KYUNGPOOK Math. J. 56(2016), 737-743 http://dx.doi.org/10.5666/KMJ.2016.56.3.737 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

A Generalization of Formal Local Cohomology Modules

Shahram Rezaei

Department of Mathematics, Payame Noor University, Iran e-mail : sha.rezaei@gmail.com

ABSTRACT. Let \mathfrak{a} and \mathfrak{b} be two ideals of a commutative Noetherian ring R, M a finitely generated R-module and i an integer. In this paper we study formal local cohomology modules with respect to a pair of ideals. We denote the *i*-th \mathfrak{a} -formal local cohomology module M with respect to \mathfrak{b} by $\mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{b}}(M)$. We show that if $\mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{b}}(M)$ is artinian, then $\mathfrak{a} \subseteq \sqrt{(0:\mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{b}}(M))}$. Also, we show that $\mathfrak{F}^{\dim M}_{\mathfrak{a},\mathfrak{b}}(M)$ is artinian and we determine the set $\operatorname{Att}_{R} \mathfrak{F}^{\dim M}_{\mathfrak{a},\mathfrak{b}}(M)$.

1. Introduction

Throughout this paper, R is a commutative Noetherian ring with identity, \mathfrak{a} and \mathfrak{b} are two ideals of R and M is a finitely generated R-module. Let $\underline{x} = x_1, \dots, x_r$ denote a system of elements of R and $\mathfrak{b} := Rad(\underline{x}R)$. Let $C_{\underline{x}}$ denote the Čech complex of R with respect to \underline{x} . For an integer i, the cohomology module $\mathfrak{F}^i_{\mathfrak{a},\mathfrak{b}}(M) := H^i(\varprojlim(C_{\underline{x}} \otimes (M/\mathfrak{a}^n M)))$ is called the *i*-th \mathfrak{a} -formal local cohomology module M with

respect to \mathfrak{b} . If (R, \mathfrak{m}) is a local ring and $\mathfrak{b} = \mathfrak{m}$, we speak simply about the *i*-th \mathfrak{a} -formal local cohomology and denote it by $\mathfrak{F}^i_{\mathfrak{a}}(M)$ (see [12, Definition 3.1]). Note that by [12, Proposition 3.2], $\mathfrak{F}^i_{\mathfrak{a}}(M) \simeq \varprojlim_n \mathrm{H}^i_{\mathfrak{m}}(M/\mathfrak{a}^n M)$ for all $i \in \mathbb{Z}$.

In the case of a regular local ring, formal local cohomology modules have been studied by Peskine and Szpiro (cf. [10]). Formal local cohomology modules have been studied by several authors; see for example [12], [1], [6], [11] and [2].

In this paper we study some properties of formal local cohomology modules with respect to a pair of ideals of R.

Recall that for an *R*-module *M* and an ideal \mathfrak{a} , the cohomological dimension of *M* with respect to \mathfrak{a} defined as $\operatorname{cd}(\mathfrak{a}, M) := \max\{i \in \mathbb{Z} : \operatorname{H}^{i}_{\mathfrak{a}}(M) \neq 0\}$. For more details see [5]. In this paper we show that $\max\{i \in \mathbb{Z} : \mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{b}}(M) \neq 0\} = \operatorname{cd}(\mathfrak{b}, M/\mathfrak{a}M)$ and $\mathfrak{F}^{\dim M}_{\mathfrak{a},\mathfrak{b}}(M)$ is artinian. Also we show that if $\mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{b}}(M)$ is artinian

Received Januray 22, 2016; accepted October 12, 2016.

²⁰¹⁰ Mathematics Subject Classification:13D45, 13Exx.

Key words and phrases: attached primes, formal local cohomology, local cohomology.

⁷³⁷

Shahram Rezaei

then $\mathfrak{a} \subseteq \sqrt{(0:\mathfrak{F}^i_{\mathfrak{a},\mathfrak{b}}(M))}.$

A non-zero *R*-module *M* is called secondary if its multiplication map by any element *a* of *R* is either surjective or nilpotent. A secondary representation for an *R*-module *M* is an expression for *M* as a finite sum of secondary submodules. If such a representation exists, we will say that *M* is representable. A prime ideal \mathfrak{p} of *R* is said to be an attached prime of *M* if $\mathfrak{p} = (N :_R M)$ for some submodule *N* of *M*. If *M* admits a reduced secondary representation, $M = S_1 + S_2 + \ldots + S_n$, then the set of attached primes $\operatorname{Att}_R(M)$ of *M* is equal to $\{\sqrt{0}:_R S_i: i = 1, \ldots, n\}$ (see [8]). In [2], the author and M. H. Bijan-Zadeh have investigated the attached primes of $\mathfrak{F}_{\mathfrak{a}}^{\dim M}(M)$. Here, we detemine the set of attached primes of formal local cohomology module $\mathfrak{F}_{\mathfrak{a},\mathfrak{b}}^{\dim M}(M)$.

2. Main Results

The following result is important in this paper.

Proposition 2.1 Let \mathfrak{a} and \mathfrak{b} be two ideals of R and M an R-module. Then there is the following short exact sequence:

$$0 \to \varprojlim_{n} ^{1} \mathrm{H}^{i+1}_{\mathfrak{b}}(M/\mathfrak{a}^{n}M) \to \mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{b}}(M) \to \varprojlim_{n} \mathrm{H}^{i}_{\mathfrak{b}}(M/\mathfrak{a}^{n}M) \to 0.$$

for all $i \in \mathbb{Z}$.

Proof. See [12, Proposition 3.2].

We shall use the following lemma in the proof of some of our results.

Lemma 2.2. Let M and N be two finitely generated R-modules with $\operatorname{Supp}_R(N) \subseteq \operatorname{Supp}_R(M)$. Then $\operatorname{cd}(\mathfrak{a}, N) \leq \operatorname{cd}(\mathfrak{a}, M)$. In particular, $\operatorname{cd}(\mathfrak{a}, N) = \operatorname{cd}(\mathfrak{a}, M)$ whenever $\operatorname{Supp}_R(N) = \operatorname{Supp}_R(M)$.

Proof. [5, Theorem 1.2].

Theorem 2.3 Let \mathfrak{a} and \mathfrak{b} be two ideals of R and M a finitely generated R-module. If $t := \operatorname{cd}(b, M/\mathfrak{a}M)$, then $\mathfrak{F}^t_{\mathfrak{a},\mathfrak{b}}(M) \simeq \varprojlim \operatorname{H}^t_{\mathfrak{b}}(M/\mathfrak{a}^n M)$.

Proof. Since $\operatorname{Supp}_R(M/\mathfrak{a}M) = \operatorname{Supp}_R(M/\mathfrak{a}^n M)$, by Lemma 2.2 we have $\operatorname{cd}(\mathfrak{b}, M/\mathfrak{a}M) = \operatorname{cd}(\mathfrak{b}, M/\mathfrak{a}^n M) = t$ for all $n \in \mathbb{N}$. Thus $\operatorname{H}^{t+1}_{\mathfrak{b}}(M/\mathfrak{a}^n M) = 0$ for all $n \in \mathbb{N}$ and so $\varprojlim_n^1 \operatorname{H}^{t+1}_{\mathfrak{b}}(M/\mathfrak{a}^n M) = 0$. Therefore the result follows by Proposition 2.1

Theorem 2.4 Let \mathfrak{a} and \mathfrak{b} be two ideals of R and M a finitely generated R-module. Then $\max\{i \in \mathbb{Z} : \mathfrak{F}^i_{\mathfrak{a},\mathfrak{b}}(M) \neq 0\} = \operatorname{cd}(\mathfrak{b}, M/\mathfrak{a}M).$

Proof. Let $t := \operatorname{cd}(\mathfrak{b}, M/\mathfrak{a}M)$. By Lemma 2.2, $\operatorname{cd}(\mathfrak{b}, \mathfrak{a}^n M/\mathfrak{a}^{n+1}M) \leq t$ and

738

 $\operatorname{cd}(\mathfrak{b}, M/\mathfrak{a}M) = \operatorname{cd}(\mathfrak{b}, M/\mathfrak{a}^n M)$ for all $n \in \mathbb{N}$. Thus the short exact sequence

$$0 \to \mathfrak{a}^n M/\mathfrak{a}^{n+1}M \to M/\mathfrak{a}^{n+1}M \to M/\mathfrak{a}^n M \to 0$$

induces an epimorphism $\mathrm{H}^{t}_{\mathfrak{b}}(M/\mathfrak{a}^{n+1}M) \to \mathrm{H}^{t}_{\mathfrak{b}}(M/\mathfrak{a}^{n}M) \to 0$ of non-zero Rmodules for all $n \in \mathbb{N}$, and so $\varprojlim_{n} \mathrm{H}^{t}_{\mathfrak{b}}(M/\mathfrak{a}^{n}M) \neq 0$. Hence by Theorem 2.3, $\mathfrak{F}^{t}_{\mathfrak{a},\mathfrak{b}}(M) \neq 0$. On the other hand $\mathrm{H}^{i}_{\mathfrak{b}}(M/\mathfrak{a}^{n}M) = 0$ for all i > t. Thus from Proposition 2.1 we have $\mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{b}}(M) = 0$ for all i > t and this completes the proof. \Box

Theorem 2.5 Let \mathfrak{a} and \mathfrak{b} be two ideals of R and M a finitely generated R-module of finite dimension d. Then

i)
$$\mathfrak{F}^{d}_{\mathfrak{a},\mathfrak{b}}(M) \simeq \varprojlim_{n} \mathrm{H}^{d}_{\mathfrak{b}}(M/\mathfrak{a}^{n}M),$$

ii) $\mathfrak{F}^{d-1}_{\mathfrak{a},\mathfrak{b}}(M) \simeq \varprojlim_{n} \mathrm{H}^{d-1}_{\mathfrak{b}}(M/\mathfrak{a}^{n}M).$

Proof. i) Since dim $(M/\mathfrak{a}^n M) \leq d$ by Grothendieck's Vanishing Theorem, [3, 6.1.2], $\mathrm{H}^{d+1}_{\mathfrak{b}}(M/\mathfrak{a}^n M) = 0$ for all $n \in \mathbb{N}$, and so $\varprojlim_n^1 \mathrm{H}^{d+1}_{\mathfrak{b}}(M/\mathfrak{a}^n M) = 0$. Now the result

follows by Proposition 2.1.

ii) By [3, 6.1.2] and [3, 7.1.7], $\mathrm{H}^{d}_{\mathfrak{b}}(M/\mathfrak{a}^{n}M)$ is an artinian module for all $n \in \mathbb{N}$. Since \varprojlim_{n}^{1} vanishes on the projective system of artinian modules, we have $\lim_{n}^{1}\mathrm{H}^{d}_{\mathfrak{c}}(M/\mathfrak{a}^{n}M) = 0$. Therefore the result follows by Proposition 2.1.

 $\lim_{n \to \infty} {}^{1} \operatorname{H}^{d}_{\mathfrak{b}}(M/\mathfrak{a}^{n}M) = 0.$ Therefore the result follows by Proposition 2.1.

Theorem 2.6 Let \mathfrak{a} and \mathfrak{b} be two ideals of a ring R and M a finitely generated R-module of finite dimension d. Then $\mathfrak{F}^d_{\mathfrak{a},\mathfrak{b}}(M)$ is a homomorphic image of $\mathrm{H}^d_{\mathfrak{b}}(M)$, and so $\mathfrak{F}^d_{\mathfrak{a},\mathfrak{b}}(M)$ is an artinian R-module.

Proof. We have dim $\mathfrak{a}^n M \leq \dim M$ for all $n \in \mathbb{N}$, so that, by Grothendieck's Vanishing Theorem, the short exact sequence

$$0 \longrightarrow \mathfrak{a}^n M \longrightarrow M \longrightarrow M/\mathfrak{a}^n M \longrightarrow 0$$

induces an exact sequence

(

$$\mathrm{H}^{d}_{\mathfrak{b}}(M) \xrightarrow{\phi_{n}} \mathrm{H}^{d}_{\mathfrak{b}}(M/\mathfrak{a}^{n}M) \longrightarrow 0.$$

The family of *R*-modules $\{\ker \phi_n\}_{n \in \mathbb{N}}$ is a family of Artinian *R*-modules. Thus, the above exact sequence induces an exact sequence $\lim_{n} \operatorname{H}^d_{\mathfrak{b}}(M) \to \lim_{n} \operatorname{H}^d_{\mathfrak{b}}(M/\mathfrak{a}^n M) \to \lim_{n \to \infty} \operatorname{H}^d_{\mathfrak{b}}(M/\mathfrak{a}^n M)$

0. Hence by Theorem 2.5(i), we obtain an exact sequence $\mathrm{H}^{d}_{\mathfrak{b}}(M) \to \mathfrak{F}^{d}_{\mathfrak{a},\mathfrak{b}}(M) \to 0$. But by [3, 7.1.7], $\mathrm{H}^{d}_{\mathfrak{b}}(M)$ is artinian, and so the proof is complete.

Proposition 2.7 Let R be a ring and $(Q_n)_{n\geq 1}$ be an inverse system of R-modules, with maps $\varphi_{mn}: Q_m \to Q_n$ for $m \geq n$. Let \mathfrak{a} be an ideal of R such that $u^k Q_k = 0$

Shahram Rezaei

for all $u \in \mathfrak{a}$ and all $k \in \mathbb{N}$. If N is an arbitrary submodule of $\varprojlim_n Q_n$ such that $\varprojlim_n Q_n/N$ is non-zero and representable, then $\mathfrak{a} \subseteq \mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Att}_R(\varprojlim_n Q_n/N)$. Proof. Let $\varprojlim_n Q_n/N = S_1 + S_2 + \ldots + S_n$ be a minimal secondary representation of $\varprojlim_n Q_n/N$ where S_j is \mathfrak{p}_j -secondary for $j = 1, 2, \ldots, n$. Suppose that there exists an integer $j \in \{1, \ldots, n\}$ such that $\mathfrak{a} \not\subseteq \mathfrak{p}_j$ and look for a contradiction. Then there exists $u \in \mathfrak{a} \setminus \mathfrak{p}_j$. Take $0 \neq g = N + (g_k) \in S_j \subseteq \varprojlim_n Q_n/N$. Let g_k be the first nonzero component of g. Since $u \notin \mathfrak{p}_j$, we have $uS_j = S_j$. But $u^k S_j \subseteq u^k(\varprojlim_n Q_n/N)$, and so $S_j \subseteq u^k(\varprojlim_n Q_n/N)$. As $u^k Q_k = 0$, it follows that the k-th component of each element of $u^k(\varprojlim_n Q_n/N)$ is zero. But $g \in u^k(\varprojlim_n Q_n/N)$ and the k-th component of g is non-zero, which is a contradiction. \square

Proposition 2.8 Let \mathfrak{a} and \mathfrak{b} be two ideals of R, t an integer and M a finitely generated R-module. If $\varprojlim_{\mathfrak{b}} H^t_{\mathfrak{b}}(M/\mathfrak{a}^n M)$ is representable, then $\mathfrak{a} \subseteq \mathfrak{p}$ for all $\mathfrak{p} \in$

$$\operatorname{Att}_{R}(\varprojlim_{n} \operatorname{H}^{t}_{\mathfrak{b}}(M/\mathfrak{a}^{n}M)).$$

Proof. Since $u^k \operatorname{H}^t_{\mathfrak{b}}(M/\mathfrak{a}^k M) = 0$ for all $u \in \mathfrak{a}$ and $k \in \mathbb{N}$, the result follows by Proposition 2.7.

Proposition 2.9 Let \mathfrak{a} and \mathfrak{b} be two ideals of a ring R, t an integer and M a finitely generated R-module. If $\varprojlim_n^1 H^t_{\mathfrak{b}}(M/\mathfrak{a}^n M)$ is representable, then $\mathfrak{a} \subseteq \mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Att}_R(\varprojlim_n^1 H^t_{\mathfrak{b}}(M/\mathfrak{a}^n M))$.

Proof. Consider the inverse system $(\mathrm{H}^{t}_{\mathfrak{b}}(M/\mathfrak{a}^{n}M))_{n}$ with maps φ_{mn} for $m \geq n$. Take $Q_{n} := \prod_{i \leq n} (\mathrm{H}^{t}_{\mathfrak{b}}(M/\mathfrak{a}^{i}M)/\varphi_{ni}(\mathrm{H}^{t}_{\mathfrak{b}}(M/\mathfrak{a}^{n}M)))$. By [7, Proposition 4.2] there exists a submodule N of $\varprojlim_{n} Q_{n}$ such that $\varprojlim_{n}^{1} \mathrm{H}^{t}_{\mathfrak{b}}(M/\mathfrak{a}^{n}M) \simeq \varprojlim_{n} Q_{n}/N$. Let $k \in \mathbb{N}$. Since $u^{k} \mathrm{H}^{t}_{\mathfrak{b}}(M/\mathfrak{a}^{i}M) = 0$ for all $u \in \mathfrak{a}$ and $i \leq k$, we deduce that $u^{k}Q_{k} = 0$. Now the result follows by Proposition 2.7.

The following Theorem is one of our main results.

Theorem 2.10 Let \mathfrak{a} and \mathfrak{b} be two ideals of R, i an integer and M a finitely generated R-module. If $\mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{b}}(M)$ is artinian, then $\mathfrak{a} \subseteq \mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Att}_{R}(\mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{b}}(M))$. Proof. Proposition 2.1 implies that $\varprojlim_{n}^{1} \operatorname{H}^{i+1}_{\mathfrak{b}}(M/\mathfrak{a}^{n}M)$ and $\varprojlim_{n}^{1} \operatorname{H}^{i}_{\mathfrak{b}}(M/\mathfrak{a}^{n}M)$ are artinian modules. Since artinian modules are representable, by Proposition 2.9, $\operatorname{Att}_{R}(\varprojlim_{n}^{1} \operatorname{H}^{i+1}_{\mathfrak{b}}(M/\mathfrak{a}^{n}M)) \subseteq V(\mathfrak{a})$ and by Proposition 2.8, $\operatorname{Att}_{R}(\varprojlim_{n}^{1} \operatorname{H}^{i}_{\mathfrak{b}}(M/\mathfrak{a}^{n}M)) \subseteq$ $V(\mathfrak{a})$. Therefore

$$\operatorname{Att}_{R}(\mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{b}}(M)) \subseteq \operatorname{Att}_{R}(\varprojlim_{n}^{1} \operatorname{H}^{i+1}_{\mathfrak{b}}(M/\mathfrak{a}^{n}M)) \cup \operatorname{Att}_{R}(\varprojlim_{n}^{1} \operatorname{H}^{i}_{\mathfrak{b}}(M/\mathfrak{a}^{n}M)) \subseteq \operatorname{V}(\mathfrak{a})$$

and the proof is complete.

Let \mathfrak{a} and \mathfrak{b} be two ideals of a ring R and M a finitely generated R-module of finite dimension d. By Theorem 2.6, $\mathfrak{F}^d_{\mathfrak{a},\mathfrak{b}}(M)$ is an artinian R-module. In the following result, we determine the set $\operatorname{Att}_R(\mathfrak{F}^d_{\mathfrak{a},\mathfrak{b}}(M))$. This is based on the proof of [2, Theorem 3.1].

Theorem 2.12 Let \mathfrak{a} and \mathfrak{b} be two ideals of a Noetherian local ring (R, \mathfrak{m}) and M a finitely generated R-module of dimension d. Then

$$\operatorname{Att}_{R}(\mathfrak{F}^{d}_{\mathfrak{a},\mathfrak{b}}(M)) = \{\mathfrak{p} \in \operatorname{Ass} M : \operatorname{cd}(\mathfrak{b}, R/\mathfrak{p}) = d, \mathfrak{p} \supseteq \mathfrak{a}\}.$$

Proof. If $cd(\mathfrak{b}, M/\mathfrak{a}M) < \dim M$, then $\mathfrak{F}^d_{\mathfrak{a},\mathfrak{b}}(M) = 0$, and so

$$\operatorname{Att}_{R}(\mathfrak{F}^{d}_{\mathfrak{a},\mathfrak{b}}(M)) = \{\mathfrak{p} \in \operatorname{Ass} M : \operatorname{cd}(\mathfrak{b}, R/\mathfrak{p}) = d, \mathfrak{p} \supseteq \mathfrak{a}\} = \phi.$$

Thus we assume that $\operatorname{cd}(\mathfrak{b}, M/\mathfrak{a}M) = \dim M$. By Theorem 2.6, $\operatorname{Att}_R(\mathfrak{F}^d_{\mathfrak{a},\mathfrak{b}}(M)) \subseteq \operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{b}}(M))$ and by [4, Theorem A],

$$\operatorname{Att}_{R}(\operatorname{H}^{d}_{\mathfrak{h}}(M)) = \{\mathfrak{p} \in \operatorname{Ass} M : \operatorname{cd}(\mathfrak{b}, R/\mathfrak{p}) = d\}.$$

On the other hand, by Theorem 2.10, $\operatorname{Att}_R(\mathfrak{F}^d_{\mathfrak{a},\mathfrak{b}}(M)) \subseteq \operatorname{V}(\mathfrak{a})$. Therefore

$$\operatorname{Att}_{R}(\mathfrak{F}^{d}_{\mathfrak{a},\mathfrak{b}}(M)) \subseteq \{\mathfrak{p} \in \operatorname{Ass} M : \operatorname{cd}(\mathfrak{b}, R/\mathfrak{p}) = \dim M, \mathfrak{p} \supseteq \mathfrak{a}\}.$$

Let $\mathfrak{p} \in \operatorname{Ass} M$ such that $\operatorname{cd}(\mathfrak{b}, R/\mathfrak{p}) = \dim M$ and $\mathfrak{p} \supseteq \mathfrak{a}$. By [9, 6.8], there exists a \mathfrak{p} -primary submodule N of M such that $\operatorname{Ass}_R(M/N) = \{\mathfrak{p}\}$ and $\mathfrak{p} = \sqrt{(0:(M/N))}$. By the assumption $\mathfrak{a} \subseteq \mathfrak{p}$, and so $\sqrt{\mathfrak{a}} \subseteq \sqrt{(0:(M/N))}$. Hence

$$\sqrt{(0:(M/N)/\mathfrak{a}(M/N))} = \sqrt{\mathfrak{a} + (0:(M/N))} = \sqrt{(0:(M/N))}.$$

This implies that

$$\operatorname{Supp}_R((M/N)/\mathfrak{a}(M/N)) = \operatorname{Supp}_R(M/N) = \operatorname{Supp}_R(R/\mathfrak{p}),$$

and so by Lemma 2.2 we have

$$\operatorname{cd}(\mathfrak{b}, (M/N)/\mathfrak{a}(M/N)) = \operatorname{cd}(\mathfrak{b}, M/N) = \operatorname{cd}(\mathfrak{b}, R/\mathfrak{p}) = d$$

Now by Theorem 2.4, $\mathfrak{F}^d_{\mathfrak{a},\mathfrak{b}}(M/N) \neq 0$. Hence by Theorem 2.6,

$$\phi \neq \operatorname{Att}_{R}(\mathfrak{F}^{d}_{\mathfrak{a},\mathfrak{b}}(M/N)) \subseteq \operatorname{Att}_{R}(\operatorname{H}^{d}_{\mathfrak{b}}(M/N)) \subseteq \operatorname{Ass}_{R}(M/N) = \{\mathfrak{p}\}.$$

Shahram Rezaei

Therefore we have $\operatorname{Att}_R(\mathfrak{F}^d_{\mathfrak{a},\mathfrak{b}}(M/N) = \{\mathfrak{p}\}$. On the other hand, the exact sequence

$$0 \to N \to M \to M/N \to 0$$

induces an exact sequence $M/\mathfrak{a}^n M \to (M/N)/\mathfrak{a}^n(M/N) \to 0$ for all $n \in \mathbb{N}$. Thus we obtain an exact sequence $\mathrm{H}^d_b(M/\mathfrak{a}^n M) \to \mathrm{H}^d_b((M/N)/\mathfrak{a}^n(M/N)) \to 0$ for all $n \in \mathbb{N}$. If dim $(M/\mathfrak{a}^n M) \leqq d$ then $\mathrm{H}^d_b(M/\mathfrak{a}^n M) = 0$ for all $n \in \mathbb{N}$. But by the assumption $\mathrm{cd}(\mathfrak{b}, M/\mathfrak{a} M) = d$, and so $\mathrm{H}^d_b(M/\mathfrak{a}^n M) \neq 0$ for all $n \in \mathbb{N}$. Thus we conclude that dim $(M/\mathfrak{a}^n M) = d$ and by using [3, 7.1.7], $\mathrm{H}^d_b(M/\mathfrak{a}^n M)$ is artinian for all $n \in \mathbb{N}$. So \varprojlim_n is exact on the above exact sequence and we get the following exact sequence:

$$\varprojlim_n \mathrm{H}^d_b(M/\mathfrak{a}^n M) \to \varprojlim_n \mathrm{H}^d_b((M/N)/\mathfrak{a}^n(M/N)) \to 0$$

Thus by Theorem 2.3, there is an exact sequence:

$$\mathfrak{F}^d_{\mathfrak{a},\mathfrak{b}}(M) \to \mathfrak{F}^d_{\mathfrak{a},\mathfrak{b}}(M/N) \to 0.$$

Now $\mathfrak{p} \in \operatorname{Att}_R(\mathfrak{F}^d_{\mathfrak{a},\mathfrak{b}}(M/N))$ implies that $\mathfrak{p} \in \operatorname{Att}_R(\mathfrak{F}^d_{\mathfrak{a},\mathfrak{b}}(M))$. This completes the proof. \Box

The following corollary is due to Bijan-zadeh and the author [2].

Corollary 2.13 Let \mathfrak{a} be an ideal of a local ring (R, \mathfrak{m}) and M a finitely generated R-module of dimension d. Then

$$\operatorname{Att}_R \mathfrak{F}^d_{\mathfrak{a}}(M) = \{ \mathfrak{p} \in \operatorname{Ass} M : \dim(R/\mathfrak{p}) = \dim M, \mathfrak{p} \supseteq \mathfrak{a} \}.$$

Proof. Use the fact that $\operatorname{cd}(\mathfrak{m}, R/\mathfrak{p}) = \dim(R/\mathfrak{p})$ and $\mathfrak{F}^d_{\mathfrak{a},\mathfrak{m}}(M) \simeq \mathfrak{F}^d_{\mathfrak{a}}(M)$ and Theorem 2.12.

corollary 2.14 Let \mathfrak{a} be an ideal of a local ring (R, \mathfrak{m}) and let M and N be two finitely generated R-modules of dimension d such that $\operatorname{Supp}_R M = \operatorname{Supp}_R N$. Then $\operatorname{Att}_R \mathfrak{F}^d_{\mathfrak{a},\mathfrak{b}}(M) = \operatorname{Att}_R \mathfrak{F}^d_{\mathfrak{a},\mathfrak{b}}(N)$.

Proof. Since $\operatorname{Supp}_R M = \operatorname{Supp}_R N$, by [4, Corollary 3] $\operatorname{Att}_R \operatorname{H}^d_{\mathfrak{b}}(M) = \operatorname{Att}_R \operatorname{H}^d_{\mathfrak{b}}(N)$ and so $\operatorname{Att}_R \operatorname{H}^d_{\mathfrak{b}}(M) \cap \operatorname{V}(\mathfrak{a}) = \operatorname{Att}_R \operatorname{H}^d_{\mathfrak{b}}(N) \cap \operatorname{V}(\mathfrak{a})$. Thus by Theorem 2.12 we have $\operatorname{Att}_R \mathfrak{F}^d_{\mathfrak{a},\mathfrak{b}}(M) = \operatorname{Att}_R \mathfrak{F}^d_{\mathfrak{a},\mathfrak{b}}(N)$.

Acknowledgments. The author would like to thank the referee for his/her useful suggestions.

References

 M. Asgharzadeh, K. Divaani-Aazar, Finiteness properties of formal local cohomology modules and Cohen-Macaulayness, Comm. Algebra, 39(2011), 1082-1103.

- [2] M. H. Bijan-Zadeh, Sh. Rezaei, Artinianness and attached primes of formal local cohomology modules, Algebra Colloquium, 21(2)(2014), 307-316.
- [3] M. Brodmann, R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Univ. Press, 60(1988).
- [4] M. T. Dibaei, S. Yassemi, Attached primes of the top local cohomology modules with respect to an ideal, Archiv der Mathematik, 84(2005), 292-297.
- [5] K. Divaani-Aazar, R. Naghipour and M. Tousi, Cohomological dimension of certain algebraic varieties, Proc. Amer. Math. Soc., 130(2002), 3537-3544.
- [6] M. Eghbali, On Artinianness of formal local cohomology, colocalization and coassociated primes, Math. Scand., 113(1)(2013), 5-19.
- [7] R. Hartshorne, On the De Rham cohomology of algebraic varieties, Publ. Math. IHES, 45(1976), 5 - 99.
- [8] I. G. MacDonald, Secondary representations of modules over a commutative ring, in Symposia Mat. 11, Istituto Nazionale di alta Matematica, Roma, (1973), 23-43.
- [9] H. Matsumura, Commutative ring theory, Cambridge University Press, (1986).
- [10] C. Peskine, L. Szpiro, Dimension projective finie et cohomologie locale, Publ. Math. Inst. Hautes tud. Sci., 42, (1972), 47-119.
- [11] Sh. Rezaei, Minimaxness and finiteness properties of formal local cohomology modules, Kodai Math. J., 38(2)(2015), 430-436.
- [12] P. Schenzel, On formal local cohomology and connectedness, J. Algebra, 315(2)(2007), 894-923.