Browse > Article
http://dx.doi.org/10.7468/jksmeb.2016.23.2.145

QUADRATIC ρ-FUNCTIONAL INEQUALITIES  

YUN, SUNGSIK (DEPARTMENT OF FINANCIAL MATHEMATICS, HANSHIN UNIVERSITY)
LEE, JUNG RYE (DEPARTMENT OF MATHEMATICS, DAEJIN UNIVERSITY)
SEO, JEONG PIL (OHSANG HIGH SCHOOL)
Publication Information
The Pure and Applied Mathematics / v.23, no.2, 2016 , pp. 145-153 More about this Journal
Abstract
In this paper, we solve the quadratic ρ-functional inequalities (0.1) ${\parallel}f(x+y)+f(x-y)-2f(x)-2f(y){\parallel}$ $\leq$ ${\parallel}{\rho}(4f(\frac{x+y}{2})+f(x-y)-2f(x)-2f(y)){\parallel}$, where $\rho$ is a fixed complex number with $\left|{\rho}\right|$ < 1, and (0.2) ${\parallel}4f(\frac{x+y}{2})+f(x-y)-2f(x)-2f(y){\parallel}$ $\leq$ ${\parallel}{\rho}(f(x+y)+f(x-y)-2f(x)-2f(y)){\parallel}$, where ρ is a fixed complex number with |ρ| < $\frac{1}{2}$. Furthermore, we prove the Hyers-Ulam stability of the quadratic ρ-functional inequalities (0.1) and (0.2) in complex Banach spaces.
Keywords
Hyers-Ulam stability; quadratic ρ -functional inequality;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Park: Orthogonal stability of a cubic-quartic functional equation. J. Nonlinear Sci. Appl. 5 (2012), 28-36.   DOI
2 Th. M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300.   DOI
3 K. Ravi, E. Thandapani & B.V. Senthil Kumar: Solution and stability of a reciprocal type functional equation in several variables. J. Nonlinear Sci. Appl. 7 (2014), 18-27.
4 F. Skof: Propriet locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.   DOI
5 S.M. Ulam: A Collection of the Mathematical Problems. Interscience Publ. New York, 1960.
6 C. Zaharia: On the probabilistic stability of the monomial functional equation. J. Nonlinear Sci. Appl. 6 (2013), 51-59.   DOI
7 D.H. Hyers, On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.   DOI
8 T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66.   DOI
9 A. Chahbi & N. Bounader: On the generalized stability of d’Alembert functional equation. J. Nonlinear Sci. Appl. 6 (2013), 198-204.   DOI
10 P.W. Cholewa: Remarks on the stability of functional equations. Aequationes Math. 27 (1984), 76-86.   DOI
11 G.Z. Eskandani & P. Gǎvruta: Hyers-Ulam-Rassias stability of pexiderized Cauchy functional equation in 2-Banach spaces. J. Nonlinear Sci. Appl. 5 (2012), 459-465.   DOI
12 P. Gǎvruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436.   DOI