ADDITIVE ρ-FUNCTIONAL INEQUALITIES

Sung Jin Lee ${ }^{\text {a }}$, Jung Rye Lee ${ }^{\text {b,* }}$ and Jeong Pil Seo ${ }^{\text {c }}$

Abstract. In this paper, we solve the additive ρ-functional inequalities
$(0.1)\|f(x+y)+f(x-y)-2 f(x)\| \leq\left\|\rho\left(2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)\right)\right\|$, where ρ is a fixed complex number with $|\rho|<1$, and
(0.2) $\left\|2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)\right\| \leq\|\rho(f(x+y)+f(x-y)-2 f(x))\|$, where ρ is a fixed complex number with $|\rho|<1$.

Furthermore, we prove the Hyers-Ulam stability of the additive ρ-functional inequalities (0.1) and (0.2) in complex Banach spaces.

1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam [11] concerning the stability of group homomorphisms.

The functional equation $f(x+y)=f(x)+f(y)$ is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping. Hyers [6] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [1] for additive mappings and by Rassias [8] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [5] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach.

The stability of quadratic functional equation was proved by Skof [10] for mappings $f: E_{1} \rightarrow E_{2}$, where E_{1} is a normed space and E_{2} is a Banach space. Cholewa [3] noticed that the theorem of Skof is still true if the relevant domain E_{1} is replaced by an Abelian group. See $[2,4,7,9,12]$ for more information on the stability problems of functional equations.

[^0]In Section 2, we solve the additive ρ-functional inequality (0.1) and prove the Hyers-Ulam stability of the additive ρ-functional inequality (0.1) in complex Banach spaces.

In Section 3, we solve the additive ρ-functional inequality (0.2) and prove the Hyers-Ulam stability of the additive ρ-functional inequality (0.2) in complex Banach spaces.

Throughout this paper, let G be a 2-divisible abelian group. Assume that X is a real or complex normed space with norm $\|\cdot\|$ and that Y is a complex Banach space with norm $\|\cdot\|$.

2. Additive ρ-functional Inequality (0.1)

Throughout this section, assume that ρ is a fixed complex number with $|\rho|<1$.
In this section, we solve and investigate the additive ρ-functional inequality (0.1) in complex Banach spaces.

Lemma 2.1. If a mapping $f: G \rightarrow Y$ satisfies $f(0)=0$ and

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)\| \leq\left\|\rho\left(2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)\right)\right\| \tag{2.1}
\end{equation*}
$$

for all $x, y \in G$, then $f: G \rightarrow Y$ is additive.
Proof. Assume that $f: G \rightarrow Y$ satisfies (2.1).
Letting $y=x$ in (2.1), we get $\|f(2 x)-2 f(x)\| \leq 0$ and so $f(2 x)=2 f(x)$ for all $x \in G$. Thus

$$
\begin{equation*}
f\left(\frac{x}{2}\right)=\frac{1}{2} f(x) \tag{2.2}
\end{equation*}
$$

for all $x \in G$.
It follows from (2.1) and (2.2) that

$$
\begin{aligned}
\|f(x+y)+f(x-y)-2 f(x)\| & \leq\left\|\rho\left(2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)\right)\right\| \\
& =|\rho|\|f(x+y)+f(x-y)-2 f(x)\|
\end{aligned}
$$

and so $f(x+y)+f(x-y)=2 f(x)$ for all $x, y \in G$. It is easy to show that f is additive.

We prove the Hyers-Ulam stability of the additive ρ-functional inequality (2.1) in complex Banach spaces.

Theorem 2.2. Let $r>1$ and θ be nonnegative real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and

$$
\begin{align*}
& \|f(x+y)+f(x-y)-2 f(x)\| \tag{2.3}\\
& \quad \leq\left\|\rho\left(2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)\right)\right\|+\theta\left(\|x\|^{r}+\|y\|^{r}\right)
\end{align*}
$$

for all $x, y \in X$. Then there exists a unique additive mapping $h: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-h(x)\| \leq \frac{2 \theta}{2^{r}-2}\|x\|^{r} \tag{2.4}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $y=x$ in (2.3), we get

$$
\begin{equation*}
\|f(2 x)-2 f(x)\| \leq 2 \theta\|x\|^{r} \tag{2.5}
\end{equation*}
$$

for all $x \in X$. So

$$
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\| \leq \frac{2}{2^{r}} \theta\|x\|^{r}
$$

for all $x \in X$. Hence

$$
\begin{align*}
\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\| \\
& \leq \frac{2}{2^{r}} \sum_{j=l}^{m-1} \frac{2^{j}}{2^{r j}} \theta\|x\|^{r} \tag{2.6}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (2.6) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $h: X \rightarrow Y$ by

$$
h(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.6), we get (2.4).

It follows from (2.3) that

$$
\begin{aligned}
& \|h(x+y)+h(x-y)-2 h(x)\| \\
& =\lim _{n \rightarrow \infty} 2^{n}\left\|f\left(\frac{x+y}{2^{n}}\right)+f\left(\frac{x-y}{2^{n}}\right)-2 f\left(\frac{x}{2^{n}}\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} 2^{n}|\rho|\left\|2 f\left(\frac{x+y}{2^{n+1}}\right)+f\left(\frac{x-y}{2^{n}}\right)-2 f\left(\frac{x}{2^{n}}\right)\right\|+\lim _{n \rightarrow \infty} \frac{2^{n} \theta}{2^{n r}}\left(\|x\|^{r}+\|y\|^{r}\right) \\
& \left.=|\rho| \| 2 h\left(\frac{x+y}{2}\right)+h(x-y)-2 h(x)\right) \|
\end{aligned}
$$

for all $x, y \in X$. So

$$
\|h(x+y)+h(x-y)-2 h(x)\| \leq\left\|\rho\left(2 h\left(\frac{x+y}{2}\right)+h(x-y)-2 h(x)\right)\right\|
$$

for all $x, y \in X$. By Lemma 2.1, the mapping $h: X \rightarrow Y$ is additive.
Now, let $T: X \rightarrow Y$ be another additive mapping satisfying (2.4). Then we have

$$
\begin{aligned}
\|h(x)-T(x)\| & =2^{n}\left\|h\left(\frac{x}{2^{n}}\right)-T\left(\frac{x}{2^{n}}\right)\right\| \\
& \leq 2^{n}\left(\left\|h\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|+\left\|T\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|\right) \\
& \leq \frac{4 \cdot 2^{n}}{\left(2^{r}-2\right) 2^{n r}} \theta\|x\|^{r},
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in X$. So we can conclude that $h(x)=T(x)$ for all $x \in X$. This proves the uniqueness of h. Thus the mapping $h: X \rightarrow Y$ is a unique additive mapping satisfying (2.4).

Theorem 2.3. Let $r<1$ and θ be positive real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and (2.3). Then there exists a unique additive mapping $h: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-h(x)\| \leq \frac{2 \theta}{2-2^{r}}\|x\|^{r} \tag{2.7}
\end{equation*}
$$

for all $x \in X$.
Proof. It follows from (2.5) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leq \theta\|x\|^{r}
$$

for all $x \in X$. Hence

$$
\begin{align*}
\left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x\right)\right\| \\
& \leq \sum_{j=l}^{m-1} \frac{2^{r j}}{2^{j}} \theta\|x\|^{r} \tag{2.8}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (2.8) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $h: X \rightarrow Y$ by

$$
h(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.8), we get (2.7).

The rest of the proof is similar to the proof of Theorem 2.2.
Remark 2.4. If ρ is a real number such that $-1<\rho<1$ and Y is a real Banach space, then all the assertions in this section remain valid.

3. Additive ρ-functional Inequality (0.2)

Throughout this section, assume that ρ is a fixed complex number with $|\rho|<1$.
In this section, we solve and investigate the additive ρ-functional inequality (0.2) in complex Banach spaces.

Lemma 3.1. If a mapping $f: G \rightarrow Y$ satisfies

$$
\begin{equation*}
\left\|2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)\right\| \leq\|\rho(f(x+y)+f(x-y)-2 f(x))\| \tag{3.1}
\end{equation*}
$$

for all $x, y \in G$, then $f: G \rightarrow Y$ is additive.
Proof. Assume that $f: G \rightarrow Y$ satisfies (3.1).
Letting $x=y=0$ in (3.1), we get $\|f(0)\| \leq 0$. So $f(0)=0$.
Letting $y=0$ in (3.1), we get $\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\| \leq 0$ and so

$$
\begin{equation*}
2 f\left(\frac{x}{2}\right)=f(x) \tag{3.2}
\end{equation*}
$$

for all $x \in G$.
It follows from (3.1) and (3.2) that

$$
\begin{aligned}
\|f(x+y)+f(x-y)-2 f(x)\| & =\left\|2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)\right\| \\
& \leq|\rho|\|f(x+y)+f(x-y)-2 f(x)\|
\end{aligned}
$$

and so $f(x+y)+f(x-y)=2 f(x)$ for all $x, y \in G$. . It is easy to show that f is additive.

We prove the Hyers-Ulam stability of the additive ρ-functional inequality (3.1) in complex Banach spaces.

Theorem 3.2. Let $r>1$ and θ be nonnegative real numbers, and let $f: X \rightarrow Y$ be a mapping such that

$$
\begin{align*}
& \left\|2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)\right\| \tag{3.3}\\
& \quad \leq\|\rho(f(x+y)+f(x-y)-2 f(x))\|+\theta\left(\|x\|^{r}+\|y\|^{r}\right)
\end{align*}
$$

for all $x, y \in X$. Then there exists a unique additive mapping $h: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-h(x)\| \leq \frac{2^{r} \theta}{2^{r}-2}\|x\|^{r} \tag{3.4}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $x=y=0$ in (3.3), we get $\|f(0)\| \leq 0$. So $f(0)=0$.
Letting $y=0$ in (3.3), we get

$$
\begin{equation*}
\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\| \leq \theta\|x\|^{r} \tag{3.5}
\end{equation*}
$$

for all $x \in X$. So

$$
\begin{align*}
\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\| \\
& \leq \sum_{j=l}^{m-1} \frac{2^{j}}{2^{r j}} \theta\|x\|^{r} \tag{3.6}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.6) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $h: X \rightarrow Y$ by

$$
h(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.6), we get (3.4).

It follows from (3.3) that

$$
\begin{aligned}
& \left\|2 h\left(\frac{x+y}{2}\right)+h(x-y)-2 h(x)\right\| \\
& =\lim _{n \rightarrow \infty} 2^{n}\left\|2 f\left(\frac{x+y}{2^{n+1}}\right)+f\left(\frac{x-y}{2^{n}}\right)-2 f\left(\frac{x}{2^{n}}\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} 2^{n}\left\|\rho\left(f\left(\frac{x+y}{2^{n}}\right)+f\left(\frac{x-y}{2^{n}}\right)-2 f\left(\frac{x}{2^{n}}\right)\right)\right\|+\lim _{n \rightarrow \infty} \frac{2^{n} \theta}{2^{n r}}\left(\|x\|^{r}+\|y\|^{r}\right) \\
& =\|\rho(h(x+y)+h(x-y)-2 h(x))\|
\end{aligned}
$$

for all $x, y \in X$. So

$$
\left\|2 h\left(\frac{x+y}{2}\right)+h(x-y)-2 h(x)\right\| \leq\|\rho(h(x+y)+h(x-y)-2 h(x))\|
$$

for all $x, y \in X$. By Lemma 3.1, the mapping $h: X \rightarrow Y$ is additive.

Now, let $T: X \rightarrow Y$ be another additive mapping satisfying (3.4). Then we have

$$
\begin{aligned}
\|h(x)-T(x)\| & =2^{n}\left\|h\left(\frac{x}{2^{n}}\right)-T\left(\frac{x}{2^{n}}\right)\right\| \\
& \leq 2^{n}\left(\left\|h\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|+\left\|T\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|\right) \\
& \leq \frac{2 \cdot 2^{n} \cdot 2^{r}}{\left(2^{r}-2\right) 2^{n r}} \theta\|x\|^{r}
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in X$. So we can conclude that $h(x)=T(x)$ for all $x \in X$. This proves the uniqueness of h. Thus the mapping $h: X \rightarrow Y$ is a unique additive mapping satisfying (3.4).

Theorem 3.3. Let $r<1$ and θ be positive real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying (3.3). Then there exists a unique additive mapping $h: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-h(x)\| \leq \frac{2^{r} \theta}{2-2^{r}}\|x\|^{r} \tag{3.7}
\end{equation*}
$$

for all $x \in X$.
Proof. It follows from (3.5) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leq \frac{2^{r} \theta}{2}\|x\|^{r}
$$

for all $x \in X$. Hence

$$
\begin{align*}
\left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x\right)\right\| \\
& \leq \frac{2^{r} \theta}{2} \sum_{j=l}^{m-1} \frac{2^{r j}}{2^{j}}\|x\|^{r} \tag{3.8}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.8) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $h: X \rightarrow Y$ by

$$
h(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.8), we get (3.7).

The rest of the proof is similar to the proof of Theorem 3.2.
Remark 3.4. If ρ is a real number such that $-1<\rho<1$ and Y is a real Banach space, then all the assertions in this section remain valid.

References

1. T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66.
2. A. Chahbi \& N. Bounader: On the generalized stability of d'Alembert functional equation. J. Nonlinear Sci. Appl. 6 (2013), 198-204.
3. P.W. Cholewa: Remarks on the stability of functional equations. Aequationes Math. 27 (1984), 76-86.
4. G.Z. Eskandani \& P. Gǎvruta: Hyers-Ulam-Rassias stability of pexiderized Cauchy functional equation in 2-Banach spaces. J. Nonlinear Sci. Appl. 5 (2012), 459-465.
5. P. Găvruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436.
6. D.H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
7. C. Park: Orthogonal stability of a cubic-quartic functional equation. J. Nonlinear Sci. Appl. 5 (2012), 28-36.
8. Th. M. Rassias. On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300.
9. K. Ravi, E. Thandapani \& B.V. Senthil Kumar: Solution and stability of a reciprocal type functional equation in several variables. J. Nonlinear Sci. Appl. 7 (2014), 18-27.
10. F. Skof: Propriet locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
11. S.M. Ulam: A Collection of the Mathematical Problems. Interscience Publ. New York, 1960.
12. C. Zaharia: On the probabilistic stability of the monomial functional equation. J. Nonlinear Sci. Appl. 6 (2013), 51-59.
${ }^{\text {a }}$ Department of Mathematics, Daejin University, Kyunggi 11159, Korea
Email address: hyper@daejin.ac.kr
${ }^{\text {b }}$ Department of Mathematics, Daejin University, Kyeonggi 11159, Korea
Email address: jrlee@daejin.ac.kr
${ }^{\text {c }}$ Ohsang High School, Gumi, Kyeongsangbuk-do 730-842, Korea
Email address: sjp4829@hanmail.net

[^0]: Received by the editors March 28, 2016. Accepted April 19, 2016.
 2010 Mathematics Subject Classification. Primary 39B62, 39B72, 39B52.
 Key words and phrases. Hyers-Ulam stability, additive ρ-functional inequality.

 * Corresponding author.

