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Abstract. Let R be a ring. A right R-module M is PS-injective if every R-

homomorphism f : aR → M for every principally small right ideal aR can be extended

to R → M . We investigate, in this paper, rings whose simple singular modules are PS-

injective. New characterizations of semiprimitive rings and semisimple Artinian rings are

given.

1. Introduction

Throughout this paper, R is an associative ring with identity and all modules
are unitary. The Jacobson radical of R is denoted by J(R) and the right singular
ideal is denoted by Z(RR). For a ∈ R, l(a)(resp. r(a)) denote the left (resp. right)
annihilator of a in R. For the usual notations we refer the reader to [3], [7] and [10].

A right ideal I of R is called small if for every proper right ideal K of R,
K + I ̸= R. A right R-module M is right PS-injective if every R-homomorphism
f : aR → M for every principally small right ideal aR can be extended to R → M
(see [13]). The ring R is said to be right PS-injective if RR is right PS-injective.
This concept was introduced as a non-trivial generalization of right small injective
rings and right P -injective rings. Given a right R-module M , we set Z(M) = {x ∈
M |xI = 0 for some essential right ideal I of R}. The module M is called singular
module provided Z(M) = M . In what follows, we say that R satisfies (P) if every
simple singular right R-module is PS-injective. Recall that:

(1) A ring R is semiprimitive if J(R) = 0.
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(2) A right ideal of R is reduced if it contains no nonzero nilpotent elements.
(3) A ring R is called an MERT if every essential maximal right ideal of R

is an ideal.
(4) R is a left (right) Kasch ring if every maximal left (right) ideal

is a left (right) annihilator of R.
Motivated by the well known result of Kaplansky (i.e., A commutative ring R

is von Neumann regular if and only if every simple R-module is injective), many
authors studied rings whose simple (singular) modules are injective (P -injective,
GP -injective) (see [1], [2], [4-6], [9], [11], [12], [14], [15]). It was proven that: (1) R
is strongly regular if and only if R is a left (or right) quasi-duo ring whose simple left
R-modules are injective (or P -injective) (see [11]); (2) A ring R is strongly regular if
and only if R is a left duo ring whose simple singular left R-modules are P -injective
(see [14]); (3) A ring R is strongly regular if and only if R is a left duo ring whose
simple singular left R-modules are Y J-injective if and only if R is a left quasi-duo
ring whose simple left R-modules are Y J-injective (see [2]); (4) A ring R is strongly
regular if and only if R is a weakly right duo ring whose simple singular right R-
modules are right GP -injective (see [6]). The aim of present paper is to investigate
rings whose simple singular right R-modules are PS-injective. We prove that a NI
ring satisfying (P) are right nonsingular. Semiprimitive rings, nonsingular rings and
semisimple Artinian rings are characterized in terms of PS-injectivity.

2. Main Results

We start with the following lemmas needed frequently in the sequel.

Lemma 2.1. Let R satisfy (P). Then for any a ∈ J(R), there exists a right ideal
L of R such that (RaR+ r(a))⊕ L = R.

Proof. For the right ideal RaR+r(a) of R, there exists a right ideal L of R such that
(RaR + r(a))⊕ L is an essential right ideal of R. Suppose (RaR + r(a))⊕ L ̸= R.
Then it must be contained in a maximal right ideal M , whence M is essential.
Define f : aR → R/M by f(ax) = x +M for x ∈ R. It is easy to check that f is
well-defined. Since R satisfies (P), R/M is PS-injective. Thus there exists b ∈ R
such that 1+M = f(a) = (b+M)a = ba+M , and hence 1−ba ∈ M . Note that 1−ba
is invertible, contradicting with the maximality of M . Thus, (RaR+r(a))⊕L = R.
2

Lemma 2.2. Let R satisfy (P). Then J(R) ∩ Z(RR) = 0.

Proof. Take any 0 ̸= b ∈ J(R)
∩
Z(RR). By Lemma 2.1, there exists a right ideal

L of R such that (RbR+ r(b))⊕L = R. Since b ∈ Z(RR), r(b) is an essential right
ideal of R. Now r(b) ∩ L = 0, so L = 0. This proves that RbR + r(b) = R, and
hence r(b) = R because RbR is a small ideal of R. This implies b = 0, a required
contradiction. 2

Recall that a ring R is a NI ring [8] if the set of nilpotent elements N(R) in
R is an ideal. A ring R is a NI ring if and only if the nilradical Nil∗(R) = N(R).
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Obviously, 2-primal rings (i.e., P (R) = N(R), where P (R) is the prime radical of
R.) are NI rings.

Proposition 2.3. If R is a NI ring and satisfies (P), then R is right nonsingular.

Proof. Suppose that Z(RR) ̸= 0. Then Z(RR) contains nonzero nilpotent elements.
To see this, let 0 ̸= x ∈ Z(RR), so r(x) is an essential right ideal of R. Thus
r(x) ∩ xR ̸= 0, and hence there exists r ∈ R such that xr ̸= 0 and x2r = 0. So
we have (xrx)2 = 0, whence xrx = 0. It implies (xr)2 = 0, and hence xr = 0, a
contradiction.

Now take 0 ̸= b ∈ Z(RR) with b2 = 0, so b ∈ J(R) since R is a NI ring. Then
b ∈ J(R) ∩ Z(RR) = 0 by Lemma 2.2. This is a contradiction. 2

It is known that a ring R is semiprimitive if and only if every right simple R-
module is PS-injective (cf. [13, Proposition 2.18]). But a ring satisfying (P) need
not be semiprimitive by the following example.

Example 2.4. let R =

(
F 0
F F

)
, where F is a field. Then 0 ̸=

(
0 0
1 0

)
∈

J(R). Note that T =

(
F 0
F 0

)
is the unique essential maximal right ideal of

R. It is easy to show that every simple singular right R-module is PS-injective.

Now we consider when a ring R satisfying (P) is semiprimitive.

Proposition 2.5. If R satisfies (P) and every complement right ideal is an ideal,
then R is semiprimitive.

Proof. We first prove that J(R) contains no nonzero nilpotent elements. Let a ∈
J(R) with a2 = 0. So there exists a right ideal L of R such that r(a) ⊕ L is right
essential. By hypothesis, L is an ideal. Then aL ⊆ L ∩ r(a) = 0, so L ⊆ r(a), and
hence r(a) is an essential right ideal of R. Then a ∈ Z(RR). So a ∈ J(R)∩Z(RR) =
0 by Lemma 2.2.

Now let b ∈ J(R). By Lemma 2.1, there exists a right ideal L of R such that
((RbR+ r(b))⊕L = R. Thus RbR+ r(b) = eR with e2 = e ∈ R. So b2 = beb = b2ab
for some a ∈ R, and hence b2(1 − ab) = 0, which implies b2 = 0 because 1 − ab is
invertible. Thus b = 0 by the preceding result. 2

A ring is called a right duo ring if every right ideal is an ideal.

Corollary 2.6. If R is a right duo ring and satisfies (P), then it is semiprimitive.

Recall that a ring R is right weakly continuous [10] if R is semiregular and
J(R) = Z(RR). Examples of this rings include mininjective semiregular rings R in
which soc(RR) ⊆ess RR, P -injective semiregular rings, right continuous rings, and
the endomorphism rings of free continuous right modules.

Proposition 2.7. Let R be a right weakly continuous ring. If R satisfies (P), then
it is semiprimitive.
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Proof. Note that J(R) = Z(RR) since R is right weakly continuous. Thus, the
result follows by Lemma 2.2. 2

A ring R is called idempotent reflexive if eRa = 0 implies aRe = 0 for any a
and e2 = e ∈ R. Abelian rings and semiprime rings are idempotent reflexive. Now
we have the following results.

Theorem 2.8. The following are equivalent for a ring R.

(1) R is semiprimitive.

(2) R is a semiprime ring satisfying (P).

(3) R is an idempotent reflexive ring satisfying (P).

(4) R is a right PS-injective ring satisfying (P).

Proof. (1)⇒(2), (2)⇒(3) and (1)⇒(4) are trivial. (3)⇒(1). For any a ∈ J(R), by
lemma 2.1, there exists a right ideal L of R such that (RaR + r(a))⊕ L = R. Let
L = eR, where e2 = e ∈ R. Then eRaR = LRaR ⊆ RaR∩L = 0, and hence eRa =
0. Thus, aRe = 0 since R is an idempotent reflexive ring. So L ⊆ ReR ⊆ r(a). This
implies L = 0. Then we have RaR+ r(a) = R, and hence r(a) = R since RaR is a
small ideal of R. Therefore, a = 0. (4)⇒(1). By [13, Theorem 2.6], J(R) ⊆ Z(RR)
since R is right PS-injective. Then J(R) = J(R) ∩ Z(RR) = 0 by Lemma 2.2. 2

Remark 2.9. A left PS-injective ring satisfying (P) need not be semiprimitive.

For example, let R =

(
K 0
K A

)
, where K = Z2 and

A = {(a1, a2, · · · , an, a, a, · · · )| a, a1, a2, · · · ∈ K,n ∈ N}.

If k ∈ K and (a1, a2, · · · , an, a, a, · · · ) ∈ A, let k · (a1, a2, · · · , an, a, a, · · · ) = ka.

Then R =

(
K 0

K Z(N)
2

)
is the unique maximal essential right ideal of R, where

Z(N)
2 = {(a1, a2, · · · , an, 0, 0, · · · )| a, a1, a2, · · · ∈ Z2, n ∈ N}.

Analogous to the proof of [12,Example 2.13], we can show that R is a MERT,
left PS-injective ring and satisfies (P). But it is not semiprimitive because J(R) =(

0 0
Z2 0

)
̸= 0.

Lemma 2.10.([2,Lemma3.8]) A ring R is semisimple Artinian if and only if R has
no an essential maximal left(right) ideal.

Theorem 2.11. The following are equivalent for a ring R.

(1) R is a semisimple Artinian ring.

(2) R is a right Kasch ring satisfying (P).
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Proof. (1) ⇒ (2) is clear.
(2) ⇒ (1). Suppose that M ̸= 0 is an essential maximal right ideal of R. Since
R is a right Kasch ring, M = r(a) for some 0 ̸= a ∈ R. Then a ∈ Z(RR). Note
that aR ∼= R/M is simple, and hence aR ⊆ soc(RR). Thus (aR)2 ⊆ aRsoc(RR) =
asoc(RR) ⊆ aM = 0 since soc(RR) is the intersection of all essential right ideals of
R, whence aR ⊆ J(R). Then aR ⊆ Z(RR) ∩ J(R) = 0 by Lemma 2.2, and hence
a = 0, a contradiction. Therefore, R has no an essential maximal right ideal, and
hence (1) follows by Lemma 2.10. 2

Proposition 2.12. If R is an MERT, left Kasch, NI ring such that essential
maximal right ideals are PS-injective, then it is semisimple Artinian.

Proof. Assume that R is not semisimple Artinian, then it has an essential maximal
right ideal M by lemma 2.10. Thus M is an ideal since R is MERT. Let M1 be
a maximal left ideal of R containing M . Then, in view of [10, Proposition 1.44],
M1 = l(u) for some 0 ̸= u ∈ R since R is a left Kasch ring. Now M is an essential
right ideal of R, and hence M ∩ uR ̸= 0. Thus, there exists r ∈ R such that ur ̸= 0
and ur ∈ M , whence uru = 0 because M ⊆ M1, which yields (ur)2 = 0, and hence
ur ∈ J(R) since R is a NI ring. Then the inclusion map urR → M extends to
R → M by the PS-injectivity of M . Therefore ur = c · (ur) for some c ∈ M ⊆ M1,
whence 1 − c ∈ l(ur). But l(ur) = l(u) = M1. Thus 1 − c ∈ M1, which yields
1 ∈ M1, a contradiction. Then the result follows. 2
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