• Title/Summary/Keyword: 2-Banach spaces

Search Result 254, Processing Time 0.023 seconds

STABILITY Of ISOMETRIES ON HILBERT SPACES

  • Jun, Kil-Woung;Park, Dal-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.141-151
    • /
    • 2002
  • Let X and Y be real Banach spaces and $\varepsilon$, p $\geq$ 0. A mapping T between X and Y is called an ($\varepsilon$, p)-isometry if |∥T(x)-T(y)∥-∥x-y∥|$\leq$ $\varepsilon$∥x-y∥$^{p}$ for x, y$\in$X. Let H be a real Hilbert space and T : H longrightarrow H an ($\varepsilon$, p)-isometry with T(0) = 0. If p$\neq$1 is a nonnegative number, then there exists a unique isometry I : H longrightarrow H such that ∥T(x)-I(y)∥$\leq$ C($\varepsilon$)(∥x∥$^{ 1+p)/2}$+∥x∥$^{p}$ ) for all x$\in$H, where C($\varepsilon$) longrightarrow 0 as $\varepsilon$ longrightarrow 0.

QUADRATIC ρ-FUNCTIONAL INEQUALITIES

  • YUN, SUNGSIK;LEE, JUNG RYE;SEO, JEONG PIL
    • The Pure and Applied Mathematics
    • /
    • v.23 no.2
    • /
    • pp.145-153
    • /
    • 2016
  • In this paper, we solve the quadratic ρ-functional inequalities (0.1) ${\parallel}f(x+y)+f(x-y)-2f(x)-2f(y){\parallel}$ $\leq$ ${\parallel}{\rho}(4f(\frac{x+y}{2})+f(x-y)-2f(x)-2f(y)){\parallel}$, where $\rho$ is a fixed complex number with $\left|{\rho}\right|$ < 1, and (0.2) ${\parallel}4f(\frac{x+y}{2})+f(x-y)-2f(x)-2f(y){\parallel}$ $\leq$ ${\parallel}{\rho}(f(x+y)+f(x-y)-2f(x)-2f(y)){\parallel}$, where ρ is a fixed complex number with |ρ| < $\frac{1}{2}$. Furthermore, we prove the Hyers-Ulam stability of the quadratic ρ-functional inequalities (0.1) and (0.2) in complex Banach spaces.

ADDITIVE ρ-FUNCTIONAL INEQUALITIES

  • LEE, SUNG JIN;LEE, JUNG RYE;SEO, JEONG PIL
    • The Pure and Applied Mathematics
    • /
    • v.23 no.2
    • /
    • pp.155-162
    • /
    • 2016
  • In this paper, we solve the additive ρ-functional inequalities (0.1)${\parallel}f(x+y)+f(x-y)-2f(x){\parallel}$ $\leq$ ${\parallel}{\rho}(2f(\frac{x+y}{2})+f(x-y)-2f(x)){\parallel}$, where ρ is a fixed complex number with |ρ| < 1, and (0.2) ${\parallel}2f(\frac{x+y}{2})+f(x-y)-2f(x)){\parallel}$ $\leq$ ${\parallel}{\rho}f(x+y)+f(x-y)-2f(x){\parallel}$, where ρ is a fixed complex number with |ρ| < 1. Furthermore, we prove the Hyers-Ulam stability of the additive ρ-functional inequalities (0.1) and (0.2) in complex Banach spaces.

ADDITIVE-QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN FUZZY NORMED SPACES

  • YUN, SUNGSIK;LEE, JUNG RYE;SHIN, DONG YUN
    • The Pure and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.247-263
    • /
    • 2016
  • Let $M_{1}f(x,y):=\frac{3}{4}f(x+y)-\frac{1}{4}f(-x-y)+\frac{1}{4}f(x-y)+\frac{1}{4}f(y-x)-f(x)-f(y)$, $M_{2}f(x,y):=2f(\frac{x+y}{2})+f(\frac{x-y}{2})+f(\frac{y-x}{2})-f(x)-f(y)$. Using the direct method, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional inequalities (0.1) $N(M_{1}f(x,y),t){\geq}N({\rho}M_{2}f(x,y),t)$ where ρ is a fixed real number with |ρ| < 1, and (0.2) $N(M_{2}f(x,y),t){\geq}N({\rho}M_{1}f(x,y),t)$ where ρ is a fixed real number with |ρ| < $\frac{1}{2}$.

A FIXED POINT APPROACH TO THE CAUCHY-RASSIAS STABILITY OF GENERAL JENSEN TYPE QUADRATIC-QUADRATIC MAPPINGS

  • Park, Choon-Kil;Gordji, M. Eshaghi;Khodaei, H.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.987-996
    • /
    • 2010
  • In this paper, we investigate the Cauchy-Rassias stability in Banach spaces and also the Cauchy-Rassias stability using the alternative fixed point for the functional equation: $$f(\frac{sx+ty}{2}+rz)+f(\frac{sx+ty}{2}-rz)+f(\frac{sx-ty}{2}+rz)+f(\frac{sx-ty}{2}-rz)=s^2f(x)+t^2f(y)+4r^2f(z)$$ for any fixed nonzero integers s, t, r with $r\;{\neq}\;{\pm}1$.

HYPERSTABILITY CRITERION FOR A NEW TYPE OF 2-VARIABLE RADICAL FUNCTIONAL EQUATIONS

  • EL-Fassi, Iz-iddine
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.343-359
    • /
    • 2021
  • The aim of this paper is to obtain the general solution of the 2-variable radical functional equations $f({\sqrt[k]{x^k+z^k}},\;{\sqrt[{\ell}]{y^{\ell}+w^{\ell}}})=f(x,y)+f(z,w)$, x, y, z, w ∈ ℝ, for f a mapping from the set of all real numbers ℝ into a vector space, where k and ℓ are fixed positive integers. Also using the fixed point result of Brzdęk and Ciepliński [11, Theorem 1] in (2, 𝛽)-Banach spaces, we prove the generalized hyperstability results of the 2-variable radical functional equations. In the end of this paper we derive some consequences from our main results.

SUBSTITUTION OPERATORS IN THE SPACES OF FUNCTIONS OF BOUNDED VARIATION BV2α(I)

  • Aziz, Wadie;Guerrero, Jose Atilio;Merentes, Nelson
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.649-659
    • /
    • 2015
  • The space $BV^2_{\alpha}(I)$ of all the real functions defined on interval $I=[a,b]{\subset}\mathbb{R}$, which are of bounded second ${\alpha}$-variation (in the sense De la Vall$\acute{e}$ Poussin) on I forms a Banach space. In this space we define an operator of substitution H generated by a function $h:I{\times}\mathbb{R}{\rightarrow}\mathbb{R}$, and prove, in particular, that if H maps $BV^2_{\alpha}(I)$ into itself and is globally Lipschitz or uniformly continuous, then h is an affine function with respect to the second variable.

ON A GENERALIZED TRIF'S MAPPING IN BANACH MODULES OVER A C*-ALGEBRA

  • Park, Chun-Gil;Rassias Themistocles M.
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.323-356
    • /
    • 2006
  • Let X and Y be vector spaces. It is shown that a mapping $f\;:\;X{\rightarrow}Y$ satisfies the functional equation $$mn_{mn-2}C_{k-2}f(\frac {x_1+...+x_{mn}} {mn})$$ $(\ddagger)\;+mn_{mn-2}C_{k-1}\;\sum\limits_{i=1}^n\;f(\frac {x_{mi-m+1}+...+x_{mi}} {m}) =k\;{\sum\limits_{1{\leq}i_1<... if and only if the mapping $f : X{\rightarrow}Y$ is additive, and we prove the Cauchy-Rassias stability of the functional equation $(\ddagger)$ in Banach modules over a unital $C^*-algebra$. Let A and B be unital $C^*-algebra$ or Lie $JC^*-algebra$. As an application, we show that every almost homomorphism h : $A{\rightarrow}B$ of A into B is a homomorphism when $h(2^d{\mu}y) = h(2^d{\mu})h(y)\;or\;h(2^d{\mu}\;o\;y)=h(2^d{\mu})\;o\;h(y)$ for all unitaries ${\mu}{\in}A,\;all\;y{\in}A$, and d = 0,1,2,..., and that every almost linear almost multiplicative mapping $h:\;A{\rightarrow}B$ is a homomorphism when h(2x)=2h(x) for all $x{\in}A$. Moreover, we prove the Cauchy-Rassias stability of homomorphisms in $C^*-algebras$ or in Lie $JC^*-algebras$, and of Lie $JC^*-algebra$ derivations in Lie $JC^*-algebras$.

GENERALIZED HYERS-ULAM STABILITY OF FUNCTIONAL EQUATIONS

  • Kwon, Young Hak;Lee, Ho Min;Sim, Jeong Soo;Yang, Jeha;Park, Choonkil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.387-399
    • /
    • 2007
  • In this paper, we prove the generalized Hyers-Ulam stability of the following linear functional equations f(x + iy) + f(x - iy) + f(y + ix) + f(y - ix) = 2f(x) + 2f(y) and f((1 + i)x) = (1 + i)f(x), and of the following quadratic functional equations f(x + iy) + f(x - iy) + f(y + ix) + f(y - ix) = 0 and f((1 + i)x) = 2if(x) in complex Banach spaces.

  • PDF

A MEASURE ZERO STABILITY OF A FUNCTIONAL EQUATION ASSOCIATED WITH INNER PRODUCT SPACE

  • Chun, Jaeyoung;Rassias, John Michael
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.697-711
    • /
    • 2017
  • Let X, Y be real normed vector spaces. We exhibit all the solutions $f:X{\rightarrow}Y$ of the functional equation f(rx + sy) + rsf(x - y) = rf(x) + sf(y) for all $x,y{\in}X$, where r, s are nonzero real numbers satisfying r + s = 1. In particular, if Y is a Banach space, we investigate the Hyers-Ulam stability problem of the equation. We also investigate the Hyers-Ulam stability problem on a restricted domain of the following form ${\Omega}{\cap}\{(x,y){\in}X^2:{\parallel}x{\parallel}+{\parallel}y{\parallel}{\geq}d\}$, where ${\Omega}$ is a rotation of $H{\times}H{\subset}X^2$ and $H^c$ is of the first category. As a consequence, we obtain a measure zero Hyers-Ulam stability of the above equation when $f:\mathbb{R}{\rightarrow}Y$.