -P. Kim and S. -T. Ryu, "A Single-Supply CDAC-Based Buffer-Embedding SAR ADC With Skip-Reset Scheme Having Inherent Chopping Capability," in IEEE Journal of Solid-State Circuits, vol. 55, no. 10, pp. 2660-2669, Oct. 2020. https://doi.org/10.1109/jssc.2020.3006450
  37. Z. Cao, S. Yan, and Y. Li, "A 32 mW 1.25 GS/s 6b 2b/step SAR ADC in 0.13 um CMOS," IEEE ISSCC Dig. Tech. Papers, Feb. 2008, pp. 542-543.
  38. H. Wei, C-H. Chan, U-F. Chio, S-W. Sin, S-P. U, R. Martins and F. Maloberti, "A 0.024mm2 8b 400MS/s SAR ADC with 2b/cycle and Resistive DAC in 65nm CMOS," IEEE ISSCC Dig. Tech. Papers, 2011. pp. 188-189.
  39. C.-H. Chan, Y. Zhu, S.-W. Sin, S.-P. U., and R. P. Martins, "A 3.8mW 8b 1GS/s 2b/cycle interleaving SAR ADC with compact DAC structure," in VLSI Circuits (VLSIC), 2012 Symposium on, 2012, pp. 86-87.
  40. Y.-C. Lien, "A 4.5-mW 8-b 750-MS/s 2-b/step asynchronous subranged SAR ADC in 28-nm CMOS technology," in VLSI Circuits (VLSIC), 2012 Symposium on, 2012, pp. 88-89.
  41. C. Chan, Y. Zhu, S. Sin, U. Seng-Pan and R. P. Martins, "26.5 A 5.5mW 6b 5GS/S 4×-lnterleaved 3b/cycle SAR ADC in 65nm CMOS," 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA, 2015.
  42. H. Hong et al., "A Decision-Error-Tolerant 45 nm CMOS 7b 1 GS/s Nonbinary 2b/Cycle SAR ADC," in IEEE Journal of Solid-State Circuits, vol. 50, no. 2, pp. 543-555, Feb. 2015. https://doi.org/10.1109/JSSC.2014.2364833
  43. H.-K. Hong, H.-W. Kang, B. Sung, C.-H. Lee, M. Choi, H.-J. Park and S.-T. Ryu, "An 8.6 ENOB 900MS/s Time-Interleaved 2b/cycle SAR ADC with a 1b/cycle Reconfiguration for Resolution Enhancement," IEEE ISSCC Dig. Tech. Papers, pp. 470-472, Feb. 2013.
  44. H. Hong et al., "26.7 A 2.6b/cycle-architecture-based 10b 1 GS/s 15.4mW 4×-time-interleaved SAR ADC with a multistep hardware-retirement technique," 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA, 2015, pp. 1-3.
  45. C. C. Lee and M. P. Flynn, "A 12b 50MS/s 3.5mW SAR assisted 2-stage pipeline ADC," 2010 Symposium on VLSI Circuits, Honolulu, HI, 2010, pp. 239-240.
  46. Y.-C. Lien, "A 14.6mW 12b 800MS/s 4× time-interleaved pipelined SAR ADC achieving 60.8dB SNDR with Nyquist input and sampling timining skew of 60fsrms without calibration," in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2016, pp. 1-2.
  47. Y. Zhu, C.-H. Chan, S. P. U, and R. P. Martins, "A 10-bit 500-MS/s partial-interleaving pipelined SAR ADC with offset and reference mismatch calibrations," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 1, pp. 354-363, Jan. 2017. https://doi.org/10.1109/TVLSI.2016.2576468
  48. B. Verbruggen, M. Iriguchi, M. de la Guia Solaz, G. Glorieux, K. Deguchi, B. Malki, and J. Craninckx, "A 2.1 mW 11b 410 MS/s dynamic pipelined SAR ADC with background calibration in 28nm Digital CMOS," in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2013, pp. 268-269.
  49. F. van der Goes et al., "A 1.5 mW 68 dB SNDR 80 Ms/s 2× Interleaved Pipelined SAR ADC in 28 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 49, no. 12, pp. 2835-2845, Dec. 2014. https://doi.org/10.1109/JSSC.2014.2361774
  50. B. Malki, B. Verbruggen, P. Wambacq, K. Deguchi, M. Iriguchi and J. Craninckx, "A complementary dynamic residue amplifier for a 67 dB SNDR 1.36 mW 170 MS/s pipelined SAR ADC," ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC), Venice Lido, 2014, pp. 215-218.
  51. H. Huang, H. Xu, B. Elies, and Y. Chiu, "A non-interleaved 12-b 330-MS/s pipelined-SAR ADC with PVT-stabilized dynamic amplifier achieving sub-1-dB SNDR variation," IEEE J. Solid-State Circuits, vol. 52, no. 12, pp. 3235-3247, Dec. 2017. https://doi.org/10.1109/JSSC.2017.2732731
  52. L. Kull, D. Luu, C. Menolfi, M. Braendli, P. A. Francese, T. Morf, M. Kossel, H. Yueksel, A. Cevrero, I. Ozkaya, and T. Toifl, "A 10b 1.5GS/s pipelined-SAR ADC with background second-stage common-mode regulation and offset calibration in 14nm CMOS FinFET," in IEEE Int. Solid-State Circuits Conf. Dig. Tech, Feb. 2017, pp. 474-475.
  53. K. Moon, D. Jo, W. Kim, M. Choi, H. Ko and S. Ryu, "A 9.1-ENOB 6-mW 10-Bit 500-MS/s Pipelined-SAR ADC With Current-Mode Residue Processing in 28-nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 54, no. 9, pp. 2532-2542, Sept. 2019. https://doi.org/10.1109/jssc.2019.2926648
  54. W. Jiang, Y. Zhu, M. Zhang, C. Chan and R. P. Martins, "A Temperature-Stabilized Single-Channel 1-GS/s 60-dB SNDR SAR-Assisted Pipelined ADC With Dynamic Gm-R-Based Amplifier," in IEEE Journal of Solid-State Circuits, vol. 55, no. 2, pp. 322-332, Feb. 2020. https://doi.org/10.1109/jssc.2019.2948170
  55. K. -J. Moon, D. -R. Oh, M. Choi and S. -T. Ryu, "A 28-nm CMOS 12-Bit 250-MS/s Voltage-Current-Time Domain 3-Stage Pipelined ADC," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 2843-2847, Dec. 2020. https://doi.org/10.1109/TCSII.2020.2990910
  56. C. Mangelsdorf, H. Malik, S. -. Lee, S. Hisano and M. Martin, "A two-residue architecture for multistage ADCs," 1993 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 1993, pp. 64-65.
  57. K. Cho, Y. Kwak, H. Kim, J. Boo, S. Lee and G. Ahn, "A 10-b 320-MS/s Dual-Residue Pipelined SAR ADC with Binary Search Current Interpolator," 2019 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, 2019, pp. 1-4.
  58. M. Seo, Y. Kim, J. Chung and S. Ryu, "A 40nm CMOS 12b 200MS/s Single-amplifier Dual-residue Pipelined-SAR ADC," 2019 Symposium on VLSI Circuits, Kyoto, Japan, 2019, pp. C72-C73.
  59. B. Sung et al., "A 6 bit 2 GS/s flash-assisted time-interleaved (FATI) SAR ADC with background offset calibration," 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC), Singapore, 2013, pp. 281-284.
  60. S. Lee, A. P. Chandrakasan and H. Lee, "22.4 A 1GS/s 10b 18.9mW time-interleaved SAR ADC with background timing-skew calibration," 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 384-385.
  61. B. Sung et al., "26.4 A 21fJ/conv-step 9 ENOB 1.6GS/S 2×time-interleaved FATI SAR ADC with background offset and timing-skew calibration in 45nm CMOS," 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA, 2015, pp. 1-3.
  62. P. Harpe, E. Cantatore and A. van Roermund, "An oversampled 12/14 b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1 dB SNDR", ISSCC Dig. Tech. Papers, pp. 194-195, 2014.
  63. Y. Chae, K. Souri and K. A. A. Makinwa, "A 6.3 ㎼ 20 bit Incremental Zoom-ADC with 6 ppm INL and 1 ㎶ Offset," in IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3019-3027, Dec. 2013. https://doi.org/10.1109/JSSC.2013.2278737
  64. K. Seo, I. Jang, K. Noh and S. Ryu, "An incremental zoom sturdy MASH ADC," 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, 2017, pp. 1013-1016.
  65. B. Gonen, S. Karmakar, R. van Veldhoven and K. A. A. Makinwa, "A Continuous-Time Zoom ADC for Low-Power Audio Applications," in IEEE Journal of Solid-State Circuits, vol. 55, no. 4, pp. 1023-1031, April 2020. https://doi.org/10.1109/jssc.2019.2959480
  66. B. Wu, S. Zhu, B. Xu and Y. Chiu, "15.1 A 24.7mW 45MHz-BW 75.3dB-SNDR SAR-assisted CT ΔΣ modulator with 2nd-order noise coupling in 65nm CMOS," 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2016, pp. 270-271.
  67. I. Jang et al., "A 4.2-mW 10-MHz BW 74.4-dB SNDR Continuous-Time Delta-Sigma Modulator With SAR-Assisted Digital-Domain Noise Coupling," in IEEE Journal of Solid-State Circuits, vol. 53, no. 4, pp. 1139-1148, April 2018. https://doi.org/10.1109/JSSC.2017.2778284
  68. J. A. Fredenburg and M. P. Flynn, "A 90-MS/s 11-MHz-Bandwidth 62-dB SNDR Noise-Shaping SAR ADC," in IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 2898-2904, Dec. 2012. https://doi.org/10.1109/JSSC.2012.2217874
  69. Y.-S. Shu, L.-T. Kuo, and T.-Y. Lo, "An oversampling SAR ADC with DAC mismatch error shaping achieving 105-dB SFDR and 101-dB SNDR over 1-kHz BW in 55-nm CMOS," in Proc. IEEE Int. Solid-State Circuits Conf., San Francisco, CA, 2015, pp. 458-459.
  70. W. Guo, H. Zhuang and N. Sun, "A 13b-ENOB 173dB-FoM 2nd-order NS SAR ADC with passive integrators," 2017 Symposium on VLSI Circuits, Kyoto, 2017, pp. C236-C237.
  71. S. Hwang et al., "A 2.7-M Pixels 64-mW CMOS Image Sensor With Multicolumn-Parallel Noise-Shaping SAR ADCs," in IEEE Transactions on Electron Devices, vol. 65, no. 3, pp. 1119-1126, March 2018. https://doi.org/10.1109/ted.2018.2795005
  72. S. Li, B. Qiao, M. Gandara, D. Z. Pan and N. Sun, "A 13-ENOB Second-Order Noise-Shaping SAR ADC Realizing Optimized NTF Zeros Using the Error-Feedback Structure," in IEEE Journal of Solid-State Circuits, vol. 53, no. 12, pp. 3484-3496, Dec. 2018. https://doi.org/10.1109/jssc.2018.2871081
  73. L. Jie, B. Zheng and M. P. Flynn, "20.3 A 50MHz-Bandwidth 70.4dB-SNDR Calibration-Free Time-Interleaved 4th-Order Noise-Shaping SAR ADC," 2019 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019, pp. 332-334.
  74. D. -R. Oh, K. -J. Moon, W. -M. Lim, Y. -D. Kim, E. -J. An and S. -T. Ryu, "An 8b 1GS/s 2.55mW SAR-Flash ADC with Complementary Dynamic Amplifiers," 2020 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 2020, pp. 1-2.
  75. G. Van der Plas, et al., "A 0.16pJ/conversion-step 2.5mW 1.25GS/s 4b ADC in a 90nm digital CMOS process," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2006, pp. 566-567.
  76. D.-R. Oh et al., "A 65-nm CMOS 6-bit 2.5-GS/s 7.5-mW 8×Time-Domain Interpolating Flash ADC With Sequential Slope-Matching Offset Calibration," IEEE J. Solid-State Circuits, vol. 54, no. 1, pp. 288-297, Jan. 2019. https://doi.org/10.1109/JSSC.2018.2870554