ADDITIVE-QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN FUZZY NORMED SPACES

Sungsik Yun ${ }^{\text {a }}$, Jung Rye Lee ${ }^{\text {b }}$ and Dong Yun Shin ${ }^{\text {c,* }}$

Abstract. Let

$$
\begin{aligned}
& M_{1} f(x, y):=\frac{3}{4} f(x+y)-\frac{1}{4} f(-x-y)+\frac{1}{4} f(x-y)+\frac{1}{4} f(y-x)-f(x)-f(y), \\
& M_{2} f(x, y):=2 f\left(\frac{x+y}{2}\right)+f\left(\frac{x-y}{2}\right)+f\left(\frac{y-x}{2}\right)-f(x)-f(y)
\end{aligned}
$$

Using the direct method, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional inequalities

$$
\begin{equation*}
N\left(M_{1} f(x, y), t\right) \geq N\left(\rho M_{2} f(x, y), t\right) \tag{0.1}
\end{equation*}
$$

where ρ is a fixed real number with $|\rho|<1$, and

$$
\begin{equation*}
N\left(M_{2} f(x, y), t\right) \geq N\left(\rho M_{1} f(x, y), t\right) \tag{0.2}
\end{equation*}
$$

where ρ is a fixed real number with $|\rho|<\frac{1}{2}$.

1. Introduction and Preliminaries

Katsaras [14] defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure on the space. Some mathematicians have defined fuzzy norms on a vector space from various points of view $[11,16,38]$. In particular, Bag and Samanta [3], following Cheng and Mordeson [8], gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [15]. They established a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed spaces [4].

We use the definition of fuzzy normed spaces given in $[3,19,20]$ to investigate the Hyers-Ulam stability of additive ρ-functional inequalities in fuzzy Banach spaces.

[^0]Definition 1.1 ($[3,19,20,21])$. Let X be a real vector space. A function N : $X \times \mathbb{R} \rightarrow[0,1]$ is called a fuzzy norm on X if for all $x, y \in X$ and all $s, t \in \mathbb{R}$,
$\left(N_{1}\right) N(x, t)=0$ for $t \leq 0$;
$\left(N_{2}\right) x=0$ if and only if $N(x, t)=1$ for all $t>0$;
$\left(N_{3}\right) N(c x, t)=N\left(x, \frac{t}{|c|}\right)$ if $c \neq 0$;
$\left(N_{4}\right) N(x+y, s+t) \geq \min \{N(x, s), N(y, t)\} ;$
$\left(N_{5}\right) N(x, \cdot)$ is a non-decreasing function of \mathbb{R} and $\lim _{t \rightarrow \infty} N(x, t)=1$.
$\left(N_{6}\right)$ for $x \neq 0, N(x, \cdot)$ is continuous on \mathbb{R}.
The pair (X, N) is called a fuzzy normed vector space.
The properties of fuzzy normed vector spaces and examples of fuzzy norms are given in $[15,19]$.

Definition 1.2 ($[3,19,20,21])$. Let (X, N) be a fuzzy normed vector space. A sequence $\left\{x_{n}\right\}$ in X is said to be convergent or converge if there exists an $x \in X$ such that $\lim _{n \rightarrow \infty} N\left(x_{n}-x, t\right)=1$ for all $t>0$. In this case, x is called the limit of the sequence $\left\{x_{n}\right\}$ and we denote it by $N-\lim _{n \rightarrow \infty} x_{n}=x$.

Definition 1.3 ($[3,19,20,21])$. Let (X, N) be a fuzzy normed vector space. A sequence $\left\{x_{n}\right\}$ in X is called Cauchy if for each $\varepsilon>0$ and each $t>0$ there exists an $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$ and all $p>0$, we have $N\left(x_{n+p}-x_{n}, t\right)>1-\varepsilon$.

It is well-known that every convergent sequence in a fuzzy normed vector space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping $f: X \rightarrow Y$ between fuzzy normed vector spaces X and Y is continuous at a point $x_{0} \in X$ if for each sequence $\left\{x_{n}\right\}$ converging to x_{0} in X, then the sequence $\left\{f\left(x_{n}\right)\right\}$ converges to $f\left(x_{0}\right)$. If $f: X \rightarrow Y$ is continuous at each $x \in X$, then $f: X \rightarrow Y$ is said to be continuous on X (see [4]).

The stability problem of functional equations originated from a question of Ulam [37] concerning the stability of group homomorphisms.

The functional equation $f(x+y)=f(x)+f(y)$ is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping. Hyers [13] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [2] for additive mappings and by Rassias [29] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [12] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Rassias' approach.

The functional equation $f(x+y)+f(x-y)=2 f(x)+2 f(y)$ is called the quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. The stability of quadratic functional equation was proved by Skof [36] for mappings $f: E_{1} \rightarrow E_{2}$, where E_{1} is a normed space and E_{2} is a Banach space. Cholewa [9] noticed that the theorem of Skof is still true if the relevant domain E_{1} is replaced by an Abelian group. The stability problems of various functional equations have been extensively investigated by a number of authors (see $[1,5,6,7,10,17,18,22,25,26,27,30,31,32,33,34,35,39,40]$).

Park [23, 24] defined additive ρ-functional inequalities and proved the HyersUlam stability of the additive ρ-functional inequalities in Banach spaces and nonArchimedean Banach spaces.

In Section 2, we prove the Hyers-Ulam stability of the additive-quadratic ρ functional inequality (0.1) in fuzzy Banach spaces by using the direct method.

In Section 3, we prove the Hyers-Ulam stability of the additive-quadratic ρ functional inequality (0.2) in fuzzy Banach spaces by using the direct method.

Throughout this paper, assume that X is a real vector space and (Y, N) is a fuzzy Banach space.

2. Additive-quadratic ρ-Functional Inequality (0.1)

In this section, we prove the Hyers-Ulam stability of the additive-quadratic ρ functional inequality (0.1) in fuzzy Banach spaces. Let ρ be a real number with $|\rho| \leq 1$.

We need the following lemma to prove the main results.

Lemma 2.1.

(i) If an odd mapping $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
N\left(M_{1} f(x, y), t\right) \geq N\left(\rho M_{2} f(x, y), t\right) \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$ and all $t>0$, then f is the Cauchy additive mapping.
(ii) If an even mapping $f: X \rightarrow Y$ satisfies $f(0)=0$ and (2.1), then f is the quadratic mapping.

Proof. (i) Letting $y=x$ in (2.1), we get $N(f(2 x)-2 f(x), t)=1$ for all $t>0$ and so
$f(2 x)=2 f(x)$ for all $x \in X$. Thus

$$
\begin{equation*}
f\left(\frac{x}{2}\right)=\frac{1}{2} f(x) \tag{2.2}
\end{equation*}
$$

for all $x \in X$.
It follows from (2.1) and (2.2) that

$$
\begin{aligned}
N(f(x+y)-f(x)-f(y), t) & =N\left(\rho\left(2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right), t\right) \\
& =N(\rho(f(x+y)-f(x)-f(y)), t)
\end{aligned}
$$

for all $t>0$ and so

$$
f(x+y)=f(x)+f(y)
$$

for all $x, y \in X$ by $\left(N_{5}\right)$.
(ii) Letting $y=x$ in (2.1), we get $N\left(\frac{1}{2} f(2 x)-2 f(x), t\right)=1$ for all $t>0$ and so $f(2 x)=4 f(x)$ for all $x \in X$. Thus

$$
\begin{equation*}
f\left(\frac{x}{2}\right)=\frac{1}{4} f(x) \tag{2.3}
\end{equation*}
$$

for all $x \in X$.
It follows from (2.1) and (2.3) that

$$
\begin{aligned}
N(& \left.\frac{1}{2} f(x+y)+\frac{1}{2} f(x-y)-f(x)-f(y), t\right) \\
& =N\left(\rho\left(2 f\left(\frac{x+y}{2}\right)+2 f\left(\frac{x-y}{2}\right)-f(x)-f(y)\right), t\right) \\
& =N\left(\rho\left(\frac{1}{2} f(x+y)+\frac{1}{2} f(x-y)-f(x)-f(y)\right), t\right)
\end{aligned}
$$

for all $t>0$ and so

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

for all $x, y \in X$ by $\left(N_{5}\right)$.
Theorem 2.2. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\sum_{j=1}^{\infty} 4^{j} \varphi\left(\frac{x}{2^{j}}, \frac{y}{2^{j}}\right)<\infty \tag{2.4}
\end{equation*}
$$

for all $x, y \in X$.
(i) Let $f: X \rightarrow Y$ be an odd mapping satisfying

$$
\begin{equation*}
N\left(M_{1} f(x, y), t\right) \geq \min \left\{N\left(\rho M_{2} f(x, y), t\right), \frac{t}{t+\varphi(x, y)}\right\} \tag{2.5}
\end{equation*}
$$

for all $x, y \in X$ and all $t>0$. Then $A(x):=N-\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$ exists for each $x \in X$ and defines an additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
N(f(x)-A(x), t) \geq \frac{t}{t+\frac{1}{2} \Psi(x, x)} \tag{2.6}
\end{equation*}
$$

for all $x \in X$ and all $t>0$, where $\Psi(x, y):=\sum_{j=1}^{\infty} 2^{j} \varphi\left(\frac{x}{2^{j}}, \frac{y}{2^{j}}\right)$.
(ii) Let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (2.5). Then $Q(x):=N-\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}\right)$ exists for each $x \in X$ and defines a quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
N(f(x)-Q(x), t) \geq \frac{t}{t+\frac{1}{2} \Phi(x, x)} \tag{2.7}
\end{equation*}
$$

for all $x \in X$ and all $t>0$, where $\Phi(x, y):=\sum_{j=1}^{\infty} 4^{j} \varphi\left(\frac{x}{2^{j}}, \frac{y}{2^{j}}\right)$ for all $x, y \in X$.
Proof. (i) Letting $y=x$ in (2.5), we get

$$
\begin{equation*}
N(f(2 x)-2 f(x), t) \geq \frac{t}{t+\varphi(x, x)} \tag{2.8}
\end{equation*}
$$

and so

$$
N\left(f(x)-2 f\left(\frac{x}{2}\right), t\right) \geq \frac{t}{t+\varphi\left(\frac{x}{2}, \frac{x}{2}\right)}
$$

for all $x \in X$. Hence

$$
\begin{align*}
& N\left(2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right), t\right) \tag{2.9}\\
& \geq \min \left\{N\left(2^{l} f\left(\frac{x}{2^{l}}\right)-2^{l+1} f\left(\frac{x}{2^{l+1}}\right), t\right), \cdots\right. \\
&\left.\cdots, N\left(2^{m-1} f\left(\frac{x}{2^{m-1}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right), t\right)\right\} \\
&=\min \left\{N\left(f\left(\frac{x}{2^{l}}\right)-2 f\left(\frac{x}{2^{l+1}}\right), \frac{t}{2^{l}}\right), \cdots, N\left(f\left(\frac{x}{2^{m-1}}\right)-2 f\left(\frac{x}{2^{m}}\right), \frac{t}{2^{m-1}}\right)\right\} \\
& \geq \min \left\{\frac{\frac{t}{2^{l}}}{\frac{t}{2^{l}+\varphi\left(\frac{x}{2^{l+1}}, \frac{x}{2^{l+1}}\right)}, \cdots, \frac{t}{\left.\frac{t}{2^{m-1}+\varphi\left(\frac{x}{2^{m}}, \frac{x}{2^{m}}\right)}\right\}}} \begin{array}{rl}
& =\min \left\{\frac{t}{t+2^{l} \varphi\left(\frac{x}{2^{l+1}}, \frac{x}{2^{l+1}}\right)}, \cdots, \frac{t}{t+2^{m-1} \varphi\left(\frac{x}{2^{m}}, \frac{x}{2^{m}}\right)}\right\} \\
& \geq \frac{t}{t+\frac{1}{2} \sum_{j=l+1}^{m} 2^{j} \varphi\left(\frac{x}{2^{j}}, \frac{x}{2^{j}}\right)}
\end{array}\right.
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$ and all $t>0$. It follows from (2.4) and (2.9) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all
$x \in X$. Since Y is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=N-\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.9), we get (2.6).

By (2.5),

$$
\begin{aligned}
& N\left(2^{n}\left(f\left(\frac{x+y}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)-f\left(\frac{y}{2^{n}}\right)\right)\right. \\
& \left.\quad-\rho\left(2^{n+1} f\left(\frac{x+y}{2^{n+1}}\right)-2^{n} f\left(\frac{x}{2^{n}}\right)-2^{n} f\left(\frac{y}{2^{n}}\right)\right), 2^{n} t\right) \geq \frac{t}{t+\varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)}
\end{aligned}
$$

for all $x, y \in X$, all $t>0$ and all $n \in \mathbb{N}$. So

$$
\begin{aligned}
& N\left(2^{n}\left(f\left(\frac{x+y}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)-f\left(\frac{y}{2^{n}}\right)\right)\right. \\
& \left.\quad-\rho\left(2^{n+1} f\left(\frac{x+y}{2^{n+1}}\right)-2^{n} f\left(\frac{x}{2^{n}}\right)-2^{n} f\left(\frac{y}{2^{n}}\right)\right), t\right) \\
& \quad \geq \frac{\frac{t}{2^{n}}}{\frac{t}{2^{n}}+\varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)}=\frac{t}{t+2^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)}
\end{aligned}
$$

for all $x, y \in X$, all $t>0$ and all $n \in \mathbb{N}$. Since $\lim _{n \rightarrow \infty} \frac{t}{t+2^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)}=1$ for all $x, y \in X$ and all $t>0$,

$$
A(x+y)-A(x)-A(y)=\rho\left(2 A\left(\frac{x+y}{2}\right)-A(x)-A(y)\right)
$$

for all $x, y \in X$. By Lemma 2.1, the mapping $A: X \rightarrow Y$ is Cauchy additive.
(ii) Letting $y=x$ in (2.5), we get

$$
\begin{equation*}
N\left(\frac{1}{2} f(2 x)-2 f(x), t\right) \geq \frac{t}{t+\varphi(x, x)} \tag{2.10}
\end{equation*}
$$

and so

$$
N\left(f(x)-4 f\left(\frac{x}{2}\right), t\right) \geq \frac{\frac{t}{2}}{\frac{t}{2}+\varphi\left(\frac{x}{2}, \frac{x}{2}\right)}=\frac{t}{t+2 \varphi\left(\frac{x}{2}, \frac{x}{2}\right)}
$$

for all $x \in X$. Hence

$$
\begin{align*}
& N\left(4^{l} f\left(\frac{x}{2^{l}}\right)-4^{m} f\left(\frac{x}{2^{m}}\right), t\right) \tag{2.11}\\
& \geq \min \left\{N\left(4^{l} f\left(\frac{x}{2^{l}}\right)-4^{l+1} f\left(\frac{x}{2^{l+1}}\right), t\right), \cdots\right. \\
&\left.\cdots, N\left(4^{m-1} f\left(\frac{x}{2^{m-1}}\right)-4^{m} f\left(\frac{x}{2^{m}}\right), t\right)\right\} \\
&=\min \left\{N\left(f\left(\frac{x}{2^{l}}\right)-4 f\left(\frac{x}{2^{l+1}}\right), \frac{t}{4^{l}}\right), \cdots, N\left(f\left(\frac{x}{2^{m-1}}\right)-4 f\left(\frac{x}{2^{m}}\right), \frac{t}{4^{m-1}}\right)\right\} \\
& \geq \min \left\{\frac{\frac{t}{4^{l}}}{\frac{t}{4^{l}}+2 \varphi\left(\frac{x}{2^{l+1}}, \frac{x}{2^{l+1}}\right)}, \cdots, \frac{t}{4^{\frac{t-1}{m}}+2 \varphi\left(\frac{x}{2^{m}}, \frac{x}{2^{m}}\right)}\right\} \\
&=\min \left\{\frac{t}{t+2 \cdot 4^{l} \varphi\left(\frac{x}{2^{l+1}}, \frac{x}{2^{l+1}}\right)}, \cdots, \frac{t}{t+2 \cdot 4^{m-1} \varphi\left(\frac{x}{2^{m}}, \frac{x}{2^{m}}\right)}\right\} \\
& \geq \frac{t}{t+\frac{1}{2} \sum_{j=l+1}^{m} 4^{j} \varphi\left(\frac{x}{2^{j}}, \frac{x}{2^{j}}\right)}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$ and all $t>0$. It follows from (2.4) and (2.11) that the sequence $\left\{4^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{4^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $Q: X \rightarrow Y$ by

$$
Q(x):=N-\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.11), we get (2.7).

The rest of the proof is similar to the above additive case.
Corollary 2.3. Let $\theta \geq 0$ and let p be a real number with $p>2$. Let X be a normed vector space with norm $\|\cdot\|$.
(i) Let $f: X \rightarrow Y$ be an odd mapping satisfying
(2.12) $N\left(M_{1} f(x, y), t\right) \geq \min \left\{N\left(\rho M_{2} f(x, y), t\right), \frac{t}{t+\theta\left(\|x\|^{p}+\|y\|^{p}\right)}\right\}$
for all $x, y \in X$ and all $t>0$. Then $A(x):=N-\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$ exists for each $x \in X$ and defines an additive mapping $A: X \rightarrow Y$ such that

$$
N(f(x)-A(x), t) \geq \frac{\left(2^{p}-2\right) t}{\left(2^{p}-2\right) t+2 \theta\|x\|^{p}}
$$

for all $x \in X$ and all $t>0$.
(ii) Let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (2.12). Then $Q(x):=N-\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}\right)$ exists for each $x \in X$ and defines a quadratic mapping $Q: X \rightarrow Y$ such that

$$
N(f(x)-Q(x), t) \geq \frac{\left(2^{p}-4\right) t}{\left(2^{p}-4\right) t+4 \theta\|x\|^{p}}
$$

for all $x \in X$ and all $t>0$.
Proof. The proof follows from Theorem 2.2 by taking $\varphi(x, y):=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$ for all $x, y \in X$, as desired.

Theorem 2.4. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\sum_{j=0}^{\infty} \frac{1}{2^{j}} \varphi\left(2^{j} x, 2^{j} y\right)<\infty
$$

for all $x, y \in X$.
(i) Let $f: X \rightarrow Y$ be an odd mapping satisfying (2.5). Then

$$
A(x):=N-\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

exists for each $x \in X$ and defines an additive mapping $A: X \rightarrow Y$ such that

$$
N(f(x)-A(x), t) \geq \frac{t}{t+\frac{1}{2} \Phi(x, x)}
$$

for all $x \in X$ and all $t>0$, where $\Phi(x, y):=\sum_{j=0}^{\infty} \frac{1}{2^{j}} \varphi\left(2^{j} x, 2^{j} y\right)$ for all $x, y \in X$. (ii) Let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (2.5). Then $Q(x):=N-\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x\right)$ exists for each $x \in X$ and defines a quadratic mapping $Q: X \rightarrow Y$ such that

$$
N(f(x)-Q(x), t) \geq \frac{t}{t+\frac{1}{2} \Psi(x, x)}
$$

for all $x \in X$ and all $t>0$, where $\Psi(x, y):=\sum_{j=0}^{\infty} \frac{1}{4^{j}} \varphi\left(2^{j} x, 2^{j} y\right)$ for all $x, y \in X$.
Proof. (i) It follows from (2.8) that

$$
N\left(f(x)-\frac{1}{2} f(2 x), \frac{1}{2} t\right) \geq \frac{t}{t+\varphi(x, x)}
$$

and so

$$
N\left(f(x)-\frac{1}{2} f(2 x), t\right) \geq \frac{2 t}{2 t+\varphi(x, x)}=\frac{t}{t+\frac{1}{2} \varphi(x, x)}
$$

for all $x \in X$ and all $t>0$.
(ii) It follows from (2.10) that

$$
N\left(f(x)-\frac{1}{4} f(2 x), \frac{1}{2} t\right) \geq \frac{t}{t+\varphi(x, x)}
$$

and so

$$
N\left(f(x)-\frac{1}{4} f(2 x), t\right) \geq \frac{2 t}{2 t+\varphi(x, x)}=\frac{t}{t+\frac{1}{2} \varphi(x, x)}
$$

for all $x \in X$ and all $t>0$.
The rest of the proof is similar to the proof of Theorem 2.2.
Corollary 2.5. Let $\theta \geq 0$ and let p be a real number with $0<p<1$. Let X be a normed vector space with norm $\|\cdot\|$.
(i) Let $f: X \rightarrow Y$ be an odd mapping satisfying (2.12). Then $A(x):=N$ $\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)$ exists for each $x \in X$ and defines an additive mapping $A: X \rightarrow Y$ such that

$$
N(f(x)-A(x), t) \geq \frac{\left(2-2^{p}\right) t}{\left(2-2^{p}\right) t+2 \theta\|x\|^{p}}
$$

for all $x \in X$ and all $t>0$.
(ii) Let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (2.12). Then $Q(x):=N-\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x\right)$ exists for each $x \in X$ and defines a quadratic mapping $Q: X \rightarrow Y$ such that

$$
N(f(x)-Q(x), t) \geq \frac{\left(4-2^{p}\right) t}{\left(4-2^{p}\right) t+4 \theta\|x\|^{p}}
$$

for all $x \in X$ and all $t>0$.
Proof. The proof follows from Theorem 2.4 by taking $\varphi(x, y):=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$ for all $x, y \in X$, as desired.

3. Additive-quadratic ρ-Functional Inequality (0.2)

In this section, we prove the Hyers-Ulam stability of the additive-quadratic ρ functional inequality (0.2) in fuzzy Banach spaces. Let ρ be a real number with $|\rho| \leq \frac{1}{2}$.

Lemma 3.1.

(i) If an odd mapping $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
N\left(M_{2} f(x, y), t\right) \geq N\left(\rho M_{1} f(x, y), t\right) \tag{3.1}
\end{equation*}
$$

for all $x, y \in X$ and all $t>0$, then f is the Cauchy additive mapping.
(ii) If an even mapping $f: X \rightarrow Y$ satisfies $f(0)=0$ and (3.1), then f is the quadratic mapping.

Proof. (i) Letting $y=0$ in (3.1), we get $N\left(2 f\left(\frac{x}{2}\right)-f(x), t\right)=1$ for all $t>0$. So

$$
\begin{equation*}
f\left(\frac{x}{2}\right)=\frac{1}{2} f(x) \tag{3.2}
\end{equation*}
$$

for all $x \in X$.
It follows from (3.1) and (3.2) that

$$
\begin{aligned}
N(f(x+y)-f(x)-f(y), t) & =N\left(2 f\left(\frac{x+y}{2}\right)-f(x)-f(y), t\right) \\
& =N(\rho(f(x+y)-f(x)-f(y)), t)
\end{aligned}
$$

for all $t>0$ and so

$$
f(x+y)=f(x)+f(y)
$$

for all $x, y \in X$ by $\left(N_{5}\right)$.
(ii) Letting $y=0$ in (3.1), we get $N\left(4 f\left(\frac{x}{2}\right)-f(x), t\right)$ for all $t>0$. So

$$
\begin{equation*}
f\left(\frac{x}{2}\right)=\frac{1}{4} f(x) \tag{3.3}
\end{equation*}
$$

for all $x \in X$.
It follows from (3.1) and (3.3) that

$$
\begin{aligned}
N(& \left.\frac{1}{2} f(x+y)+\frac{1}{2} f(x-y)-f(x)-f(y), t\right) \\
& =N\left(2 f\left(\frac{x+y}{2}\right)+2 f\left(\frac{x-y}{2}\right)-f(x)-f(y), t\right) \\
& =N\left(\rho\left(\frac{1}{2} f(x+y)+\frac{1}{2} f(x-y)-f(x)-f(y)\right), t\right)
\end{aligned}
$$

for all $t>0$ and so

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

for all $x, y \in X$ by $\left(N_{5}\right)$.
Theorem 3.2. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\sum_{j=0}^{\infty} 4^{j} \varphi\left(\frac{x}{2^{j}}, \frac{y}{2^{j}}\right)<\infty \tag{3.4}
\end{equation*}
$$

for all $x, y \in X$.
(i) Let $f: X \rightarrow Y$ be an odd mapping satisfying

$$
\begin{equation*}
N\left(M_{2} f(x, y), t\right) \geq \min \left\{N\left(\rho M_{1} f(x, y), t\right), \frac{t}{t+\varphi(x, y)}\right\} \tag{3.5}
\end{equation*}
$$

for all $x, y \in X$ and all $t>0$. Then $A(x):=N-\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$ exists for each $x \in X$ and defines an additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
N(f(x)-A(x), t) \geq \frac{t}{t+\Phi(x, 0)} \tag{3.6}
\end{equation*}
$$

for all $x \in X$ and all $t>0$, where $\Phi(x, y):=\sum_{j=0}^{\infty} 2^{j} \varphi\left(\frac{x}{2^{j}}, \frac{y}{2^{j}}\right)$ for all $x, y \in X$.
(ii) Let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (3.5). Then $Q(x):=N-\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}\right)$ exists for each $x \in X$ and defines a quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
N(f(x)-Q(x), t) \geq \frac{t}{t+\Psi(x, 0)} \tag{3.7}
\end{equation*}
$$

for all $x \in X$ and all $t>0$, where $\Psi(x, y):=\sum_{j=0}^{\infty} 4^{j} \varphi\left(\frac{x}{2^{j}}, \frac{y}{2^{j}}\right)$ for all $x, y \in X$.
Proof. (i) Letting $y=0$ in (3.5), we get

$$
\begin{equation*}
N\left(f(x)-2 f\left(\frac{x}{2}\right), t\right)=N\left(2 f\left(\frac{x}{2}\right)-f(x), t\right) \geq \frac{t}{t+\varphi(x, 0)} \tag{3.8}
\end{equation*}
$$

for all $x \in X$. Hence

$$
\begin{align*}
& N\left(2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right), t\right) \tag{3.9}\\
& \geq \min \left\{N\left(2^{l} f\left(\frac{x}{2^{l}}\right)-2^{l+1} f\left(\frac{x}{2^{l+1}}\right), t\right), \cdots\right. \\
&\left.\cdots, N\left(2^{m-1} f\left(\frac{x}{2^{m-1}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right), t\right)\right\} \\
&=\min \left\{N\left(f\left(\frac{x}{2^{l}}\right)-2 f\left(\frac{x}{2^{l+1}}\right), \frac{t}{2^{l}}\right), \cdots, N\left(f\left(\frac{x}{2^{m-1}}\right)-2 f\left(\frac{x}{2^{m}}\right), \frac{t}{2^{m-1}}\right)\right\} \\
& \geq \min \left\{\frac{\frac{t}{2^{l}}}{\frac{t}{2^{l}}+\varphi\left(\frac{x}{2^{2}}, 0\right)}, \cdots, \frac{t}{\frac{t}{2^{m-1}}+\varphi\left(\frac{x}{2^{m-1}}, 0\right)}\right\} \\
&=\min \left\{\frac{t}{t+2^{l} \varphi\left(\frac{x}{2^{l}}, 0\right)}, \cdots, \frac{t}{t+2^{m-1} \varphi\left(\frac{x}{2^{m-1}}, 0\right)}\right\} \\
& \geq \frac{t}{t+\sum_{j=l}^{m-1} 2^{j} \varphi\left(\frac{x}{2^{j}}, 0\right)}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$ and all $t>0$. It follows from (3.4) and (3.9) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all
$x \in X$. Since Y is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=N-\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.9), we get (3.6).

By (3.5),

$$
\begin{aligned}
& N\left(2^{n+1} f\left(\frac{x+y}{2^{n+1}}\right)-2^{n} f\left(\frac{x}{2^{n}}\right)-2^{n} f\left(\frac{y}{2^{n}}\right)\right. \\
& \left.\quad-\rho\left(2^{n}\left(f\left(\frac{x+y}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)-f\left(\frac{y}{2^{n}}\right)\right)\right), 2^{n} t\right) \geq \frac{t}{t+\varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)}
\end{aligned}
$$

for all $x, y \in X$, all $t>0$ and all $n \in \mathbb{N}$. So

$$
\begin{aligned}
& N\left(2^{n+1} f\left(\frac{x+y}{2^{n+1}}\right)-2^{n} f\left(\frac{x}{2^{n}}\right)-2^{n} f\left(\frac{y}{2^{n}}\right)\right. \\
& \left.\quad-\rho\left(2^{n}\left(f\left(\frac{x+y}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)-f\left(\frac{y}{2^{n}}\right)\right)\right), t\right) \\
& \quad \geq \frac{t}{\frac{t}{2^{n}}+\varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)}=\frac{t}{t+2^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)}
\end{aligned}
$$

for all $x, y \in X$, all $t>0$ and all $n \in \mathbb{N}$. Since $\lim _{n \rightarrow \infty} \frac{t}{t+2^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)}=1$ for all $x, y \in X$ and all $t>0$,

$$
2 A\left(\frac{x+y}{2}\right)-A(x)-A(y)=\rho(A(x+y)-A(x)-A(y))
$$

for all $x, y \in X$. By Lemma 3.1, the mapping $A: X \rightarrow Y$ is Cauchy additive.
(ii) Letting $y=0$ in (3.5), we get

$$
\begin{equation*}
N\left(f(x)-4 f\left(\frac{x}{2}\right), t\right)=N\left(4 f\left(\frac{x}{2}\right)-f(x), t\right) \geq \frac{t}{t+\varphi(x, 0)} \tag{3.10}
\end{equation*}
$$

for all $x \in X$. Hence

$$
\begin{equation*}
N\left(4^{l} f\left(\frac{x}{2^{l}}\right)-4^{m} f\left(\frac{x}{2^{m}}\right), t\right) \tag{3.11}
\end{equation*}
$$

$$
\begin{aligned}
& \geq \min \left\{N\left(4^{l} f\left(\frac{x}{2^{l}}\right)-4^{l+1} f\left(\frac{x}{2^{l+1}}\right), t\right), \cdots\right. \\
& \left.\cdots, N\left(4^{m-1} f\left(\frac{x}{2^{m-1}}\right)-4^{m} f\left(\frac{x}{2^{m}}\right), t\right)\right\} \\
& =\min \left\{N\left(f\left(\frac{x}{2^{l}}\right)-4 f\left(\frac{x}{2^{l+1}}\right), \frac{t}{4^{l}}\right), \cdots, N\left(f\left(\frac{x}{2^{m-1}}\right)-4 f\left(\frac{x}{2^{m}}\right), \frac{t}{4^{m-1}}\right)\right\} \\
& \geq \min \left\{\frac{\frac{t}{4^{l}}}{\frac{t}{4^{l}}+\varphi\left(\frac{x}{2^{l}}, 0\right)}, \cdots, \frac{t}{4^{\frac{t}{m-1}}+\varphi\left(\frac{x}{2^{m-1}}, 0\right)}\right\} \\
& =\min \left\{\frac{t}{t+4^{l} \varphi\left(\frac{x}{2^{l}}, 0\right)}, \cdots, \frac{t}{t+4^{m-1} \varphi\left(\frac{x}{2^{m-1}}, 0\right)}\right\} \\
& \geq \frac{t}{t+\sum_{j=l}^{m-1} 4^{j} \varphi\left(\frac{x}{2^{j}}, 0\right)}
\end{aligned}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$ and all $t>0$. It follows from (3.4) and (3.11) that the sequence $\left\{4^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{4^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $Q: X \rightarrow Y$ by

$$
Q(x):=N-\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.11), we get (3.7).

The rest of the prrof is similar to the above additive case.
Corollary 3.3. Let $\theta \geq 0$ and let p be a real number with $p>2$. Let X be a normed vector space with norm $\|\cdot\|$.
(i) Let $f: X \rightarrow Y$ be an odd mapping satisfying

$$
N\left(M_{2} f(x, y), t\right) \geq \min \left\{N\left(\rho M_{1} f(x, y), t\right), \frac{t}{t+\theta\left(\|x\|^{p}+\|y\|^{p}\right)}\right\}
$$

for all $x, y \in X$ and all $t>0$. Then $A(x):=N-\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$ exists for each $x \in X$ and defines an additive mapping $A: X \rightarrow Y$ such that

$$
N(f(x)-A(x), t) \geq \frac{\left(2^{p}-2\right) t}{\left(2^{p}-2\right) t+2^{p} \theta\|x\|^{p}}
$$

for all $x \in X$ and all $t>0$.
(ii) Let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (3.12). Then $Q(x):=N-\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}\right)$ exists for each $x \in X$ and defines a quadratic mapping
$Q: X \rightarrow Y$ such that

$$
N(f(x)-Q(x), t) \geq \frac{\left(2^{p}-4\right) t}{\left(2^{p}-4\right) t+2^{p} \theta\|x\|^{p}}
$$

for all $x \in X$ and all $t>0$.
Proof. The proof follows from Theorem 3.2 by taking $\varphi(x, y):=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$ for all $x, y \in X$, as desired.

Theorem 3.4. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\sum_{j=1}^{\infty} \frac{1}{2^{j}} \varphi\left(2^{j} x, 2^{j} y\right)<\infty
$$

for all $x, y \in X$.
(i) Let $f: X \rightarrow Y$ be an odd mapping satisfying (3.5). Then $A(x):=N$ - $\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)$ exists for each $x \in X$ and defines an additive mapping $A: X \rightarrow Y$ such that

$$
N(f(x)-A(x), t) \geq \frac{t}{t+\Phi(x, 0)}
$$

for all $x \in X$ and all $t>0$, where $\Phi(x, y):=\sum_{j=1}^{\infty} \frac{1}{2^{j}} \varphi\left(2^{j} x, 2^{j} y\right)$ for all $x, y \in X$.
(ii) Let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (3.5). Then $Q(x):=N-\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x\right)$ exists for each $x \in X$ and defines a quadratic mapping $Q: X \rightarrow Y$ such that

$$
N(f(x)-Q(x), t) \geq \frac{t}{t+\Psi(x, 0)}
$$

for all $x \in X$ and all $t>0$, where $\Psi(x, y):=\sum_{j=1}^{\infty} \frac{1}{4^{j}} \varphi\left(2^{j} x, 2^{j} y\right)$ for all $x, y \in X$.
Proof. (i) It follows from (3.8) that

$$
N\left(f(x)-\frac{1}{2} f(2 x), \frac{t}{2}\right) \geq \frac{t}{t+\varphi(2 x, 0)}
$$

and so

$$
N\left(f(x)-\frac{1}{2} f(2 x), t\right) \geq \frac{2 t}{2 t+\varphi(2 x, 0)}=\frac{t}{t+\frac{1}{2} \varphi(2 x, 0)}
$$

for all $x \in X$ and all $t>0$.
(ii) It follows from (3.10) that

$$
N\left(f(x)-\frac{1}{4} f(2 x), \frac{t}{4}\right) \geq \frac{t}{t+\varphi(2 x, 0)}
$$

and so

$$
N\left(f(x)-\frac{1}{4} f(2 x), t\right) \geq \frac{4 t}{4 t+\varphi(2 x, 0)}=\frac{t}{t+\frac{1}{4} \varphi(2 x, 0)}
$$

for all $x \in X$ and all $t>0$.
The rest of the proof is similar to the proof of Theorem 3.2.
Corollary 3.5. Let $\theta \geq 0$ and let p be a real number with $0<p<1$. Let X be a normed vector space with norm $\|\cdot\|$.
(i) Let $f: X \rightarrow Y$ be an odd mapping satisfying (3.12). Then $A(x):=N$ $\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)$ exists for each $x \in X$ and defines an additive mapping $A: X \rightarrow Y$ such that

$$
N(f(x)-A(x), t) \geq \frac{\left(2-2^{p}\right) t}{\left(2-2^{p}\right) t+2^{p} \theta\|x\|^{p}}
$$

for all $x \in X$.
(ii) Let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (3.12). Then $Q(x):=N-\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x\right)$ exists for each $x \in X$ and defines a quadratic mapping $Q: X \rightarrow Y$ such that

$$
N(f(x)-Q(x), t) \geq \frac{\left(4-2^{p}\right) t}{\left(4-2^{p}\right) t+2^{p} \theta\|x\|^{p}}
$$

for all $x \in X$.
Proof. The proof follows from Theorem 3.4 by taking $\varphi(x, y):=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$ for all $x, y \in X$, as desired.

Acknowledgments

S. Yun was supported by Hanshin University Research Grant.

References

1. M. Adam: On the stability of some quadratic functional equation. J. Nonlinear Sci. Appl. 4 (2011), 50-59.
2. T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66.
3. T. Bag \& S.K. Samanta: Finite dimensional fuzzy normed linear spaces. J. Fuzzy Math. 11 (2003), 687-705.
4. \qquad : Fuzzy bounded linear operators. Fuzzy Sets and Systems 151 (2005), 513-547.
5. L. Cădariu, L. Găvruta \& P. Găvruta: On the stability of an affine functional equation. J. Nonlinear Sci. Appl. 6 (2013), 60-67.
6. A. Chahbi \& N. Bounader: On the generalized stability of d'Alembert functional equation. J. Nonlinear Sci. Appl. 6 (2013), 198-204.
7. I. Chang \& Y. Lee: Additive and quadratic type functional equation and its fuzzy stability. Results Math. 63 (2013), 717-730.
8. S.C. Cheng \& J.M. Mordeson: Fuzzy linear operators and fuzzy normed linear spaces. Bull. Calcutta Math. Soc. 86 (1994), 429-436.
9. P.W. Cholewa: Remarks on the stability of functional equations. Aequationes Math. $\mathbf{2 7}$ (1984), 76-86.
10. G.Z. Eskandani \& P. Gãvruta: Hyers-Ulam-Rassias stability of pexiderized Cauchy functional equation in 2-Banach spaces. J. Nonlinear Sci. Appl. 5 (2012), 459-465.
11. C. Felbin: Finite dimensional fuzzy normed linear spaces. Fuzzy Sets and Systems 48 (1992), 239-248.
12. P. Găvruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436.
13. D.H. Hyers: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
14. A.K. Katsaras: Fuzzy topological vector spaces II. Fuzzy Sets and Systems 12 (1984), 143-154.
15. I. Kramosil \& J. Michalek: Fuzzy metric and statistical metric spaces. Kybernetica 11 (1975), 326-334.
16. S.V. Krishna \& K.K.M. Sarma: Separation of fuzzy normed linear spaces. Fuzzy Sets and Systems 63 (1994), 207-217.
17. G. Lu, Y. Wang \& P. Ye: n-Jordan *-derivations on induced fuzzy C^{*}-algebras. J. Comput. Anal. Appl. 20 (2016), 266-276.
18. D. Mihet \& R. Saadati: On the stability of the additive Cauchy functional equation in random normed spaces. Appl. Math. Lett. 24 (2011), 2005-2009.
19. A.K. Mirmostafaee, M. Mirzavaziri \& M.S. Moslehian: Fuzzy stability of the Jensen functional equation. Fuzzy Sets and Systems 159 (2008), 730-738.
20. A.K. Mirmostafaee \& M.S. Moslehian: Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems 159 (2008), 720-729.
21. _ : : Fuzzy approximately cubic mappings. Inform. Sci. 178 (2008), 3791-3798.
22. E. Movahednia, S.M.S.M. Mosadegh, C. Park \& D. Shin: Stability of a lattice preserving functional equation on Riesz space: fixed point alternative. J. Comput. Anal. Appl. 21 (2016), 83-89.
23. C. Park: Additive ρ-functional inequalities and equations. J. Math. Inequal. 9 (2015), 17-26.
24. _ Additive ρ-functional inequalities in non-Archimedean normed spaces. J. Math. Inequal. 9 (2015), 397-407.
25. \qquad : Stability of ternary quadratic derivation on ternary Banach algebras: revisited. J. Comput. Anal. Appl. 20 (2016), 21-23.
26. C. Park, K. Ghasemi, S.G. Ghaleh \& S. Jang: Approximate n-Jordan $*$-homomorphisms in C^{*}-algebras. J. Comput. Anal. Appl. 15 (2013), 365-368.
27. C. Park, A. Najati \& S. Jang: Fixed points and fuzzy stability of an additive-quadratic functional equation. J. Comput. Anal. Appl. 15 (2013), 452-462.
28. W. Park \& J. Bae: Approximate quadratic forms on restricted domains. J. Comput. Anal. Appl. 20 (2016), 388-410.
29. Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300.
30. K. Ravi, E. Thandapani \& B.V. Senthil Kumar: Solution and stability of a reciprocal type functional equation in several variables. J. Nonlinear Sci. Appl. 7 (2014), 18-27.
31. S. Schin, D. Ki, J. Chang \& M. Kim: Random stability of quadratic functional equations: a fixed point approach. J. Nonlinear Sci. Appl. 4 (2011), 37-49.
32. S. Shagholi, M. Bavand Savadkouhi \& M. Eshaghi Gordji: Nearly ternary cubic homomorphism in ternary Fréchet algebras. J. Comput. Anal. Appl. 13 (2011), 1106-1114.
33. S. Shagholi, M. Eshaghi Gordji \& M. Bavand Savadkouhi: Stability of ternary quadratic derivation on ternary Banach algebras. J. Comput. Anal. Appl. 13 (2011), 1097-1105.
34. D. Shin, C. Park \& Sh. Farhadabadi: On the superstability of ternary Jordan C^{*} homomorphisms. J. Comput. Anal. Appl. 16 (2014), 964-973.
35. \qquad : Stability and superstability of J^{*}-homomorphisms and J^{*}-derivations for a generalized Cauchy-Jensen equation. J. Comput. Anal. Appl. 17 (2014), 125-134.
36. F. Skof: Propriet locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
37. S.M. Ulam: A Collection of the Mathematical Problems. Interscience Publ. New York, 1960.
38. J.Z. Xiao \& X.H. Zhu: Fuzzy normed spaces of operators and its completeness. Fuzzy Sets and Systems 133 (2003), 389-399.
39. C. Zaharia: On the probabilistic stability of the monomial functional equation. J. Nonlinear Sci. Appl. 6 (2013), 51-59.
40. S. Zolfaghari: Approximation of mixed type functional equations in p-Banach spaces. J. Nonlinear Sci. Appl. 3 (2010), 110-122.
${ }^{\text {a }}$ Department of Financial Mathematics, Hanshin University, Gyeonggi-do 18101, KoREA
Email address: ssyun@hs.ac.kr
${ }^{\text {b}}$ Department of Mathematics, Daejin University, Kyeongai 11159, Korea
Email address: jrlee@daejin.ac.kr
${ }^{\text {c }}$ Department of Mathematics, University of Seoul, Seoul 02504, Republic of Korea
Email address: dyshin@uos.ac.kr

[^0]: Received by the editors July 23, 2016. Accepted August 04, 2016.
 2010 Mathematics Subject Classification. Primary 46S40, 39B52, 39B62, 26E50, 47S40.
 Key words and phrases. fuzzy Banach space, additive-quadratic ρ-functional inequality, HyersUlam stability.
 *Corresponding author.

