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ADDITIVE ρ-FUNCTIONAL INEQUALITIES

Sung Jin Lee a, Jung Rye Lee b, ∗ and Jeong Pil Seo c

Abstract. In this paper, we solve the additive ρ-functional inequalities

‖f(x + y) + f(x− y)− 2f(x)‖ ≤
∥∥∥ρ

(
2f

(x + y

2

)
+ f(x− y)− 2f(x)

)∥∥∥ ,(0.1)

where ρ is a fixed complex number with |ρ| < 1, and
∥∥∥2f

(x + y

2

)
+ f(x− y)− 2f(x)

∥∥∥ ≤ ‖ρ(f(x + y) + f(x− y)− 2f(x))‖,(0.2)

where ρ is a fixed complex number with |ρ| < 1.
Furthermore, we prove the Hyers-Ulam stability of the additive ρ-functional

inequalities (0.1) and (0.2) in complex Banach spaces.

1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam
[11] concerning the stability of group homomorphisms.

The functional equation f(x+ y) = f(x)+ f(y) is called the Cauchy equation. In
particular, every solution of the Cauchy equation is said to be an additive mapping.
Hyers [6] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by
Rassias [8] for linear mappings by considering an unbounded Cauchy difference. A
generalization of the Rassias theorem was obtained by Găvruta [5] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Rassias’
approach.

The stability of quadratic functional equation was proved by Skof [10] for map-
pings f : E1 → E2, where E1 is a normed space and E2 is a Banach space. Cholewa
[3] noticed that the theorem of Skof is still true if the relevant domain E1 is re-
placed by an Abelian group. See [2, 4, 7, 9, 12] for more information on the stability
problems of functional equations.
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In Section 2, we solve the additive ρ-functional inequality (0.1) and prove the
Hyers-Ulam stability of the additive ρ-functional inequality (0.1) in complex Banach
spaces.

In Section 3, we solve the additive ρ-functional inequality (0.2) and prove the
Hyers-Ulam stability of the additive ρ-functional inequality (0.2) in complex Banach
spaces.

Throughout this paper, let G be a 2-divisible abelian group. Assume that X is
a real or complex normed space with norm ‖ · ‖ and that Y is a complex Banach
space with norm ‖ · ‖.

2. Additive ρ-functional Inequality (0.1)

Throughout this section, assume that ρ is a fixed complex number with |ρ| < 1.
In this section, we solve and investigate the additive ρ-functional inequality (0.1)

in complex Banach spaces.

Lemma 2.1. If a mapping f : G → Y satisfies f(0) = 0 and

‖f(x + y) + f(x− y)− 2f(x)‖ ≤
∥∥∥∥ρ

(
2f

(
x + y

2

)
+ f (x− y)− 2f(x)

)∥∥∥∥(2.1)

for all x, y ∈ G, then f : G → Y is additive.

Proof. Assume that f : G → Y satisfies (2.1).
Letting y = x in (2.1), we get ‖f(2x)− 2f(x)‖ ≤ 0 and so f(2x) = 2f(x) for all

x ∈ G. Thus

f
(x

2

)
=

1
2
f(x)(2.2)

for all x ∈ G.
It follows from (2.1) and (2.2) that

‖f(x + y) + f(x− y)− 2f(x)‖ ≤
∥∥∥∥ρ

(
2f

(
x + y

2

)
+ f (x− y)− 2f(x)

)∥∥∥∥
= |ρ|‖f(x + y) + f(x− y)− 2f(x)‖

and so f(x + y) + f(x − y) = 2f(x) for all x, y ∈ G. It is easy to show that f is
additive. ¤

We prove the Hyers-Ulam stability of the additive ρ-functional inequality (2.1)
in complex Banach spaces.
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Theorem 2.2. Let r > 1 and θ be nonnegative real numbers, and let f : X → Y be
a mapping satisfying f(0) = 0 and

‖f(x + y) + f(x− y)− 2f(x)‖(2.3)

≤
∥∥∥∥ρ

(
2f

(
x + y

2

)
+ f (x− y)− 2f(x)

)∥∥∥∥ + θ(‖x‖r + ‖y‖r)

for all x, y ∈ X. Then there exists a unique additive mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ 2θ

2r − 2
‖x‖r(2.4)

for all x ∈ X.

Proof. Letting y = x in (2.3), we get

‖f(2x)− 2f(x)‖ ≤ 2θ‖x‖r(2.5)

for all x ∈ X. So ∥∥∥f(x)− 2f
(x

2

)∥∥∥ ≤ 2
2r

θ‖x‖r

for all x ∈ X. Hence
∥∥∥2lf

( x

2l

)
− 2mf

( x

2m

)∥∥∥ ≤
m−1∑

j=l

∥∥∥2jf
( x

2j

)
− 2j+1f

( x

2j+1

)∥∥∥

≤ 2
2r

m−1∑

j=l

2j

2rj
θ‖x‖r(2.6)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.6)
that the sequence {2nf( x

2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete,
the sequence {2nf( x

2n )} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞ 2nf(

x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m →∞ in (2.6), we get
(2.4).

It follows from (2.3) that

‖h(x + y) + h(x− y)− 2h(x)‖
= lim

n→∞ 2n

∥∥∥∥f

(
x + y

2n

)
+ f

(
x− y

2n

)
− 2f

( x

2n

)∥∥∥∥

≤ lim
n→∞ 2n|ρ|

∥∥∥∥2f

(
x + y

2n+1

)
+ f

(
x− y

2n

)
− 2f

( x

2n

)∥∥∥∥ + lim
n→∞

2nθ

2nr
(‖x‖r + ‖y‖r)

= |ρ|
∥∥∥∥2h

(
x + y

2

)
+ h (x− y)− 2h(x))

∥∥∥∥
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for all x, y ∈ X. So

‖h(x + y) + h(x− y)− 2h(x)‖ ≤
∥∥∥∥ρ

(
2h

(
x + y

2

)
+ h (x− y)− 2h(x)

)∥∥∥∥
for all x, y ∈ X. By Lemma 2.1, the mapping h : X → Y is additive.

Now, let T : X → Y be another additive mapping satisfying (2.4). Then we have

‖h(x)− T (x)‖ = 2n
∥∥∥h

( x

2n

)
− T

( x

2n

)∥∥∥

≤ 2n
(∥∥∥h

( x

2n

)
− f

( x

2n

)∥∥∥ +
∥∥∥T

( x

2n

)
− f

( x

2n

)∥∥∥
)

≤ 4 · 2n

(2r − 2)2nr
θ‖x‖r,

which tends to zero as n →∞ for all x ∈ X. So we can conclude that h(x) = T (x)
for all x ∈ X. This proves the uniqueness of h. Thus the mapping h : X → Y is a
unique additive mapping satisfying (2.4). ¤

Theorem 2.3. Let r < 1 and θ be positive real numbers, and let f : X → Y be a
mapping satisfying f(0) = 0 and (2.3). Then there exists a unique additive mapping
h : X → Y such that

‖f(x)− h(x)‖ ≤ 2θ

2− 2r
‖x‖r(2.7)

for all x ∈ X.

Proof. It follows from (2.5) that
∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ θ‖x‖r

for all x ∈ X. Hence
∥∥∥∥

1
2l

f(2lx)− 1
2m

f(2mx)
∥∥∥∥ ≤

m−1∑

j=l

∥∥∥∥
1
2j

f(2jx)− 1
2j+1

f(2j+1x)
∥∥∥∥

≤
m−1∑

j=l

2rj

2j
θ‖x‖r(2.8)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from
(2.8) that the sequence { 1

2n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y

is complete, the sequence { 1
2n f(2nx)} converges. So one can define the mapping

h : X → Y by

h(x) := lim
n→∞

1
2n

f(2nx)
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for all x ∈ X. Moreover, letting l = 0 and passing the limit m →∞ in (2.8), we get
(2.7).

The rest of the proof is similar to the proof of Theorem 2.2. ¤

Remark 2.4. If ρ is a real number such that −1 < ρ < 1 and Y is a real Banach
space, then all the assertions in this section remain valid.

3. Additive ρ-functional Inequality (0.2)

Throughout this section, assume that ρ is a fixed complex number with |ρ| < 1.
In this section, we solve and investigate the additive ρ-functional inequality (0.2)

in complex Banach spaces.

Lemma 3.1. If a mapping f : G → Y satisfies∥∥∥∥2f

(
x + y

2

)
+ f (x− y)− 2f(x)

∥∥∥∥ ≤ ‖ρ(f(x + y) + f(x− y)− 2f(x))‖(3.1)

for all x, y ∈ G, then f : G → Y is additive.

Proof. Assume that f : G → Y satisfies (3.1).
Letting x = y = 0 in (3.1), we get ‖f(0)‖ ≤ 0. So f(0) = 0.
Letting y = 0 in (3.1), we get

∥∥2f
(

x
2

)− f(x)
∥∥ ≤ 0 and so

2f
(x

2

)
= f(x)(3.2)

for all x ∈ G.
It follows from (3.1) and (3.2) that

‖f(x + y) + f(x− y)− 2f(x)‖ =
∥∥∥∥2f

(
x + y

2

)
+ f (x− y)− 2f(x)

∥∥∥∥
≤ |ρ|‖f(x + y) + f(x− y)− 2f(x)‖

and so f(x + y) + f(x − y) = 2f(x) for all x, y ∈ G. . It is easy to show that f is
additive. ¤

We prove the Hyers-Ulam stability of the additive ρ-functional inequality (3.1)
in complex Banach spaces.

Theorem 3.2. Let r > 1 and θ be nonnegative real numbers, and let f : X → Y be
a mapping such that

‖2f

(
x + y

2

)
+ f (x− y)− 2f(x)‖(3.3)

≤ ‖ρ(f(x + y) + f(x− y)− 2f(x))‖+ θ(‖x‖r + ‖y‖r)
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for all x, y ∈ X. Then there exists a unique additive mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ 2rθ

2r − 2
‖x‖r(3.4)

for all x ∈ X.

Proof. Letting x = y = 0 in (3.3), we get ‖f(0)‖ ≤ 0. So f(0) = 0.
Letting y = 0 in (3.3), we get

∥∥∥2f
(x

2

)
− f(x)

∥∥∥ ≤ θ‖x‖r(3.5)

for all x ∈ X. So

∥∥∥2lf
( x

2l

)
− 2mf

( x

2m

)∥∥∥ ≤
m−1∑

j=l

∥∥∥2jf
( x

2j

)
− 2j+1f

( x

2j+1

)∥∥∥

≤
m−1∑

j=l

2j

2rj
θ‖x‖r(3.6)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.6)
that the sequence {2nf( x

2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete,
the sequence {2nf( x

2n )} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞ 2nf(

x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m →∞ in (3.6), we get
(3.4).

It follows from (3.3) that
∥∥∥∥2h

(
x + y

2

)
+ h (x− y)− 2h(x)

∥∥∥∥

= lim
n→∞ 2n

∥∥∥∥2f

(
x + y

2n+1

)
+ f

(
x− y

2n

)
− 2f

( x

2n

)∥∥∥∥

≤ lim
n→∞ 2n

∥∥∥∥ρ

(
f

(
x + y

2n

)
+ f

(
x− y

2n

)
− 2f

( x

2n

))∥∥∥∥ + lim
n→∞

2nθ

2nr
(‖x‖r + ‖y‖r)

= ‖ρ(h(x + y) + h(x− y)− 2h(x))‖

for all x, y ∈ X. So
∥∥∥∥2h

(
x + y

2

)
+ h (x− y)− 2h(x)

∥∥∥∥ ≤ ‖ρ(h(x + y) + h(x− y)− 2h(x))‖

for all x, y ∈ X. By Lemma 3.1, the mapping h : X → Y is additive.
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Now, let T : X → Y be another additive mapping satisfying (3.4). Then we have

‖h(x)− T (x)‖ = 2n
∥∥∥h

( x

2n

)
− T

( x

2n

)∥∥∥

≤ 2n
(∥∥∥h

( x

2n

)
− f

( x

2n

)∥∥∥ +
∥∥∥T

( x

2n

)
− f

( x

2n

)∥∥∥
)

≤ 2 · 2n · 2r

(2r − 2)2nr
θ‖x‖r,

which tends to zero as n →∞ for all x ∈ X. So we can conclude that h(x) = T (x)
for all x ∈ X. This proves the uniqueness of h. Thus the mapping h : X → Y is a
unique additive mapping satisfying (3.4). ¤

Theorem 3.3. Let r < 1 and θ be positive real numbers, and let f : X → Y be a
mapping satisfying (3.3). Then there exists a unique additive mapping h : X → Y

such that

‖f(x)− h(x)‖ ≤ 2rθ

2− 2r
‖x‖r(3.7)

for all x ∈ X.

Proof. It follows from (3.5) that∥∥∥∥f(x)− 1
2
f(2x)

∥∥∥∥ ≤
2rθ

2
‖x‖r

for all x ∈ X. Hence
∥∥∥∥

1
2l

f(2lx)− 1
2m

f(2mx)
∥∥∥∥ ≤

m−1∑

j=l

∥∥∥∥
1
2j

f(2jx)− 1
2j+1

f(2j+1x)
∥∥∥∥

≤ 2rθ

2

m−1∑

j=l

2rj

2j
‖x‖r(3.8)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from
(3.8) that the sequence { 1

2n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y

is complete, the sequence { 1
2n f(2nx)} converges. So one can define the mapping

h : X → Y by

h(x) := lim
n→∞

1
2n

f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m →∞ in (3.8), we get
(3.7).

The rest of the proof is similar to the proof of Theorem 3.2. ¤

Remark 3.4. If ρ is a real number such that −1 < ρ < 1 and Y is a real Banach
space, then all the assertions in this section remain valid.
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