References
- J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989.
- J. Bae and W. Park, Generalized Jensen’s functional equations and approximate algebra homomorphisms, Bull. Korean Math. Soc. 39 (2002), no. 3, 401-410. https://doi.org/10.4134/BKMS.2002.39.3.401
-
D. Boo, S. Oh, C. Park, and J. Park, Generalized Jensen’s equations in Banach modules over a
$C^*$ -algebra and its unitary group, Taiwanese J. Math. 7 (2003), no. 4, 641-655. https://doi.org/10.11650/twjm/1500407583 - L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Iteration theory (ECIT ’02), 43-52, Grazer Math. Ber., 346, Karl-Franzens-Univ. Graz, Graz, 2004.
- L. Cadariu and V. Radu, The fixed points method for the stability of some functional equations, Carpathian J. Math. 23 (2007), no. 1-2, 63-72.
- L. Cadariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timisoara Ser. Mat.-Inform. 41 (2003), no. 1, 25-48.
- St. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64. https://doi.org/10.1007/BF02941618
- J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
- Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434. https://doi.org/10.1155/S016117129100056X
- D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- S. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc. 126 (1998), no. 11, 3137-3143. https://doi.org/10.1090/S0002-9939-98-04680-2
- Y. Jung and I. Chang, The stability of a cubic type functional equation with the fixed point alternative, J. Math. Anal. Appl. 306 (2005), no. 2, 752-760. https://doi.org/10.1016/j.jmaa.2004.10.017
- Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math. 27 (1995), no. 3-4, 368-372. https://doi.org/10.1007/BF03322841
- Y. Lee and K. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), no. 1, 305-315. https://doi.org/10.1006/jmaa.1999.6546
- M. Mirzavaziri and M. S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc. (N.S.) 37 (2006), no. 3, 361-376. https://doi.org/10.1007/s00574-006-0016-z
- M. S. Moslehian and L. Szekelyhidi, Stability of ternary homomorphisms via generalized Jensen equation, Results Math. 49 (2006), no. 3-4, 289-300. https://doi.org/10.1007/s00025-006-0225-1
-
C. Park, Modified Trifs functional equations in Banach modules over a
$C^{\ast}$ -algebra and approximate algebra homomorphisms, J. Math. Anal. Appl. 278 (2003), no. 1, 93-108. https://doi.org/10.1016/S0022-247X(02)00573-5 - C. Park, Generalized quadratic mappings in several variables, Nonlinear Anal. 57 (2004), no. 5-6, 713-722. https://doi.org/10.1016/j.na.2004.03.013
- C. Park, S. Hong, and M. Kim, Jensen type quadratic-quadratic mapping in Banach spaces, Bull. Korean Math. Soc. 43 (2006), no. 4, 703-709. https://doi.org/10.4134/BKMS.2006.43.4.703
-
C. Park, J. Park, and J. Shin, Hyers-Ulam-Rassias stability of quadratic functional equations in Banach modules over a
$C^*$ -algebra, Chinese Ann. Math. Ser. B 24 (2003), no. 2, 261-266. https://doi.org/10.1142/S0252959903000244 - V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), no. 1, 91-96.
- J. M. Rassias and M. J. Rassias, Asymptotic behavior of Jensen and Jensen type functional equations, Panamer. Math. J. 15 (2005), no. 4, 21-35.
- J. M. Rassias and M. J. Rassias, Asymptotic behavior of alternative Jensen and Jensen type functional equations, Bull. Sci. Math. 129 (2005), no. 7, 545-558. https://doi.org/10.1016/j.bulsci.2005.02.001
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- Th. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), no. 4, 989-993. https://doi.org/10.1090/S0002-9939-1992-1059634-1
- Th. M. Rassias and K. Shibata, Variational problem of some quadratic functionals in complex analysis, J. Math. Anal. Appl. 228 (1998), 234-253. https://doi.org/10.1006/jmaa.1998.6129
- F. Skof, Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129. https://doi.org/10.1007/BF02924890
- T. Trif, On the stability of a functional equation deriving from an inequality of Popoviciu for convex functions, J. Math. Anal. Appl. 272 (2002), no. 2, 604-616. https://doi.org/10.1016/S0022-247X(02)00181-6
- S. M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York, 1964.
Cited by
- Approximate homomorphisms and derivations on random Banach algebras vol.2012, pp.1, 2012, https://doi.org/10.1186/1029-242X-2012-157
- On the Stability of an -Variables Functional Equation in Random Normed Spaces via Fixed Point Method vol.2012, 2012, https://doi.org/10.1155/2012/346561