Browse > Article
http://dx.doi.org/10.4134/JKMS.2006.43.2.323

ON A GENERALIZED TRIF'S MAPPING IN BANACH MODULES OVER A C*-ALGEBRA  

Park, Chun-Gil (Department of Mathematics Chungnam National University)
Rassias Themistocles M. (Department of Mathematics National Technical University of Athens Zografou Campus)
Publication Information
Journal of the Korean Mathematical Society / v.43, no.2, 2006 , pp. 323-356 More about this Journal
Abstract
Let X and Y be vector spaces. It is shown that a mapping $f\;:\;X{\rightarrow}Y$ satisfies the functional equation $$mn_{mn-2}C_{k-2}f(\frac {x_1+...+x_{mn}} {mn})$$ $(\ddagger)\;+mn_{mn-2}C_{k-1}\;\sum\limits_{i=1}^n\;f(\frac {x_{mi-m+1}+...+x_{mi}} {m}) =k\;{\sum\limits_{1{\leq}i_1<... is additive, and we prove the Cauchy-Rassias stability of the functional equation $(\ddagger)$ in Banach modules over a unital $C^*-algebra$. Let A and B be unital $C^*-algebra$ or Lie $JC^*-algebra$. As an application, we show that every almost homomorphism h : $A{\rightarrow}B$ of A into B is a homomorphism when $h(2^d{\mu}y) = h(2^d{\mu})h(y)\;or\;h(2^d{\mu}\;o\;y)=h(2^d{\mu})\;o\;h(y)$ for all unitaries ${\mu}{\in}A,\;all\;y{\in}A$, and d = 0,1,2,..., and that every almost linear almost multiplicative mapping $h:\;A{\rightarrow}B$ is a homomorphism when h(2x)=2h(x) for all $x{\in}A$. Moreover, we prove the Cauchy-Rassias stability of homomorphisms in $C^*-algebras$ or in Lie $JC^*-algebras$, and of Lie $JC^*-algebra$ derivations in Lie $JC^*-algebras$.
Keywords
Trif's functional equation; Cauchy-Rassias stability; $C^*-algebra homomorphism$; Lie $JC^*-algebra$ homomorphism; Lie $JC^*-algebra$ derivation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 8  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 K. W. Jun and Y. H. Lee, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), no. 1, 305-315   DOI   ScienceOn
2 R. V. Kadison and G. K. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), no. 2, 249-266   DOI
3 H. Upmeier, Jordan algebras in analysis, operator theory, and quantum me- chanics, CBMS Regional Conference Series in Mathematics, 67, Amer. Math. Soc., Providence, 1987
4 C. -G. Park and J. Hou, Homomorphisms between C*-algebras associated with the Trif functional equation and linear derivations on C*-algebras, J. Korean Math. Soc. 41 (2004), no. 4, 461-477   과학기술학회마을   DOI   ScienceOn
5 D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153   DOI
6 R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Elementary Theory, Academic Press, New York, 1983
7 C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002), no. 2, 711-720   DOI   ScienceOn
8 C. -G. Park and W. -G. Park, On the Jensen's equation in Banach modules, Taiwanese J. Math. 6 (2002), no. 4, 523-531   DOI
9 Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300
10 Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130   DOI
11 Th. M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), no. 2, 352-378   DOI   ScienceOn
12 Th. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers{Ulam stability, Proc. Amer. Math. Soc. 114 (1992), no. 4, 989-993
13 Th. M. Rassias and P. Semrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), no. 2, 325-338   DOI   ScienceOn
14 T. Trif, On the stability of a functional equation deriving from an inequality of Popoviciu for convex functions, J. Math. Anal. Appl. 272 (2002), no. 2, 604-616   DOI   ScienceOn
15 S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960
16 Th. M. Rassias, Problem 16; 2, Report of the 27th International Symp. on Functional Equations, Aeq. Math. 39 (1990), 292-293; 309
17 Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), no. 1, 264-284   DOI   ScienceOn
18 D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224
19 Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434   DOI   ScienceOn
20 P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approxi- mately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436   DOI   ScienceOn