Browse > Article
http://dx.doi.org/10.4134/JKMS.2010.47.3.633

LOCAL COHOMOLOGY MODULES WHICH ARE SUPPORTED ONLY AT FINITELY MANY MAXIMAL IDEALS  

Hajikarimi, Alireza (SCIENCE AND RESEARCH BRANCH ISLAMIC AZAD UNIVERSITY)
Publication Information
Journal of the Korean Mathematical Society / v.47, no.3, 2010 , pp. 633-643 More about this Journal
Abstract
Let a be an ideal of a commutative Noetherian ring R, M a finitely generated R-module and N a weakly Laskerian R-module. We show that if N has finite dimension d, then $Ass_R(H^d_a(N))$ consists of finitely many maximal ideals of R. Also, we find the least integer i, such that $H^i_a$(M, N) is not consisting of finitely many maximal ideals of R.
Keywords
associated prime ideals; generalized local cohomology modules; weakly Artinian modules; weakly Laskerian modules;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 M. Aghapournahr and L. Melkersson, Local cohomology and Serre subcategories, J. Algebra 320 (2008), no. 3, 1275-1287.   DOI   ScienceOn
2 K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules, Proc. Amer. Math. Soc. 133 (2005), no. 3, 655-660.   DOI   ScienceOn
3 J. Herzog, Komplex Auflosungen und Dualitat in der lokalen Algebra, Habilitationsschrift, Universitat Regensburg, 1970.
4 C. Huneke, Problems on local cohomology, Free resolutions in commutative algebra and algebraic geometry (Sundance, UT, 1990), 93-108, Res. Notes Math., 2, Jones and Bartlett, Boston, MA, 1992.
5 M. Katzman, An example of an infinite set of associated primes of a local cohomology module, J. Algebra 252 (2002), no. 1, 161-166.   DOI   ScienceOn
6 L. Melkersson, Some applications of a criterion for Artinianness of a module, J. Pure Appl. Algebra 101 (1995), no. 3, 291-303.   DOI   ScienceOn
7 J. Rotman, An Introduction to Homological Algebra, Academic Press, San Diego, 1979.
8 N. Bourbaki, Commutative Algebra, Chapters 1-7, Elements of Mathematics, Springer-Verlag, Berlin, 1998.
9 J. Asadollahi, K. Khashyarmanesh, and Sh. Salarian, On the finiteness properties of the generalized local cohomology modules, Comm. Algebra 30 (2002), no. 2, 859-867.   DOI   ScienceOn
10 J. Asadollahi and P. Schenzel, Cofiniteness of generalized local cohomology modules for principal ideals, preprint.
11 M. Brodmann and R. Y. Sharp, Local Cohomology: an algebraic introduction with geometric applications, Cambridge Univ. Press, 1998.
12 L. Chu and Z. Tang, On the Artinianness of generalized local cohomology, Comm. Algebra 35 (2007), no. 12, 3821-3827.   DOI   ScienceOn
13 N. T. Cuong and N. V. Hoang, Some finite properties of generalized local cohomology modules, East-West J. Math. 7 (2005), no. 2, 107-115.
14 K. Divaani-Aazar and A. Hajikarimi, Generalized local cohomology modules and homological Gorenstein dimensions, Comm. Algebra, to appear.
15 A. K. Singh, p-torsion elements in local cohomology modules, Math. Res. Lett. 7 (2000), no. 2-3, 165-176.   DOI