References
- J. S. Alin and E. P. Armendariz, A class of rings having all singular simple modules injective, Math. Scand., 23(1968), 233-240. https://doi.org/10.7146/math.scand.a-10915
- N. Q. Ding and J. L. Chen, Rings whose simple singular modules are Y J-injective, Math. Japonica, 40(1)(1994), 191-195.
- K. R. Goodearl, Ring Theory II: Nonsingular rings and modules, (M. Dekker, New York, 1976).
- J. M. Habeb, A note on zero commutative and duo rings, Math. J. Okayama Univ., 32(1990), 73-76.
- Y. Hirano and H. Tominaga, Regular rings, V-rings and their generalizations, Hiroshima Math. J., 9(1979), 137-149.
- N. K. Kim, S. B. Nam and J. Y. Kim, On simple singular gp-injective modules, Comm. Algebra, 27(5)(1999), 2087-2096. https://doi.org/10.1080/00927879908826551
- T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematic 189 (Springer-Verlag, 1999).
- G. Marks, On 2-primal Ore extensions, Comm. Algebra, 29(5)(2001), 2113-2123. https://doi.org/10.1081/AGB-100002173
- S. B. Nam, N. K. Kim and J. Y. Kim, On simple GP-injective modules, Comm. Algebra, 23(1995), 5437-5444. https://doi.org/10.1080/00927879508825543
- W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, (Cambridge University Press, Cambridge, 2003).
- M. B. Rege, On von Neumann regular rings and SF-rings, Math. Japon., 31(1986), 927-936.
- G. S. Xiao and W. T. Tong, Rings whose every simple left R-module is gp-injective, Southeast Asian Bull. Math., 30(2006), 969-980.
- Y. M. Xiang, Principally small injective rings, Kyungpook Math. J., 51(2)(2011), 177-185. https://doi.org/10.5666/KMJ.2011.51.2.177
- R. Yue Chi Ming, On von Neumann regular rings(II), Math. Scand., 39(1976), 167-170. https://doi.org/10.7146/math.scand.a-11654
- R. Yue Chi Ming, A note on biregular ring, Kyungpook, Math. J., 39(1999), 165-173.