Browse > Article
http://dx.doi.org/10.4134/BKMS.2014.51.1.253

MODULES WHOSE CLASSICAL PRIME SUBMODULES ARE INTERSECTIONS OF MAXIMAL SUBMODULES  

Arabi-Kakavand, Marzieh (Department of Mathematical Sciences Isfahan University of Technology)
Behboodi, Mahmood (Department of Mathematical Sciences Isfahan University of Technology, School of Mathematics Institute for Research in Fundamental Sciences (IPM))
Publication Information
Bulletin of the Korean Mathematical Society / v.51, no.1, 2014 , pp. 253-266 More about this Journal
Abstract
Commutative rings in which every prime ideal is an intersection of maximal ideals are called Hilbert (or Jacobson) rings. We propose to define classical Hilbert modules by the property that classical prime submodules are intersections of maximal submodules. It is shown that all co-semisimple modules as well as all Artinian modules are classical Hilbert modules. Also, every module over a zero-dimensional ring is classical Hilbert. Results illustrating connections amongst the notions of classical Hilbert module and Hilbert ring are also provided. Rings R over which all modules are classical Hilbert are characterized. Furthermore, we determine the Noetherian rings R for which all finitely generated R-modules are classical Hilbert.
Keywords
Hilbert ring; Hilbert module; classical prime submodule;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Hungerford, Algebra, Springer-verlag 1997.
2 A. Kaucikas and R.Wisbauer, Noncommutative Hilbert rings. J. Algebra Appl. 3 (2004), no. 4, 437-443.   DOI   ScienceOn
3 M. Maani Shirazi and H. Sharif, Hilbert modules, Int. J. Pure Appl. Math. 20 (2005), no. 1, 1-7.
4 C. Procesi, Noncommutative Jacobson rings, Ann. Scuola Norm. Sup. Pisa 21 (1967), 281-290.
5 L. J., Jr. Ratliff, Hilbert rings and the chain condition for prime ideals, J. Reine Agnew. Math. 283/284 (1976), 154-163.
6 J. F. Watters, Polynomial extensions of Jacobson rings, J. Algebra 36 (1975), no. 2, 302-308.   DOI
7 J. F. Watters, The Brown-McCoy radical and Jacobson rings, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 24 (1976), no. 2, 91-99.
8 R. Wisbauer, Foundations of Modules and Ring Theory, Gordon and Breach Reading, 1991.
9 S. A. Amitsur and C. Procesi, Jacobson rings and Hilbert algebras with polynomial identities, Ann. Mat. Pura Appl. (4) 71 (1966), 61-72.   DOI
10 A. Azizi, Weakly prime submodules and prime submodules, Glasg. Math. J. 48 (2006), no. 2, 343-346.   DOI   ScienceOn
11 M. Baziar and M. Behboodi, Classical primary submodules and decomposition theory of modules, J. Algebra Appl. 8 (2009), no. 3, 351-362.   DOI   ScienceOn
12 M. Baziar, M. Behboodi, and H. Sharif, Uniformly classical primary submodules, Comm. Algebra 40 (2012), no. 9, 3192-3201.   DOI
13 M. Behboodi, Classical prime submodules, Ph.D Thesis, Chamran University Ahvaz Iran 2004.
14 M. Behboodi, A generalization of the classical krull dimension for modules, J. Algebra 305 (2006), no. 2, 1128-1148.   DOI   ScienceOn
15 M. Behboodi, On weakly prime radical of modules and semi-compatible modules, Acta Math. Hungar. 113 (2006), no. 3, 239-250.
16 M. Behboodi, A generalization of Baer's lower nilradical for modules, J. Algebra Appl. 6 (2007), no. 2, 337-353.   DOI   ScienceOn
17 M. Behboodi, On the prime radical and Baer's lower nilradical of modules, Acta Math. Hungar. 122 (2009), no. 3, 293-306.   DOI
18 M. Behboodi and H. Koohy, Weakly prime modules, Vietnam J. Math. 32 (2004), no. 2, 185-195.
19 M. Behboodi and S. H. Shojaei, On chains of classical prime submodules and dimension theory of modules, Bull. Iranian Math. Soc. 36 (2010), no. 1, 149-166.
20 M. Behboodi and M. J. Noori, Zariski-like topology on the classical prime spectrum of a module, Bull. Iranian Math. Soc. 35 (2009), no. 1, 255-271.
21 J. Dauns, Prime modules, J. Reine Angew. Math. 298 (1976), 156-181.
22 M. Ferrero and M. M. Parmenter, A note on Jacobson rings and polynomial rings, Proc. Amer. Math. Soc. 105 (1989), no. 2, 281-286.   DOI   ScienceOn
23 K. Fujita and S. Itoh, A note on Noetherian Hilbert rings, HiroshimaMath. J. 10 (1980), no. 1, 153-161.
24 O. Goldman, Hilbert rings and the Hilbert Nullstellensatz, Math. Z. 54 (1951), 136-140.   DOI
25 K. R. Goodearl and R. B. Warfild, An Introduction to Noncommutative Noetherian Rings, London Mathematical socity. Student Texts 16, Camberidge University Press, Cambrige 1989.