• Title/Summary/Keyword: 65-nm CMOS

Search Result 156, Processing Time 0.019 seconds

The Impact of Gate Leakage Current on PLL in 65 nm Technology: Analysis and Optimization

  • Li, Jing;Ning, Ning;Du, Ling;Yu, Qi;Liu, Yang
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.99-106
    • /
    • 2012
  • For CMOS technology of 65 nm and beyond, the gate leakage current can not be negligible anymore. In this paper, the impact of the gate leakage current in ring voltage-controlled oscillator (VCO) on phase-locked loop (PLL) is analyzed and modeled. A voltage -to-voltage (V-to-V) circuit is proposed to reduce the voltage ripple on $V_{ctrl}$ induced by the gate leakage current. The side effects induced by the V-to-V circuit are described and optimized either. The PLL design is based on a standard 65 nm CMOS technology with a 1.8 V power supply. Simulation results show that 97 % ripple voltage is smoothed at 216 MHz output frequency. The RMS and peak-to-peak jitter are 3 ps and 14.8 ps, respectively.

A 65-nm CMOS Low-Power Baseband Circuit with 7-Channel Cutoff Frequency and 40-dB Gain Range for LTE-Advanced SAW-Less RF Transmitters (LTE-Advanced SAW-Less 송신기용 7개 채널 차단 주파수 및 40-dB 이득범위를 제공하는 65-nm CMOS 저전력 기저대역회로 설계에 관한 연구)

  • Kim, Sung-Hwan;Kim, Chang-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.678-684
    • /
    • 2013
  • This paper describes a low-power baseband circuit for SAW-less LTE-Advanced transmitters. The proposed transmitter baseband circuit consists of a 2nd-order Tow-Thomas type active RC-LPF and a 1st-order passive RC LPF. It can provide a 7 multi-channel cut-off frequencies and wide gain control range of -41 dB ~ 0 dB with a 1-dB step. The proposed 2nd-order active RC-LPF adopts an op-amp in which three other sub-op amps are in parallel connected to reduce DC current for different cutoff frequency. In addition, each sub-op amp adopts both Miller and feed-forward phase compensation method to achieve an UGBW of more than 1-GHz with a small DC power consumption. The proposed baseband circuit is implemented in 65-nm CMOS technology, consuming DC power from 6.3 mW to 24.1 mW from a 1.2V supply voltage for each different cut-off frequency.

A Transformer-Matched Millimeter-Wave CMOS Power Amplifier

  • Park, Seungwon;Jeon, Sanggeun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.687-694
    • /
    • 2016
  • A differential power amplifier operating at millimeter-wave frequencies is demonstrated using a 65-nm CMOS technology. All of the input, output, and inter-stage network are implemented by transformers only, enabling impedance matching with low loss and a wide bandwidth. The millimeter-wave power amplifier exhibits measured small-signal gain exceeding 12.6 dB over a 3-dB bandwidth from 45 to 56 GHz. The output power and PAE are 13 dBm and 11.7%, respectively at 50 GHz.

A 120 GHz Voltage Controlled Oscillator Integrated with 1/128 Frequency Divider Chain in 65 nm CMOS Technology

  • Kim, Namhyung;Yun, Jongwon;Rieh, Jae-Sung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.131-137
    • /
    • 2014
  • A 120 GHz voltage controlled oscillator (VCO) with a divider chain including an injection locked frequency divider (ILFD) and six static frequency dividers is demonstrated using 65-nm CMOS technology. The VCO is designed based on the LC cross-coupled push-push structure and operates around 120 GHz. The 60 GHz ILFD at the first stage of the frequency divider chain is based on a similar topology as the core of the VCO to ensure the frequency alignment between the two circuit blocks. The static divider chain is composed of D-flip flops, providing a 64 division ratio. The entire circuit consumes a DC power of 68.5 mW with the chip size of $1385{\times}835{\mu}m^2$.

Implementation of a CMOS FM RX front-end with an automatic tunable input matching network (자동 변환 임피던스 매칭 네트워크를 갖는 CMOS FM 수신기 프론트엔드 구현)

  • Kim, Yeon-Bo;Moon, Hyunwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.4
    • /
    • pp.17-24
    • /
    • 2014
  • In this paper, we propose a CMOS FM RX front-end structure with an automatic tunable input matching network and implement it using a 65nm CMOS technology. The proposed FM RX front-end is designed to change the resonance frequency of the input matching network at the low noise amplifier (LNA) according to the channel frequency selected by a phase-locked loop (PLL) for maintaining almost constant sensitivity level when an embedded antenna type with high frequency selectivity characteristic is used for FM receiver. The simulation results of implemented FM front-end show about 38dB of voltage gain, below 2.5dB of noise figure, and -15.5dBm of input referred intercept point (IIP3) respectively, while drawing only 3.5mA from 1.8V supply voltage including an LO buffer.

Design of a 40 GHz CMOS Phase-Locked Loop Frequency Synthesizer Using Wide-Band Injection-Locked Frequency Divider (광대역 주입동기식 주파수 분주기 기반 40 GHz CMOS PLL 주파수 합성기 설계)

  • Nam, Woongtae;Sohn, Jihoon;Shin, Hyunchol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.717-724
    • /
    • 2016
  • This paper presents design of a 40 GHz CMOS PLL frequency synthesizer for a 60 GHz sliding-IF RF transceiver. For stable locking over a wide bandwith for a injection-locked frequency divider, an inductive-peaking technique is employed so that it ensures the PLL can safely lock across the very wide tuning range of the VCO. Also, Injection-locked type LC-buffer with low-phase noise and low-power consumption is added in between the VCO and ILFD so that it can block any undesirable interaction and performance degradation between VCO and ILFD. The PLL is designed in 65 nm CMOS precess. It covers from 37.9 to 45.3 GHz of the output frequency. and its power consumption is 74 mA from 1.2 V power supply.

Design of W Band Frequency Synthesizer Using Frequency Tripler (주파수 3체배기를 이용한 W 밴드 주파수 합성기 설계)

  • Cho, Hyung-Jun;Cui, Chenglin;Kim, Seong-Kyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.10
    • /
    • pp.971-978
    • /
    • 2013
  • This work presents a W band frequency synthesizer which is composed of 26 GHz VCO, Phase Locked Loop and frequency tripler using 65 nm RF CMOS process. Frequency tuning range of 26 GHz VCO covers the band from 22.8~26.8 GHz and final output frequency of the tripler is from 74 to 75.6 GHz. The fabricated frequency synthesizer consumes 75.6 mW and its phase noise is -75 dBc/Hz at 1 MHz offset, -101 dBc/Hz 10 MHz offset respectively.

A Low-Spur CMOS PLL Using Differential Compensation Scheme

  • Yun, Seok-Ju;Kim, Kwi-Dong;Kwon, Jong-Kee
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.518-526
    • /
    • 2012
  • This paper proposes LC voltage-controlled oscillator (VCO) phase-locked loop (PLL) and ring-VCO PLL topologies with low-phase noise. Differential control loops are used for the PLL locking through a symmetrical transformer-resonator or bilaterally controlled varactor pair. A differential compensation mechanism suppresses out-band spurious tones. The prototypes of the proposed PLL are implemented in a CMOS 65-nm or 45-nm process. The measured results of the LC-VCO PLL show operation frequencies of 3.5 GHz to 5.6 GHz, a phase noise of -118 dBc/Hz at a 1 MHz offset, and a spur rejection of 66 dBc, while dissipating 3.2 mA at a 1 V supply. The ring-VCO PLL shows a phase noise of -95 dBc/Hz at a 1 MHz offset, operation frequencies of 1.2 GHz to 2.04 GHz, and a spur rejection of 59 dBc, while dissipating 5.4 mA at a 1.1 V supply.

Development of the Ka-band Frequency Synthesizer and Receiver based on MMIC (MMIC 기반 Ka대역 주파수합성기 및 수신기 개발)

  • Mihui, Seo;Hae-Chang, Jeong;Kyoung-Il, Na;Sosu, Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.1
    • /
    • pp.123-129
    • /
    • 2023
  • In this paper, the frequency synthesis(FS) MMIC and the receive MMICs were developed for a Ka-band compact radar. Also a compact Ka-band frequency synthesizer and a receiver were developed based on those MMICs. The FS MMIC and the wireless-receiver(WR) MMIC to receive the baseband frequency were manufactured by a 65 nm CMOS process and the front-end(FE) MMIC to receive the Ka-band frequency was manufactured by a 150 nm GaN process. Linear frequency modulation waveform and pulse waveform for the transmit signal were measured by output signal of frequency synthesizer. The measured performance of developed receiver including the FE MMICs and the WR MMIC were ≧ 80 dB gain, ≦ 6 dB noise figure and ≧ 10 dBm at OP1dB. The measurement results of the developed frequency synthesizer and the receiver including the manufactured MMICs showed that they could be applied to Ka-band compact radar.

Design of Two-Stage Fully-Integrated CMOS Power Amplifier for V-Band Applications (V-대역을 위한 완전 집적된 CMOS 이단 전력증폭기 집적회로 설계)

  • Kim, Hyunjun;Cho, Sooho;Oh, Sungjae;Lim, Wonseob;Kim, Jihoon;Yang, Youngoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1069-1074
    • /
    • 2016
  • This paper presents a V-band two-stage power amplifier integrated circuit using TSMC 65 nm CMOS process. The simple input, output, and inter-stage matching networks based on passive components are integrated. By compensating for power gain characteristics using a pre-distortion technique, the linearity of the power amplifier was improved. The implemented two-stage power amplifier showed a power gain of 10.4 dB, a saturated output power of 9.7 dBm, and an efficiency of 20.8 % with a supply voltage of 1 V at the frequency band of 58.8 GHz.