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TORSION THEORY, CO-COHEN-MACAULAY
AND LOCAL HOMOLOGY

MOHAMAD HOSIN BIJAN-ZADEH AND S. RASOULYAR

ABSTRACT. Let A be a commutative ring and M an Artinian A-
module. Let o be a torsion radical functor and (T, F) it’s corre-
sponding partition of Spec(A). In [1] the concept of Cohen-Macauly
modules was generalized. In this paper we shall define o-co-Cohen-
Macaulay (abbr. o-co-CM). Indeed this is one of the aims of this
paper, we obtain some satisfactory properties of such modules. An-
other aim of this paper is to generalize the concept of cograde by
using the left derived functor U (—) of the a-adic completion func-
tor, where a is contained in Jacobson radical of A.

1. Introduction, preliminaries and some properties of o-
cograde

Throughout this note A will denote a commutative ring with non-
zero identity and ¢ will be a torsion radical functor over A and (7, F)
will be it’s torsion theory corresponding o and (7', F') will be the cor-
responding partition of Spec(A) [see 2]. The elements of 7 are called
torsion modules and the modules in F are called torsion free modules.
We also use T to denote the set of minimal prime elements in T'. Let B
be another commutative ring and ¢ : A — B be a ring homomorphism.
We denote the direct image of o under ¢ by oy (See [3, Section 3]). Let
a be an ideal of A. Let T = v(a) = {p € Spec(A) : a C p} and (7q, Fq)
be the torsion theory corresponding to the partition (T, F) of Spec(A).
We denote the torsion functor corresponding to (7, F,) by oq4. It is easy
to see that the partition corresponding to o4 is T

We use N (Ng) to denote the set of positive (non-negative, respec-
tively) integers. We say that a sequence of elements z1,a,...,z, of A
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is a poor M-cosequence if

T4
O ‘M (:El)xZa s a‘ri—l) -—0 ‘M ($1,$2, e ,.’131'_1)
is surjective for ¢ = 1,2,...,n; it is an M-cosequence if, in addition,
0:p (z1,22,...,2,) # 0. In particular, z € A is called an M-coregular
element if M = M. It is easy to see that if zi,...,zn is an M-
cosequence then z;,T;y1,...,%, i8 0 :ps (z1,...,2;-1)-cosequence for

all i = 1,2,...,n. Let M be an Artinian A-module. Then {z € A :
M # M} = Upcaw,(ar) P> Where Atta(M) is the set of the attached
prime ideal of M (See [5, 2.6]).

PROPOSITION 1.1. (See [11, 1.9 and 1.10]). Let a be an ideal of A
and suppose that M be an Artinian A-module. Then

(i) M = aM if only if a contains an M-coregular element.
(i) If 1, z2, ..., Tn is a poor M-cosequence in 4, then Torﬁ(M, %)
~ (0:p (21,...,2Zn)) ®a % and Tor (M, %) =0 for any i < n.
iii) If (0 :pr a) £ O, then every maximal M-cosequence in a has finite
(iii) y
length.

Suppose that M is Artinian and a an ideal of A such that 0 :p7 a # 0.
Then we denote by cograde (M) the length of a maximal M-cosequence
in a. Note that, in view of 1.1, all such sequences have the same length
and cograde (M) = inf{n € Ny : Torﬁ(M,{:—) # 0} (if 0 :pr @ = O,
then cograde,(M) is interpreted as oco). If M # 0 is an Artinian A-
module and a is contained in Jacobson radical of A, then the assumption
0 :ar a # 0 is always satisfied (See [4, Corollary page 57]). Furthermore,
if (A, m) be a quasi local ring and M is a non-zero finitely generated and
Artinian A-module. Then cograde,(M) = 0.

Let a be an ideal of A. Then A-modules are given the a-adic topology.
The completion of an A-module M is denoted by M: thus M = lim %.

neN
The left derived functors of the a-adic completion functor are denoted by

Uf(—) and are called i-th local homology functors. These were studied
by Matlis when the ideal a is generated by a finite regular sequence and
are used in (8] where the ring is Noetherian. Let a be ideal of A. In [9]
U®(M) is defined by inf{i € Ny : U}(M) # 0}.

PROPOSITION 1.2. (See {9, 2.4]). Let a be an ideal of A. If a is
contained in Jacobson radical of A or if A is Noetherian, then, for each
A-module M

U%(M)=inf{i € Ny : Torf(é,M) # 0}.
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If M is an Artinian module and a is contained in Jacobson radical
then 0 :p a # 0. Therefore by Proposition 1.2 we have U%(M) =
cograde (M).

DEFINITION 1.3. Let M be an Artinian A-module. We define o-
cograde 4 (M) = inf{cograde, (M) : p € T}.

PROPOSITION 1.4. Let M be an Artinian A-module and a an ideal
of A. Then
(i) o-cograde 4(M) = inf{cograde,(M) : p € Tp}.
(ii) o-cograde 4(M) = inf{cograde,, (My):p € T}.
(ili) oq-cograde (M) = cograde,(M).

Proof. (i) It is evident from the definition that o-cograde (M) <
inf{cograde, (M) : p € Tp}. We may assume that o-cograde4(M) is fi-
nite. Let p € T be an prime ideal of A such that o-cograde (M) =
cograde,(M). There exists pg € Tp such that po C p. It follows
that inf{cogrades(M) : q € Ty} < cograde, (M) < cograde,(M) =
o -cograde 4 (M).

(ii) Since cograde,(M) < cograde, s (Mp) for all p € T', we have o-
cograde4 (M) < inf{cogradeyy, (My) : p € T} We may assume that
o-cograde 4 (M) is finite. Let p € Ty so that (0 :pr p) # 0 and choose a
maximal M-cosequence £ = 21,...,%, in p. Then p C quAttA(O:Mg) q.
It follows that there exists q € Att4(0 :ps z) with p C q (sincep € T
and p C q, it follows that q € T (See (2, 1.3])). Now qAg € Att(0 :ps )4
and (0 :p7 )4 =~ (0 :pg, ), the ideal of gA4 consist of non-coregular on
(0 :p, z) and z is a maximal Mg-cosequence.

(iii) Similar to the proof of (ii).

If M, is finitely generated for some p € T'N Supps(M) and M be
Artinian A-module, then o-cograde (M) = 0. Note that by 1.4(ii) o-
cograde 4 (M) = inf{UP** (M,) : p € T}. O

ProPOSITION 1.5. Let 0 — M' — M — M" — 0 be an exact
sequence of Artinian A-modules. Then one of the following must hold
(i) o-cograde4(M") > o-cograde 4(M') = o-cograde 4 (M)
(i) o-cograde 4(M) > o-cograde4(M") = 1 + o-cograde 4(M’)
(iif) o-cograde,(M’) > o-cograde,(M) = o-cograde 4(M")

Proof. Let n € Ny and o-cograde (M) =n+ 1.
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Case 1: o-cograde (M) =n + 1. The exact sequence 0 — M’ — M —
M" — 0 induces the long exact sequence

(%)
C s UM (M) — UP™ (M) — UM (M) — UP (M) — ..

for all p € T. We have UM (M,) = UP**(M}) = 0 for all p € T and
i = 0,1,...,n. Therefore by (%), UiPA”(M{,’) = 0 for all p € T and
i=0,1,...,n, thus o-cograde 4, (M") > n + 1.

Case 2: o-cograde 4(M) < n+1. By (x), we have UfA" (M) ~ UZPA” (M)
forallp € Tandi = 0,1,...,n, thus o-cograde 4, (M') > o-cograde 4(M")
= g-cograde 4 (M).

Case 3: o-cograde 4(M) > n+1. Hence we have U A (M) ~ Uffl" (My)
forallp € Tandi=1,2,...,n+1 and since the sequence UZﬁg(M{,’) —
Uzi’i(M{,) — 0 is exact for all p € T, o-cograde,(M") = n+ 2. The
case of o-cograde 4 (M') = oo is trivial. For the case o-cograde 4(M') =0
there exists p € T such that US** (M}) # 0, if US™" (Mj) # 0, then by ()

o-cograde 4 (M) = 0 and if UgA" (M,) = 0 then o-cograde,(M") =1. [
COROLLARY 1.6. Let 0 — M’ — M — M"” — 0 be an exact
sequence of Artinian A-modules. Then

o_cograde 4(M) > min{o_cograde (M), o_cograde ,(M")}

PROPOSITION 1.7. Let M be an Artinian A-module. Suppose that
T € (\yeq, P is an M-coregular. Then

o_cograde 4(0 :pr ) = o_cograde , (M) — 1

Proof. Since = € p is an M-coregular for all p € Tp, by [11, 1.12]
cograde,(0 :p x) = cograde,(M) — 1 for all p € Tp. Now by Properties
of infimum

o_cograde 4(0 :ps ) = o_cograde ,(M) — 1 O
COROLLARY 1.8. Let M be an Artinian A-module and z1,xs,...,Z,
€ (per, P Is an M-cosequence. Then g-cograde(0 :pr (21, ...,%;)) = o-

cograde,(M) —i for alli =1,2,...,n.
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Proof. We may assume that ¢ — cograde (M) < oco. Since (0 :ps
(x1,22,...,2:)) = (0 01 (1)) (Th415---,2;)) forall 1 <4 < nand
k <1i—1, the claim can be proved easily using the induction on n. O

DEFINITION 1.9. (See [3, Definition 1.1}). Let (7,F) be a torsion
theory and M an A-module. We define the (7', F)-dominant dimension
of M, denoted by (7,F) — da(M), as the least integer n for which the
n-th term E™(M) in a minimal injective resolution for M is not torsion
free, if any such integers exist and oo otherwise.

In [1] (7,F) — da(M) was denoted by o-grade (M), where ¢ is the
corresponding torsion functor to the (7,F). If A be a Noetherian ring
and M be finitely generated, then o-grade (M) = inf{grade,(M) : p €
To} (See [3, 4.3]).

REMARK 1.10. (See [3, p. 75]). Let A be a ring with a torsion
theory (7, F) and ¢ : A — B a ring homomorphism. Let (T, F) be the
partition of Spec(A) corresponding to (7, F) and (T'%, F'%) the partition
of Spec(B) corresponding to (7%, F?). If q € Spec(B), then q € T? if
and only if ¢~1(q) € T. It follows that q € (T%)o if only if ¢~1(q) € Tp.

Let E be the injective hull of the direct sum of all the % with m a
maximal ideal of A. The Matlis duality functor is defined by MV =
Hom A(M y E)

REMARK 1.11. Let M be an Artinian A-module. It follows from [7,
3.2) and the proof of {7, 2.2] that there exists a ring A’ with the following
properties:

(i) The ring A’ is semi-local commutative Noetherian complete in the
topology defined by its Jacobson radical.

(ii) The module M is, in a natural way, a faithful Artinian module
over A’, and moreover a subset of M is an A-module if and only
if it is an A’-module.

(iii) There exists a ring homomorphism ¢ : 4 — A’ such that the
structure of the bi-module M as A-module and A’-module are
compatible.

It is easy to deduce from 1.11 (iii) that (0 :ps I) = (0 :py ITA') for
every ideal I of A.

PROPOSITION 1.12. (i) Let A be a semi-local Noetherian ring. Sup-
pose that M is finitely generated A-module. Then o-cograde,(M") =
o_grade,(M).
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(ii) Let M be an Artinian A-module. Then o_cograde,(M) = oy-
grade 4, (M*) where ¢ : A — A’ is a ring homomorphism in 1.11 and
M* = Homy/ (M, E') such that E' is the injective hull of the direct sum
all %ﬁ with m’ a maximal ideal of A’.

Proof. (i) MY = Homu(M,E) is an Artinian A-module (See [5,
1.6(ii)]. Now, for all p € Ty such that (0 :prv p) # 0, it follows that
% ® M # 0. Now, by [9, 1.5] we have

cogradep(MV) = inf{i € Ny : Torf(-?,Mv) # 0}
s i A v
= inf{i € Ny : ((ExtA(E,M)) # 0}

A
= inf{i € No : Extiy(, M) # 0}
= grade, (M)

(ii) Let p € Tp such that (0 :as p) # 0. Then by {12, Remark 3(i)] we
have cograde, (M) = grade, 4, (M*). Now, it follows that from 1.10, 1.11
and [5, Theorem 1.6 (iii)

o_cograde 4 (M) = inf{cograde, (M) : p € To}
= inf{grade, 4 (M7) : pA' € (T%)0}
= g4 — grade 4 (M™)
(Note that if g € (T%)g and p = ¢~1(q), then pA’ € T¢ and pA’ C q.
Now by minimality q, we have q = pA’). 0

2. o-Krull dimension

Throughout this section M is an Artinian A-module. Let (A, m) be
a quasi-local ring. The Krull dimension of M (Kdima(M)) is defined
inductively as follows: when M = 0, put Kdim4(M) = —1. Then by in-
duction for any integer r > 0, put Kdim4 (M) = r, if (1) Kdima(M) <7
is false. (2) for any ascending chain Mo C My C M3 C ... of submod-
ules of M, there exists an integer n such that Kdim A(MMLJ:%) < r for all
1>mn.

Note that if M # 0, then by [6, Theorem 6], we have

Kdimys (M) = inf{i € Ny : there exist x1,...,z; € m such that
(0 :ar (@1, %2, - ..,7;)) has finite length}.
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In particular, Kdim4 (M) = 0 if M # 0 and it has finite length.
In this section some of the main points concerning Krull dimension
of M in [11] are extended.

DEFINITION 2.1. We define 0-Kdima(M) = sup{Kdimg, (My) : p €
Tp} if this supremum exists, and oo otherwise.
Let (A, m) be a quasi-local ring. Then

om-Kdima(M) = sup{Kdimg4, (My) : p € Tp = {m}} = Kdima(M)

COROLLARY 2.2. Let (A, m) be a quasi-local ring and Ty C Supp4(M)
Then o-Kdimg (M) < Kdima(M).

Proof. We may assume that M # 0. Let z1,79,...,2; € m such

that 1(0 :ar (21,...,2:)) < oo. Then I(0:py, (%,%2,...,2)) < oo for all
p € Spec(A).

Thus, Kdima(M) > Kdimga,(M,) for all p € Ty, which completes
the proof. g

PRrOPOSITION 2.3. Let 0 — M’ — M — M" — 0 be an exact
sequence of Artinian A-modules. Then

(i) o-Kdim4(M) = max{o_Kdims(M'),o_Kdim4(M")}. In partic-
n
ular o _Kdim4 (@ M) = o _Kdim4 (M) for all n € N.
1

(i) Let © € Ny P be a My-coregular element for all p € Tp. If
o_Kdima(M) is finite, then o-Kdim4 (0 :ps z) = o-Kdim4 (M) —1

Proof. (i) For all p € Ty, by the exact sequence 0 — My —
My, — My — 0 and [6, Proposition 1] we have Kdimg,(M,) =
max{Kdim4, (M), Kdima, (M,))}. Now we have

o_Kdima(M)

= sup{K dimga, (M,) : p € Tp}

= sup {max{K dimy, (M}), K dimg, (M)} :p € To}

= max {sup{K dimy, (M]) : p € Tp},sup{K dimg, (M) : p € To}}

= max{o-K dim4(M'),c_K dim4(M")}.

The last assertion is clear.
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(ii) For each p € To, { is a M, coregular element and Kdimga, (M)
is bounded. Thus by [11, 2.2], we have
o_Kdim4(0 :p z)

. x .
= sup ( {Kdima, (022, T) 9 € To, Kdimg, (My) > 0}

Utidima, (020, 3) : p € To, Kdlima, (M) = ~1or 0})
= sup({Kdimy, (Mp) — 1: p € Ty, Kdimgy, (M,) > 0}
= sup{Kdimg, (M) :pe To} —1
= og_Kdims (M) — 1.

Let A be a commutative ring and let I, J be ideals of A. Suppose
that M is an Artinian A-module. Then there exists a finitely generated
ideal Ip € I such that 0:3 (INJ)=0:p (JgNJ)and 0:ps T =0 157 I
(See [4, Lemma 3]). O

ProrosiTION 2.4. Let I,J be ideals of A. Then
o Kdima(0 :ps (I NJ)) = max{o_Kdima(0 :ps I),0_Kdima(0 :ps J))}.

Proof. We may assume that I is finitely generated, so suppose I =
(z1,z2,...,2,). Now, consider the exact sequence

0 — 0 I =50y (INT) -5 @0 :ar J),
1

where a(a) = (210,220, ...,zpa) for alla € 0:p (INJ), and use 2.3 (i)
to establish the result. .

PROPOSITION 2.5. Let I be an ideal of A. Then o_Kdima(0 :p;
Iy =0 _Kdima(0 :ps I) for all n € N.
Proof. For n € N, by [11, 2.5] we have
o_Kdima(0 :p I") = sup{Kdima, (0 :ps [")p: p € Tp}
= sup{Kdimg, (0 :ps, (Ip)") : p € T}
= sup{Kdim(0 :p, Ip) : p € Tp}. O

PROPOSITION 2.6. Let I be an ideal of A. Then
o-Kdims (M) = max{oc_Kdim(0 :ps I),c_Kdima(IM)}.



Torsion theory, co-Cohen-Macaulay and local homology 585

Proof. Since M is an Artinian A-module, by [4, Lemma 3] we have

(0:p I) = (0 :pr (21,...,25)) for some z1,29,...,2, € I. Then con-
sider an exact sequence 0 — 0 :ps [ SNy Y N D7 IM, where 3 is the
inclusion map and a(a) = (z1q,...,z,a) for all @ € M, and use 2.3(i)
to obtain the result. O

PROPOSITION 2.7. Let I be an ideal of A and M’ be a submodule of
M. Then o Kdima(0: xm I) < o Kdimu (0 :pr I).
M7

Proof. 1t follows immediately from the [11, 2.8]. |

COROLLARY 2.8. Let I be an ideal of A. Then

M
o Kdima(0:pr I) > U—KdimA(m) for all n€N.

Proof. By 2.5 and 2.7, for each n € N we have
o Kdimy(0 :p7 I) = 0 Kdim(0 :ps I") > 0 Kdim(0:_» I™)

mM

= U_Kdim(p]l\i/j

)- O

3. 0-Co-Cohen-Macaulay Modules

Throughout this section M is an Artinian A-module.

PROPOSITION 3.1. Let M be an A-module and Supp(M) NTy # ¢.
Then o_cograde 4(M) < o_K dim4(M).
Proof. By [11, 2.11] we have
o_cograde 4 (M) = inf{cograde, (M) : p € T}
< inf{cogradep 4, (M) : p € Tp}
< sup{Kdimga, (Mp) : p € T} = 0 Kdima(M). O

DeFINITION 3.2. Let M be a non-zero Artinian A-module. We say
that M is a 0-Co-Cohen-Macaulay (o-C-CM) module if ToNSupp4(M) =
¢ or o_cograde, (M) = o_Kdimy(M).

In particular, M is a Co-Cohen-Macaulay on quasi-local ring (A4, m)
if cograde (M) = Kdimu4(M).

PROPOSITION 3.3. Let (A,m) be a quasi-local ring. Then M is a
Co-CM module if and only if M is o0z-Co-CM module.
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Proof. We may assume that T = Ty = {m} C Supp(M). Then, we
have
om-Kdima (M) = sup{Kdimga, (M,) : p € To} = Kdim4 (M)
and by 1.4 (iii) om-cograde (M) = cograde,(M). 0

PROPOSITION 3.4. Let M be a non-zero A-module and M, is a
Noetherian Ap-module for all p € Ty N Suppy(M). Then M is a o-Co-
CM module.

Proof. We may assume that To N Suppy (M) # ¢. For all p € Ty N
Supps (M), My has a finite length. It follows that Kdimg,(M,) = 0.
By 3.1 o_cograde 4 (M) < 0_Kdim4(M) = 0, hence M is 6-Co-CM. [J

PROPOSITION 3.5. Let M be a 0-Co-CM module and Ty N Supp 4 (M)
# ¢. Then for all p € Ty NSuppy (M), M, is a Co-CM Ap-module.
Proof.
o-cograde (M) < inf{cograde,, (My) : p € To}
< sup{Kdimg, (Mp) : p € Tp}.
Since M is a 0-Co-CM, we have cograde, 4, (Mp) = Kdimg4, (M,) for all
p € To N Suppy(M). ]

PROPOSITION 3.6. Let x1,z9,...,x, be an M-cosequence in npeTo p,
o_Kdimg(M) < oo and M is 0-Co-CM. Then 0 :ps (x1,...,2,) be o-
Co-CM.

Proof. We may assume that Ty N Supp(M) # ¢ so that the result is
clear by Corollary 1.8 and Proposition 2.3(ii). O

PROPOSITION 3.7. Let S be a multiplicatively closed subset of A
such that pN S = ¢ for all p € T and To N Suppy (M) # ¢. Then

(i) S~lo_cogradeg 14(S™1M) = o_cograde 4(M)

(ii) S~lo_Kdimg-14(S™IM) = 0_Kdima (M)

Proof. Let p € Spec(A) and pNS = ¢. Then by 1.10 p € T if and only
if S~!p € T¢ in which ¢ : A — S~'A is the canonical homomorphism.
It follows that p € Ty if and only if S~!p € (T'%)g, where (T%) is the set
of minimal elements of T°%.

(i) S~lo_cogradeg-1,4 (S™IM)

= inf{cogrades_1p(5_1A)571p (S7IM)g-1,: S71p € T?}
= inf{(cograde, 4, (My) : p € T} = o_cograde, (M)
(ii) In a similar way of (i). O
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COROLLARY 3.8. In the situation of 3.7, M is a 0-Co-CM if and only
if S7IM is a S~1o-Co-CM module over S~1A.

Proof. Forp € T, (S™*M)g-1, = My and thus To N Supp, (M) # ¢ if
and only if (7%)g N Suppg-14(S~*M) # ¢. Now by proposition 3.7 the
statement is obvious. (N
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