• Title/Summary/Keyword: Adiabatic logic

Search Result 17, Processing Time 0.02 seconds

Symmetric Adiabatic Logic Circuits against Differential Power Analysis

  • Choi, Byong-Deok;Kim, Kyung-Eun;Chung, Ki-Seok;Kim, Dong-Kyue
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.166-168
    • /
    • 2010
  • We investigate the possibility of using adiabatic logic as a countermeasure against differential power analysis (DPA) style attacks to make use of its energy efficiency. Like other dual-rail logics, adiabatic logic exhibits a current dependence on input data, which makes the system vulnerable to DPA. To resolve this issue, we propose a symmetric adiabatic logic in which the discharge paths are symmetric for data-independent parasitic capacitance, and the charges are shared between the output nodes and between the internal nodes, respectively, to prevent the circuit from depending on the previous input data.

Two Phase Clocked Adiabatic Static CMOS Logic and its Logic Family

  • Anuar, Nazrul;Takahashi, Yasuhiro;Sekine, Toshikazu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • This paper proposes a two-phase clocked adiabatic static CMOS logic (2PASCL) circuit that utilizes the principles of adiabatic switching and energy recovery. The low-power 2PASCL circuit uses two complementary split-level sinusoidal power supply clocks whose height is equal to $V_{dd}$. It can be directly derived from static CMOS circuits. By removing the diode from the charging path, higher output amplitude is achieved and the power consumption of the diode is eliminated. 2PASCL has switching activity that is lower than dynamic logic. We also design and simulate NOT, NAND, NOR, and XOR logic gates on the basis of the 2PASCL topology. From the simulation results, we find that 2PASCL 4-inverter chain logic can save up to 79% of dissipated energy as compared to that with a static CMOS logic at transition frequencies of 1 to 100 MHz. The results indicate that 2PASCL technology can be advantageously applied to low power digital devices operated at low frequencies, such as radio-frequency identifications (RFIDs), smart cards, and sensors.

Design of Low-power Clock Generator Synchronized with the AC Power Source Using the ADCL Buffer for Adiabatic Logics (ADCL 버퍼를 이용한 단열 논리회로용 AC 전원과 동기화된 저전력 클럭 발생기 설계)

  • Cho, Seung-Il;Kim, Seong-Kweon;Harada, Tomochika;Yokoyama, Michio
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1301-1308
    • /
    • 2012
  • In this paper, the low-power clock generator synchronized with the AC power signal using the adiabatic dynamic CMOS logic (ADCL) buffer is proposed for adiabatic logics. To reduce the power dissipation in conventional CMOS logic and to maintain adiabatic charging and discharging with low power for the ADCL, the clock signal of logic circuits should be synchronized with the AC power source. The clock signal for an adiabatic charging and discharging with the AC power signal was generated with the designed Schmitt trigger circuit and ADCL frequency divider using the ADCL buffer. From the simulation result, the power consumption of the proposed clock generator was estimated with approximately 1.181uW and 37.42uW at output 3kHz and 10MHz respectively.

A 16-bit adiabatic macro blocks with supply clock generator for micro-power RISC datapath

  • Lee, Hanseung;Inho Na;Lee, Chanho;Yong Moon
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1563-1566
    • /
    • 2002
  • A 16-bit adiabatic datapath for micro-power RISC processor is designed. The datapath is composed of a 3-read and 1-write multi-port adiabatic register file and an arithmetic and logic unit. A four-phase clock generator is also designed to provide supply clocks fer adiabatic circuits and the driving capability control scheme is proposed. All the clock line charge on the capacitive interconnections is recovered to recycle energy. Adiabatic circuits are designed based on efficient charge recovery logic(ECRL) and are implemented using a 0.35 fm CMOS technology. Functional and energy simulation is carried out to show the feasibility of adiabatic datapath. Simulation results show that the power consumption of the adiabatic datapath including supply clock generator is reduced by a factor of 1.4∼1.5 compared to that of the conventional CMOS.

  • PDF

Optimized Design of Low-power Adiabatic Dynamic CMOS Logic Digital 3-bit PWM for SSL Dimming System

  • Cho, Seung-Il;Mizunuma, Mitsuru;Yokoyama, Michio
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.4
    • /
    • pp.248-254
    • /
    • 2013
  • The size and power consumption of digital circuits including the dimming circuit part will increase for high-performance solid state lighting (SSL) systems in the future. This study examined the low-power consumption of adiabatic dynamic CMOS logic (ADCL) due to the principles of adiabatic charging. Furthermore, the designed low-power ADCL digital pulse width modulation (PWM) was optimized for SSL dimming systems. For this purpose, an ADCL digital 3-bit PWM was optimized in two steps. In the first step, the architecture of the ADCL digital 3-bit PWM was miniaturized. In the second step, the clock cut-off circuit was designed and added to the ADCL PWM. As a result, compared to the original configuration, 60 transistors and 15 capacitors of ADCL digital 3-bit PWM were reduced for miniaturization. Moreover, the clock cut-off circuit, which controls wake-up and sleep mode of ADCL D-FFs, was designed. The power consumption of an optimized ADCL digital PWM for all bit patterns decreased by 54 %.

  • PDF

A Design and Implementation of 16-bit Adiabatic ALU for Micro-Power Processor (초저전력 프로세서용 16-bit 단열 ALU의 설계 및 구현)

  • Lee, Han-Seung;Na, In-Ho;Moon, Yong;Lee, Chan-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.3
    • /
    • pp.101-108
    • /
    • 2004
  • A 16-bit adiabatic ALU(arithmetic logic unit) is designed. A simplified four-phase clock generator is also designed to provide supply clocks for the adiabatic circuits. All the clock line charge on the capacitive interconnections is recovered to recycle energy. Adiabatic circuits are designed based on ECRL (efficient charge recovery logic) using a 0.35${\mu}{\textrm}{m}$ CMOS technology. The post-layout simulation results show that the power consumption of the adiabatic ALU including supply clock generator is reduced by a factor of 1.15-1.77 compared to the conventional CMOS ALU with the same structure.

A Low Power 16-Bit RISC Microprocessor Using ECRL Circuits

  • Shin, Young-Joon;Lee, Chan-Ho;Moon, Yong
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.513-519
    • /
    • 2004
  • This paper presents a low power 16-bit adiabatic reduced instruction set computer (RISC) microprocessor with efficient charge recovery logic (ECRL) registers. The processor consists of registers, a control block, a register file, a program counter, and an arithmetic and logical unit (ALU). Adiabatic circuits based on ECRL are designed using a $0.35{\mu}m$ CMOS technology. An adiabatic latch based on ECRL is proposed for signal interfaces for the first time, and an efficient four-phase supply clock generator is designed to provide power for the adiabatic processor. A static CMOS processor with the same architecture is designed to compare the energy consumption of adiabatic and non-adiabatic microprocessors. Simulation results show that the power consumption of the adiabatic microprocessor is about 1/3 compared to that of the static CMOS microprocessor.

  • PDF

A Design of 16-bit Adiabatic Low-Power Microprocessor (단열회로를 이용한 16-bit 저전력 마이크로프로세서의 설계)

  • Shin, Young-Joon;Lee, Byung-Hoon;Lee, Chan-Ho;Moon, Yong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.6
    • /
    • pp.31-38
    • /
    • 2003
  • A 16-bit adiabatic low-power Microprocessor is designed. The processor consists of control block, multi-port register file, program counter, and ALU. An efficient four-phase clock generator is also designed to provide power clocks for adiabatic processor. Adiabatic circuits based on efficient charge recovery logic(ECRL), are designed 0.35,${\mu}{\textrm}{m}$ CMOS technology. Conventional CMOS processor is also designed to compare the energy consumption of microprocessors. Simulation results show that the power consumption of the adiabatic microprocessor is reduced by a factor of 2.9∼3.1 compared to that of conventional CMOS microprocessor.

A design of 16-bit adiabatic Microprocessor core

  • Youngjoon Shin;Lee, Hanseung;Yong Moon;Lee, Chanho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.4
    • /
    • pp.194-198
    • /
    • 2003
  • A 16-bit adiabatic low-power Micro-processor core is designed. The processor consists of control block, multi-port register file and ALU. A simplified four-phase clock generator is designed to provide supply clocks for adiabatic processor. All the clock line charge on the capacitive interconnections is recovered to recycle the energy. Adiabatic circuits are designed based on ECRL(efficient charge recovery logic) and $0.35\mu\textrm$ CMOS technology is used. Simulation results show that the power consumption of the adiabatic Microprocessor core is reduced by a factor of 2.9~3.1 compared to that of conventional CMOS Microprocessor

Power Supply Circuits with Small size for Adiabatic Dynamic CMOS Logic Circuits

  • Sato, Masashi;Hashizume, Masaki;Yotuyanagi, Hiroyuki;Tamesada, Takeomi
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.179-182
    • /
    • 2000
  • Adiabatic dynamic CMOS logic circuits, which are called ADCL circuits, promise us to implement low power logic circuits. Since the power supply source for ADCL circuits had not been developed, we proposed a power supply circuit for them. It is shown experimentally that by using the power supply circuit ADCL circuits can work with lower power consumption than conventional static CMOS circuit. In this paper, the power supply circuit is improved so that the power consumption can be reduced. Also, it is shown by some experiments that by using the circuit, ADCL circuits can work with lower power consumption than before Improving.

  • PDF