• Title/Summary/Keyword: Artinian modules

Search Result 36, Processing Time 0.027 seconds

LOCAL COHOMOLOGY MODULES WHICH ARE SUPPORTED ONLY AT FINITELY MANY MAXIMAL IDEALS

  • Hajikarimi, Alireza
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.633-643
    • /
    • 2010
  • Let a be an ideal of a commutative Noetherian ring R, M a finitely generated R-module and N a weakly Laskerian R-module. We show that if N has finite dimension d, then $Ass_R(H^d_a(N))$ consists of finitely many maximal ideals of R. Also, we find the least integer i, such that $H^i_a$(M, N) is not consisting of finitely many maximal ideals of R.

ON ENDOMORPHISM RINGS OF CS-MODULES

  • Kim, Chol-On;Kim, Hong-Kee;Lee, Yang
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.513-519
    • /
    • 1994
  • Endomorphism rings of Aritinian modules need not be semiperfect by a result of Camps and Mena [4], which answers in the negative to a question of Crawley and Jonsson[5]. However it was shown by Camps and Dicks[3] that endomorphism rings of a certain class of Artinian modules, we investigate some interesting structures of endormorphism rings of CS-modules.

  • PDF

τw-LOEWY MODULES AND THEIR APPLICATIONS

  • Kim, Hwankoo;Lim, Jung Wook;Zhou, Dechuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1617-1642
    • /
    • 2019
  • In this paper, we study a theory for the structure of ${\tau}_w$-Loewy series of modules over commutative rings, where ${\tau}_w$ is the hereditary torsion theory induced by the so-called w-operation, and explore the relationship between ${\tau}_w$-Loewy modules and w-Artinian modules.

A Generalization of Formal Local Cohomology Modules

  • Rezaei, Shahram
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.737-743
    • /
    • 2016
  • Let a and b be two ideals of a commutative Noetherian ring R, M a finitely generated R-module and i an integer. In this paper we study formal local cohomology modules with respect to a pair of ideals. We denote the i-th a-formal local cohomology module M with respect to b by ${\mathfrak{F}}^i_{a,b}(M)$. We show that if ${\mathfrak{F}}^i_{a,b}(M)$ is artinian, then $a{\subseteq}{\sqrt{(0:{\mathfrak{F}}^i_{a,b}(M))$. Also, we show that ${\mathfrak{F}}^{\text{dim }M}_{a,b}(M)$ is artinian and we determine the set $Att_R\;{\mathfrak{F}}^{\text{dim }M}_{a,b}(M)$.

Rings Whose Simple Singular Modules are PS-Injective

  • Xiang, Yueming;Ouyang, Lunqun
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.3
    • /
    • pp.471-476
    • /
    • 2014
  • Let R be a ring. A right R-module M is PS-injective if every R-homomorphism $f:aR{\rightarrow}M$ for every principally small right ideal aR can be extended to $R{\rightarrow}M$. We investigate, in this paper, rings whose simple singular modules are PS-injective. New characterizations of semiprimitive rings and semisimple Artinian rings are given.

MODULES WHOSE CLASSICAL PRIME SUBMODULES ARE INTERSECTIONS OF MAXIMAL SUBMODULES

  • Arabi-Kakavand, Marzieh;Behboodi, Mahmood
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.253-266
    • /
    • 2014
  • Commutative rings in which every prime ideal is an intersection of maximal ideals are called Hilbert (or Jacobson) rings. We propose to define classical Hilbert modules by the property that classical prime submodules are intersections of maximal submodules. It is shown that all co-semisimple modules as well as all Artinian modules are classical Hilbert modules. Also, every module over a zero-dimensional ring is classical Hilbert. Results illustrating connections amongst the notions of classical Hilbert module and Hilbert ring are also provided. Rings R over which all modules are classical Hilbert are characterized. Furthermore, we determine the Noetherian rings R for which all finitely generated R-modules are classical Hilbert.

ON ω-LOCAL MODULES AND Rad-SUPPLEMENTED MODULES

  • Buyukasik, Engin;Tribak, Rachid
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.971-985
    • /
    • 2014
  • All modules considered in this note are over associative commutative rings with an identity element. We show that a ${\omega}$-local module M is Rad-supplemented if and only if M/P(M) is a local module, where P(M) is the sum of all radical submodules of M. We prove that ${\omega}$-local nonsmall submodules of a cyclic Rad-supplemented module are again Rad-supplemented. It is shown that commutative Noetherian rings over which every w-local Rad-supplemented module is supplemented are Artinian. We also prove that if a finitely generated Rad-supplemented module is cyclic or multiplication, then it is amply Rad-supplemented. We conclude the paper with a characterization of finitely generated amply Rad-supplemented left modules over any ring (not necessarily commutative).

TORSION THEORY, CO-COHEN-MACAULAY AND LOCAL HOMOLOGY

  • Bujan-Zadeh, Mohamad Hosin;Rasoulyar, S.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.4
    • /
    • pp.577-587
    • /
    • 2002
  • Let A be a commutative ring and M an Artinian .A-module. Let $\sigma$ be a torsion radical functor and (T, F) it's corresponding partition of Spec(A) In [1] the concept of Cohen-Macauly modules was generalized . In this paper we shall define $\sigma$-co-Cohen-Macaulay (abbr. $\sigma$-co-CM). Indeed this is one of the aims of this paper, we obtain some satisfactory properties of such modules. An-other aim of this paper is to generalize the concept of cograde by using the left derived functor $U^{\alpha}$$_{I}$(-) of the $\alpha$-adic completion functor, where a is contained in Jacobson radical of A.A.

RINGS AND MODULES WHICH ARE STABLE UNDER NILPOTENTS OF THEIR INJECTIVE HULLS

  • Nguyen Thi Thu Ha
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.339-348
    • /
    • 2023
  • It is shown that every nilpotent-invariant module can be decomposed into a direct sum of a quasi-injective module and a square-free module that are relatively injective and orthogonal. This paper is also concerned with rings satisfying every cyclic right R-module is nilpotent-invariant. We prove that R ≅ R1 × R2, where R1, R2 are rings which satisfy R1 is a semi-simple Artinian ring and R2 is square-free as a right R2-module and all idempotents of R2 is central. The paper concludes with a structure theorem for cyclic nilpotent-invariant right R-modules. Such a module is shown to have isomorphic simple modules eR and fR, where e, f are orthogonal primitive idempotents such that eRf ≠ 0.

CHARACTERIZATION OF WEAKLY COFINITE LOCAL COHOMOLOGY MODULES

  • Moharram Aghapournahr;Marziye Hatamkhani
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.637-647
    • /
    • 2023
  • Let R be a commutative Noetherian ring, 𝔞 an ideal of R, M an arbitrary R-module and X a finite R-module. We prove a characterization for Hi𝔞(M) and Hi𝔞(X, M) to be 𝔞-weakly cofinite for all i, whenever one of the following cases holds: (a) ara(𝔞) ≤ 1, (b) dim R/𝔞 ≤ 1 or (c) dim R ≤ 2. We also prove that, if M is a weakly Laskerian R-module, then Hi𝔞(X, M) is 𝔞-weakly cofinite for all i, whenever dim X ≤ 2 or dim M ≤ 2 (resp. (R, m) a local ring and dim X ≤ 3 or dim M ≤ 3). Let d = dim M < ∞, we prove an equivalent condition for top local cohomology module Hd𝔞(M) to be weakly Artinian.