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A MEASURE ZERO STABILITY OF A FUNCTIONAL

EQUATION ASSOCIATED WITH INNER PRODUCT SPACE

Jaeyoung Chung and John Michael Rassias

Abstract. Let X,Y be real normed vector spaces. We exhibit all the
solutions f : X → Y of the functional equation f(rx + sy) + rsf(x −

y) = rf(x) + sf(y) for all x, y ∈ X, where r, s are nonzero real numbers
satisfying r+ s = 1. In particular, if Y is a Banach space, we investigate
the Hyers-Ulam stability problem of the equation. We also investigate the
Hyers-Ulam stability problem on a restricted domain of the following form
Ω∩ {(x, y) ∈ X2 : ‖x‖+ ‖y‖ ≥ d}, where Ω is a rotation of H ×H ⊂ X2

and Hc is of the first category. As a consequence, we obtain a measure

zero Hyers-Ulam stability of the above equation when f : R → Y .

1. Introduction

Throughout this paper we denote by X,Y a real normed space and a Banach
space, respectively. A mapping f : X → Y is called additive mapping if f
satisfies f(x + y) = f(x) + f(y) for all x, y ∈ X . The Hyers-Ulam stability
problem for functional equations was originated by S. M. Ulam in 1940 (see
[23]). One of the first assertions to be obtained is the following result, essentially
due to D. H. Hyers [10] that gives an answer to a famous stability question of
S. M. Ulam [23].

Theorem 1.1. Suppose that f : X → Y satisfies the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ǫ

for all x, y ∈ X. Then there exists a unique additive mapping a : X → Y such

that

‖f(x)− a(x)‖ ≤ ǫ

holds for all x ∈ X.
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In 1950 T. Aoki [3] provided a generalization of Theorem 1.1 for additive
mappings by allowing the Cauchy difference to be unbounded, that is, con-
trolled by the sum of two powered norms. In 1978 Th. M. Rassias [20] general-
ized the Hyers theorem for linear mappings by allowing the Cauchy difference
to be unbounded (see also [5]). This stability concept is also applied to the case
of other functional equations. Among the pioneering results, F. Skof [22] solved
the Hyers-Ulam stability problem for additive mappings on a restricted domain.
Also S. M. Jung [12, 14] investigated the Hyers-Ulam stability for additive and
quadratic mappings on restricted domains and J. M. Rassias [18] investigated
the Hyers-Ulam stability of mixed type mappings on restricted domains as well.
For more analogous results on functional equations or inequalities satisfied on
restricted domains or satisfied under restricted conditions we refer the reader
to pertinent papers [4, 6, 7, 8, 9, 13, 21, 22].

A mapping f : X → Y is called quadratic mapping if f satisfies the following
quadratic functional equation f(x + y) + f(x − y) = 2f(x) + 2f(y) for all
x, y ∈ X . It is well known that a normed vector space X with norm ‖ · ‖ is
an inner product space if and only if f(x) = ‖x‖2 is a quadratic mapping (see
P. Jordan and J. von Neumann [11]). In [16], A. Najati and S. M. Jung gave
another characterization of inner product space.

Theorem 1.2. A normed vector space X with norm ‖ · ‖ is an inner product

space if and only if there exists a pair (r, s) of nonzero real numbers r, s with

r + s = 1, such that f(x) = ‖x‖2 satisfies the functional equation

(1.1) f(rx+ sy) + rsf(x− y) = rf(x) + sf(y)

for all x, y ∈ X.

As we see in the following Section 2, the above equation (1.1) is not exactly
equivalent to a quadratic functional equation and therefore we can call the
equation (1.1) quasi-quadratic functional equation. For the proof of the above
result the authors investigated the general solutions of the equation (1.1) under
the assumption that f is an even function and r is a rational number. As the
main result, they also proved the stability of the equation (1.1) on a restricted
domain.

Theorem 1.3. Let r, s be nonzero real numbers with r + s = 1 and d > 0
and δ ≥ 0. Assume that an even mapping f : X → Y satisfies the following

(r, s)-quasi-quadratic functional inequality

(1.2) ‖f(rx+ sy) + rsf(x − y)− rf(x) − sf(y)‖ ≤ δ

for all x, y ∈ X with ‖x‖ + ‖y‖ ≥ d. Then there exists a unique quadratic

mapping Q : X → Y such that

(1.3) ‖f(x)−Q(x)‖ ≤ 19(2 + |r| + |s|)
2|rs| δ

for all x ∈ X.
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In this paper we first exhibit all the solutions of the functional equation (1.1)
without the assumptions that f is even and r is rational. Secondly, we prove
the Hyers-Ulam stability of the equation (1.1) defined in the whole domain.
Thirdly, we investigate the stability of the equation (1.1) on restricted domains
satisfying the condition (C) (see Section 4 for the condition). Finally, by finding
subsets satisfying the condition (C) we prove the stability of equation (1.1) on
the restricted domain Ω∩ {(x, y) ∈ X2 : ‖x‖+ ‖y‖ ≥ d}, where Ω is a rotation
of H×H ⊂ X2 and Hc is of the first category, which generalizes and refines the
result of A. Najati and S. M. Jung [16] (we deal with more restricted domain,
without the said assumption of evenness of f and obtain a much better constant
than that one in (1.3)). As a consequence, we also obtain the stability of the
equation (1.1) when f : R → Y satisfies the above inequality (1.2) on a set
Ω ⊂ {(x, y) ∈ R

2 : |x|+ |y| ≥ d} of Lebesgue measure zero.

2. General solutions

In this section, we establish the general solutions of the (r, s)-quasi-quadratic
functional equation (1.1).

Theorem 2.1. A function f : X → Y satisfies the functional equation (1.1) if
and only if

(2.1) f(x) = B(x, x) + a(x)

holds for all x ∈ X, where B : X×X → Y is a symmetric bi-additive mapping

and a : X → Y is an additive mapping, which satisfy

(2.2) B(rx, y) = rB(x, y), a(rx) = r2a(x)

for all x, y ∈ X. In particular, if r is an algebraic number or t → f(tx) is a

continuous function of t ∈ R for all x ∈ X, then a = 0.

Proof. Let D be the difference

D(x, y) = f(rx+ sy) + rsf(x− y)− rf(x)− sf(y)

for all x, y ∈ X . Then we obtain the four difference relations:

D(rx + 2y, rx+ y) = f(rx + (r + 1)y) + rsf(y)− rf(rx + 2y)− sf(rx+ y),

D(x + 2y, y) = f(rx + (r + 1)y) + rsf(x+ y)− rf(x+ 2y)− sf(y),

D(x+ 2y, 2y) = f(rx + 2y) + rsf(x) − rf(x+ 2y)− sf(2y),

D(x+ y, y) = f(rx + y) + rsf(x) − rf(x + y)− sf(y)

for all x, y ∈ X . Thus, we can write

0 = D(rx + 2y, rx+ y)−D(x+ 2y, y) + rD(x + 2y, 2y) + sD(x+ y, y)

= rs
(

f(x) + f(x+ 2y)− 2f(x+ y) + 2f(y)− f(2y)
)

for all x, y ∈ X , and we obtain the special functional equation

(2.3) f(x) + f(x+ 2y) = 2f(x+ y)− 2f(y) + f(2y)
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for all x, y ∈ X . Let fe and fo be the even part and the odd part of f

respectively. Then from (2.3) we have the two pertinent functional equations:

fe(x) + fe(x+ 2y) = 2fe(x+ y)− 2fe(y) + fe(2y),(2.4)

fo(x) + fo(x+ 2y) = 2fo(x+ y)− 2fo(y) + fo(2y)(2.5)

for all x, y ∈ X .
First, we consider the even part fe. Putting x = y = 0 and x = −y in (2.4)

we have

fe(0) = 0, fe(2y) = 4fe(y)(2.6)

for all y ∈ X . Replacing x by x− y in (2.4) and using (2.6) we get

fe(x− y) + fe(x+ y) = 2fe(y) + 2fe(y)(2.7)

for all x, y ∈ X . Thus, fe := q is a quadratic mapping. Secondly, we consider
the odd part fo. Putting x = y = 0 and then replacing x by −y in (2.5) we
have fo(0) = 0 and fo(2y) = 2fo(y) for all y ∈ X . Thus, we have

fo(x) + fo(x + 2y) = 2fo(x+ y)− 2fo(y) + fo(2y)(2.8)

= 2fo(x+ y) = fo(2x+ 2y)

for all x, y ∈ X . Replacing x by u and y by 1
2 (v − u) in (2.8) we have

fo(u) + fo(v) = fo(u+ v)

for all u, v ∈ X and fo := a is an additive mapping. It is well known that a
function q : X → Y between real vector spaces X and Y is quadratic if and
only if there exists a unique symmetric bi-additive function B : X ×X → Y

such that q(x) = B(x, x) for all x ∈ X(see [2, p. 166] or [15]). Thus, all general
solutions of the equation (1.1) is of the form (2.1).

Now, we find the sufficient conditions. From (1.1) we have the two functional
relations

q(rx + sy) + rsq(x − y) = rq(x) + sq(y),(2.9)

a(rx+ sy) + rsa(x − y) = ra(x) + sa(y)(2.10)

for all x, y ∈ X . From (2.9) we have

rB(x, x) + sB(y, y) = B(rx + sy, rx+ sy) + rsB(x − y, x− y)(2.11)

= B(rx, rx) + 2B(rx, sy) +B(sy, sy)

+ rsB(x, x) − 2rsB(x, y) + rsB(y, y)

for all x, y ∈ X . Putting y = 0 and x = 0 separately in (2.11) we have

B(rx, rx) = (r − rs)B(x, x) = r2B(x, x),(2.12)

B(sy, sy) = (s− rs)B(y, y) = s2B(y, y)

for all x, y ∈ X , respectively. From (2.11) and (2.12) we have

rB(x, x) + sB(y, y) = r2B(x, x) + 2B(rx, sy) + s2B(y, y)(2.13)
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+ rsB(x, x) − 2rsB(x, y) + rsB(y, y)

= rB(x, x) + 2B(rx, sy) − 2rsB(x, y) + sB(y, y)

for all x, y ∈ X . Thus, from (2.13) we have

B(rx, sy) = rsB(x, y)(2.14)

for all x, y ∈ X . Using (2.12) we have

r2B(x + y, x+ y) = B(rx + ry, rx + ry)(2.15)

= B(rx, rx) + 2B(rx, ry) +B(ry, ry)

= r2B(x, x) + 2B(rx, ry) + r2B(y, y)

for all x, y ∈ X , and on the other hand we also have

r2B(x + y, x+ y) = r2B(x, x) + 2r2B(x, y) + r2B(y, y)(2.16)

for all x, y ∈ X . Equating (2.15) and (2.16) we have

B(rx, ry) = r2B(x, y)(2.17)

for all x, y ∈ X . From (2.14) and (2.17) we have

B(rx, y) = B(rx, (r + s)y) = B(rx, ry) +B(rx, sy)(2.18)

= r2B(x, y) + rsB(x, y) = rB(x, y)

for all x, y ∈ X .
Conversely, if B satisfies (2.18) we have

B(sx, y) = B(x − rx, y) = B(x, y)− rB(x, y) = sB(x, y)(2.19)

for all x, y ∈ X . Thus, B(x, x) satisfies the equation (2.11) which implies that
q(x) = B(x, x) satisfies the functional equation (1.1).

Now, putting y = 0 in (2.10) we have

a(rx) = (r − rs)a(x) + sa(0) = r2a(x)(2.20)

for all x ∈ X .
Conversely, if a satisfies (2.20), then we have

a(rx + sy) + rsa(x − y) = a(rx) + a(y − ry) + rsa(x) − rsa(y)(2.21)

= r2a(x) + a(y)− r2a(y) + rsa(x) − rsa(y)

= r(r + s)a(x) + (1 − r2 − rs)a(y)

= ra(x) + sa(y)

for all x, y ∈ X . Thus, if B and a satisfy (2.2), then f(x) = B(x, x) + a(x) is
a solution of the functional equation of (1.1).

Finally we show that if r is an algebraic number or t → f(tx) is continuous
function of t ∈ R for all x ∈ X , then a = 0. In fact, if r = −1, then by (2.20)
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we have a = 0. Assume that r 6= −1 is an algebraic number and a 6= 0. By
iteration we have

(2.22) a(rkx) = r2ka(x)

for all x ∈ X and all k = 1, 2, 3 . . ..
Let p(x) be an irreducible polynomial such that p(r) = 0. Then using (2.22)

we have

(2.23) 0 = a(0) = a(p(r)x) = p(r2)a(x)

for all x ∈ X . From (2.23) we have p(r2) = 0. Now, using (2.22) again we have

(2.24) 0 = a(0) = a(p(r2)x) = p(r4)a(x)

for all x ∈ X and hence p(r4) = 0. Continuing this inductive process we obtain

p(r2
k

) = 0 for all k = 1, 2, 3, . . .. This implies that p(x) = 0 has infinitely many
roots r, r2, r4, . . .. Thus, we conclude that if r is an algebraic number then
a = 0. Finally, we assume that t → f(tx) is continuous. Then t → a(tx) is also
continuous. It remains that r is a transcendental number. Choose a sequence
tn, n = 1, 2, . . . , of rational numbers such that tn → r as n → ∞. Then we
have

a(rx) = lim
n→∞

a(rnx) = lim
n→∞

rna(x) = ra(x)

for all x ∈ X . Thus, we have ra(x) = r2a(x) for all x ∈ X and hence a = 0.
Now, the proof is complete. �

Remark 2.2. It is known that there exists a nonzero additive function a : R → R

satisfying a(rx) = r2a(x) provided that r is a transcendental number (see [1,
p. 70] and references therein).

3. Classical stability

In this section we prove the Hyers-Ulam stability of the functional equation
(1.1). We first prove the following Lemma 3.1 for a better bound.

Lemma 3.1. Suppose that f : X → Y satisfies the mixed additive-quadratic

functional inequality

(3.1) ‖f(x) + f(x+ 2y)− 2f(x+ y) + 2f(y)− f(2y)‖ ≤ ǫ

for all x, y ∈ X. Then there exist a unique quadratic mapping q : X → Y and

a unique additive mapping A : X → Y such that

‖f(x)− q(x)−A(x)‖ ≤ 2ǫ(3.2)

for all x ∈ X.

Proof. Let fe and fo be the even part and the odd part of f , respectively.
Then we have

‖fe(x) + fe(x+ 2y)− 2fe(x+ y) + 2fe(y)− fe(2y)‖ ≤ ǫ,(3.3)

‖fo(x) + fo(x + 2y)− 2fo(x+ y) + 2fo(y)− fo(2y)‖ ≤ ǫ(3.4)
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for all x, y ∈ X . First, we consider the even part fe. Putting x = y = 0 in
(3.3) we have ‖fe(0)‖ ≤ ǫ. Replacing x by −y in (3.3), dividing the result by
4 and using the triangle inequality we have

∥

∥

∥

∥

fe(y)− 1

4
fe(2y)

∥

∥

∥

∥

≤ 3

4
ǫ.(3.5)

By the well-known induction method employed by D. H. Hyers in [10] we can
show that

q(x) := lim
m→∞

4−mfe(2mx)(3.6)

exists and satisfies

‖fe(x)− q(x)‖ ≤ ǫ(3.7)

for all x ∈ X , and the functional equation

q(x) + q(x+ 2y)− 2q(x+ y) + 2q(y)− q(2y) = 0(3.8)

for all x, y ∈ X . Following the proof of Theorem 2.1, equation (3.8) implies
that q is a quadratic mapping. Now, we consider the odd part fo. Replacing
x by −y in (3.4) and dividing the result by 2, we have

∥

∥

∥

∥

fo(y)− 1

2
fo(2y)

∥

∥

∥

∥

≤ ǫ

2
.(3.9)

Again, by the well-known induction method as in [10], we can show that

A(x) = lim
m→∞

2−mfo(2mx)(3.10)

exists and satisfies

‖fo(x) −A(x)‖ ≤ ǫ(3.11)

for all x ∈ X , and the functional equation

A(x) +A(x+ 2y)− 2A(x+ y) + 2A(y)−A(2y) = 0(3.12)

for all x, y ∈ X . Thus, following the proof of Theorem 2.1, equation (3.12)
implies that A is an additive mapping. From (3.7) and (3.11), using the triangle
inequality we get (3.2). Now, the proof is complete. �

Theorem 3.2. Let r, s be nonzero real numbers with r + s = 1 and δ ≥ 0.
Suppose that f : X → Y satisfies the (r, s)-quasi-quadratic functional inequality

(3.13) ‖f(rx+ sy) + rsf(x − y)− rf(x) − sf(y)‖ ≤ δ

for all x, y ∈ X. Then there exist a unique quadratic mapping q : X → Y

satisfying B(rx, y) = rB(x, y) and a unique additive mapping a : X → Y

satisfying a(rx) = r2a(x) such that

‖f(x)−B(x, x) − a(x)‖ ≤ K(r)δ(3.14)
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for all x ∈ X, where

(3.15) K(r) =

{

min
{

1
|r(|r|−1)| ,

2(2+|r|+|1−r|)
|r(1−r)|

}

, if r 6= −1,

3
2 , if r = −1.

Proof. We use two approaches in order to get a better bound. First, we use
Lemma 3.1. Let D be the difference

D(x, y) = f(rx+ sy) + rsf(x− y)− rf(x)− sf(y)

for all x, y ∈ X . Then we obtain

D(rx + 2y, rx+ y)−D(x+ 2y, y) + rD(x + 2y, 2y) + sD(x+ y, y)(3.16)

= rs
(

f(x) + f(x+ 2y)− 2f(x+ y) + 2f(y)− f(2y)
)

for all x, y ∈ X . From (3.13) and (3.16) we have

(3.17) ‖f(x) + f(x+ 2y)− 2f(x+ y) + 2f(y)− f(2y)‖ ≤ 2 + |r|+ |s|
|rs| δ

for all x, y ∈ X . By Lemma 3.1, there exist a unique quadratic mapping
q : X → Y and a unique additive mapping A : X → Y such that

‖f(x)− q(x)−A(x)‖ ≤ 2(2 + |r|+ |s|)
|rs| δ(3.18)

for all x ∈ X .
Secondly, we use a direct approach. Putting x = y = 0 in (3.13) we have

|f(0)| ≤ δ
|rs| . Putting y = 0 in (3.13) and using the triangle inequality we have

(3.19) ‖f(rx)− r2f(x)‖ ≤ δ + |sf(0)| ≤
( |r|+ 1

|r|

)

δ

for all x, y ∈ X . If |r| > 1, dividing (3.19) by r2 we have

(3.20)

∥

∥

∥

∥

f(x)− 1

r2
f(rx)

∥

∥

∥

∥

≤
( |r|+ 1

|r|3
)

δ

for all x ∈ X .
Using the well-known induction method as in [10] we can show that

g(x) = lim
m→∞

1

r2m
f(rmx)(3.21)

exists and satisfies

‖f(x)− g(x)‖ ≤
( |r|+ 1

|r|3
)

δ ×
(

r2

r2 − 1

)

=
δ

|r|(|r| − 1)
(3.22)

for all x ∈ X and the functional equation (1.1).
If |r| < 1, replacing x by x

r
in (3.19) we have

(3.23)
∥

∥

∥f(x)− r2f
(x

r

)∥

∥

∥ ≤
( |r| + 1

|r|

)

δ

for all x, y ∈ X .
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Using the well-known induction method as in [10] we can show that

g(x) = lim
m→∞

r2mf(r−mx)(3.24)

exists and satisfies

‖f(x)− g(x)‖ ≤
( |r|+ 1

|r|

)

δ ×
(

1

1− |r|2
)

=
δ

|r|(1 − |r|)(3.25)

for all x ∈ X and the functional equation (1.1). Finally, if r = −1, then s = 2
and we get the inequality

(3.26) ‖f(−x+ 2y)− 2f(x− y) + f(x)− 2f(y)‖ ≤ δ

for all x, y ∈ X . Putting y = 0 in (3.26) we have

(3.27) ‖f(−x)− f(x)− 2f(0)‖ ≤ δ.

Putting x = 0 in (3.26) and using (3.27) and the triangle inequality we have

(3.28) ‖f(2y)− 4f(y)‖ ≤ 9

2
δ.

Using the well-known induction method as in [10] we can show that

g(x) = lim
m→∞

4−mf(2mx)

exists and satisfies

‖f(x)− g(x)‖ ≤ 3

2
δ(3.29)

for all x ∈ X and the functional equation

g(−x+ 2y)− 2g(x− y) + g(x)− 2g(y) = 0

for all x, y ∈ X . From (3.22), (3.25) and (3.29) we get

‖f(x)− g(x)‖ ≤ C(r)δ(3.30)

for all x ∈ X , where

C(r) =

{

1
|r(|r|−1)| , if r 6= −1,
3
2 , if r = −1.

By Theorem 2.1 we have

(3.31) g(x) = B(x, x) + a(x)

for all x ∈ X , where B : X×X → Y is a symmetric bilinear mapping satisfying
B(rx, y) = rB(x, y) and a : X → Y is an additive mapping satisfying a(rx) =
r2a(x). Now, from (3.18), (3.30) and (3.31) we have

(3.32) ‖B(x, x) + a(x)− q(x)−A(x)‖ ≤
(

C(r) +
2(2 + |r|+ |s|)

|rs|

)

δ
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for all x ∈ X . Replacing x by kx, k ∈ N in (3.32) and using the triangle
inequality

k2‖B(x, x) − q(x)‖ − k‖a(x)−A(x)‖ ≤
(

C(r) +
2(2 + |r|+ |s|)

|rs|

)

δ

for all x ∈ X and k ∈ N, which implies that B(x, x) = q(x) and a(x) =
A(x) for all x ∈ X . From (3.18) and (3.30) we get (3.14). Now, the proof is
complete. �

4. Stability on restricted domains

In this section we consider the generalized Hyers-Ulam stability of the quasi-
quadratic functional equation on restricted domains Ω ⊂ X ×X satisfying the
following condition (C):

Let (γj , λj) ∈ R
2, j = 1, 2, . . . , r, with γ2

j + λ2
j 6= 0 for all j = 1, 2, . . . , r,

be given.(C)

For any pj , qj ∈ X, j = 1, 2, . . . , r, there exists t ∈ X such that

{(pj + γjt, qj + λjt) : j = 1, 2, . . . , r} ⊂ Ω.

As a main result we prove the following Theorem 4.1.

Theorem 4.1. Let r, s be nonzero real numbers with r + s = 1 and δ ≥ 0.
Suppose that f : X → Y satisfies the following (r, s)-quasi-quadratic functional

inequality

(4.1) ‖f(rx+ sy) + rsf(x − y)− rf(x) − sf(y)‖ ≤ δ

for all (x, y) ∈ Ω. Then there exist a unique quadratic mapping q : X → Y and

a unique additive mapping a : X → Y such that

‖f(x)− q(x) − a(x)‖ ≤ 6(2 + |r| + |s|)
|rs| δ(4.2)

for all x ∈ X.

Proof. Let D be the difference

D(x, y) = f(rx+ sy) + rsf(x− y)− rf(x)− sf(y)

for all x, y ∈ X . Then we obtain

D(rx + 2y, rx + y)−D(x+ 2y, y) + rD(x + 2y, 2y) + sD(x+ y, y)(4.3)

= rs
(

f(x) + f(x+ 2y)− 2f(x+ y) + 2f(y)− f(2y)
)

for all x, y ∈ X . Now, let F be the difference

(4.4) F (x, y) = f(x) + f(x+ 2y)− 2f(x+ y) + 2f(y)− f(2y)

for all x, y ∈ X . Then we obtain the four relations:

F (x− t, y) = f(x− t) + f(x− t+ 2y)− 2f(x− t+ y) + 2f(y)− f(2y),

F (x+ t, y) = f(x+ t) + f(x+ t+ 2y)− 2f(x+ t+ y) + 2f(y)− f(2y),
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F (x− t, t) = f(x− t) + f(x+ t)− 2f(x) + 2f(t)− f(2t),

F (x− t+ 2y, t) = f(x− t+ 2y) + f(x+ t+ 2y)− 2f(x+ 2y) + 2f(t)− f(2t),

2F (x− t+ y, t) = 2f(x− t+ y) + 2f(x+ t+ y)− 4f(x+ y) + 4f(t)− 2f(2t)

for all x, y, t ∈ X . Thus, the following equality

F (x−t, y)+F (x+t, y)−F (x−t, t)−F (x−t+2y, t)+2F (x−t+y, t)(4.5)

= 2F (x, y)

holds for all x, y, t ∈ X . It follows from (4.3), (4.4) and (4.5) that we can write

2F (x, y) = F (x− t, y) + F (x + t, y)− F (x− t, t)− F (x− t+ 2y, t)(4.6)

+ 2F (x− t+ y, t)

=
1

rs

20
∑

j=1

cjD(pj + αjt, qj + βjt)

for some cj , αj , βj ∈ R with
∑ |cj | = 6(2 + |r|+ |s|) and (αj(r), βj(r)) 6= (0, 0)

for all j = 1, 2, . . . , 20, and pj , qj , j = 1, 2, . . . , 20, are linear combinations of x
and y. Since Ω satisfies the above condition (C), for any x, y ∈ X , there exists
t ∈ X such that

{(pj + αj(r)t, qj + βj(r)t) : j = 1, 2, . . . , 20} ⊂ Ω,

and hence from (4.1) and (4.6) we obtain

‖F (x, y)‖ ≤ 1

2|rs|

20
∑

j=1

|cj |‖D(pj + αjt, qj + βjt)‖

≤ 6(2 + |r|+ |s|)
2|rs| δ =

3(2 + |r|+ |s|)
|rs| δ

for all x, y ∈ X . By Lemma 3.1 we get (4.2). Now, the proof is complete. �

It is easy to see that Ω := {(x, y) ∈ X × X : ‖x‖ + ‖y‖ ≥ d} satisfies the
condition (C). As a direct consequence of Theorem 4.1 we obtain a refined
result of [11, Theorem 3.4].

Corollary 4.2. Let d > 0. Suppose that f : X → Y satisfies the (r, s)-
quasi-quadratic functional inequality (4.1) for all x, y ∈ X with ‖x‖+ ‖y‖ ≥ d.

Then there exist a unique quadratic mapping q : X → Y and a unique additive

mapping a : X → Y such that

‖f(x)− q(x) − a(x)‖ ≤ 6(2 + |r| + |s|)
|rs| δ(4.7)

for all x ∈ X.

Remark 4.3. In particular, if f is even, then replacing x by −x in (4.7) we get

‖f(x)− q(x) + a(x)‖ ≤ 6(2 + |r| + |s|)
|rs| δ(4.8)
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for all x ∈ X . Using the triangle inequality with (4.7) and (4.8) we get ‖a(x)‖ ≤
12(2+|r|+|s|)

|rs| δ for all x ∈ X and hence a = 0.

5. Stability on a set of Lebesgue measure zero

Throughout this section we assume that X is complete. By constructing
a subset Ω ⊂ X × X satisfying the condition (C) we prove the Hyers-Ulam
stability of the functional equation (1.1) satisfied in a set of Lebesgue measure
zero when X = R.

Definition 5.1. A subset K of a topological space E is said to be of the first
category if K is a countable union of nowhere dense subsets of E, and otherwise
it is said to be of the second category.

Theorem 5.2 (Baire category theorem). Every nonempty open subset of a

compact Hausdorff space or a complete metric space is of the second category.

Lemma 5.3. Let H be a subset of X such that Hc := X \ H is of the first

category. Then, for any countable subsets U ⊂ X, Γ ⊂ R \ {0} and M > 0,
there exists t ∈ X with ‖t‖ ≥ M such that

(5.1) U + Γt = {u+ γt : u ∈ U, γ ∈ Γ} ⊂ H.

Proof. Let Hc
u,γ = γ−1(Hc − u), u ∈ U, γ ∈ Γ. Then, since Hc is of the first

category, Hc
u,γ are also of the first category for all u ∈ U, γ ∈ Γ. Since each

Hc
u,γ consists of a countable union of nowhere dense subsets of X , by the Baire

category theorem, the countable union of all {Hc
u,γ : u ∈ U, γ ∈ Γ} cannot

cover X0 := {t ∈ X : ‖t‖ ≥ M}, i.e.,
X0 6⊂

⋃

(u,γ)∈U×Γ

Hc
u,γ .

Choose a t ∈ X0 such that t /∈ Hc
u,γ for all u ∈ U, γ ∈ Γ. Then we have

u+ γt ∈ H for all u ∈ U, γ ∈ Γ. Now, the proof is complete. �

From now on we identify R
2 with C.

Lemma 5.4. Let P = {(pj + γjt, qj + λjt) : j = 1, 2, . . . , r}, where pj, qj , t ∈
X, γj, λj ∈ R with γ2

j + λ2
j 6= 0 for all j = 1, 2, . . . , r. Then there exists

θ0 ∈ [0, 2π) such that e−iθ0P := {(p′j + γ′
jt, q

′
j + λ′

jt) : j = 1, 2, . . . , r} satisfies

γ′
jλ

′
j 6= 0 for all j = 1, 2, . . . , r.

Proof. The coefficients γ′
j and λ′

j are given by

γ′
j = γj cos θ + λj sin θ, λ′

j = λj cos θ − γj sin θ

for all j = 1, 2, . . . , r. Now, the following equation

Πr
j=1(γj cos θ + λj sin θ)(λj cos θ − γj sin θ) = 0

has only a finite number of zeros θ ∈ [0, 2π). Thus, we can choose a θ0 ∈ [0, 2π)
such that Πr

j=1γ
′
jλ

′
j 6= 0. Now, the proof is complete. �
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Theorem 5.5. Let H be a subset of X such that Hc is of the first Baire

category. Then there exists a θ0 ∈ [0, 2π) such that Ωθ0,d := (eiθ0H2)∩{(x, y) ∈
X2 : ‖x‖+ ‖y‖ ≥ d} satisfies (C) for all d > 0.

Proof. Let θ0 be in Lemma 5.4. It suffices to show that let (γj , λj) ∈ R
2, j =

1, 2, . . . , r, be given with γ2
j + λ2

j 6= 0 for all j = 1, 2, . . . , r, then for any
pj , qj ∈ X, j = 1, 2, . . . , r, there exists t ∈ X such that

e−iθ0P ⊂ H2, P ⊂ {(x, y) : ‖x‖+ ‖y‖ ≥ d},(5.2)

where P = {(pj + γjt, qj + λjt) : j = 1, 2, . . . , r}. Let e−iθ0P = {(p′j +

γ′
jt, q

′
j + λ′

jt) : j = 1, 2, . . . , r}. Then by Lemma 5.4, we have γ′
jλ

′
j 6= 0 for all

j = 1, 2, . . . , r. Let U = {p′j, q′j : j = 1, 2, . . . , r}, Γ = {γ′
j, λ

′
j : j = 1, 2, . . . , r}.

Then we have

(5.3) {u, v : (u, v) ∈ e−iθ0P} ⊂ U + Γt.

Now, by Lemma 5.3, there exists t ∈ X with ‖t‖ ≥ max1≤j≤r(|γj |+ |λj |)−1(|pj |
+|qj |+ d) such that

(5.4) U + Γt ⊂ H.

From (5.3) and (5.4) we have

e−iθ0P ⊂ H2.

By the choice of t, we have P ⊂ {(x, y) : ‖x‖ + ‖y‖ ≥ d}. This completes the
proof. �

Remark 5.6. The set R of real numbers can be partitioned as follows:

R = H ∪ (R \H),

whereH is of Lebesgue measure zero and R\H is of the first category [17, Theo-
rem 1.6]. Thus, in view of Theorem 5.5 we can find a subset Ωd ⊂ {(x, y) ∈ R

2 :
|x|+ |y| ≥ d} of Lebesgue measure zero satisfying (C). Now, as a consequence
of Theorem 4.1 we obtain the following.

Corollary 5.7. Let r, s be nonzero real numbers with r+ s = 1 and δ ≥ 0, d >

0. Then there exists a subset Ωd ⊂ {(x, y) ∈ R
2 : |x| + |y| ≥ d} of Lebesgue

measure zero such that if f : R → Y satisfies the functional inequality

‖f(rx+ sy) + rsf(x − y)− rf(x) − sf(y)‖ ≤ δ

for all (x, y) ∈ Ωd, then f satisfies

‖f(x)− q(x) − a(x)‖ ≤ 6(2 + |r| + |s|)
|rs| δ

for all x ∈ R, where q : R → Y is a quadratic mapping and a : R → Y is an

additive mapping.

Using the method as in [8, 14, 18, 19] we obtain the following asymptotic
behavior of the (r, s)-quasi-quadratic functional equation.
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Corollary 5.8. Let r, s be nonzero real numbers with r + s = 1. Then there

exists a subset Ω ⊂ R
2 of Lebesgue measure zero such that if f : R → Y satisfies

the condition

‖f(rx+ sy) + rsf(x − y)− rf(x) − sf(y)‖ → 0

as |x|+ |y| → ∞ only for (x, y) ∈ Ω, then f is of the form

f(x) = q(x) + a(x)

for all x ∈ R, where q : R → Y is a quadratic mapping and a : R → Y is an

additive mapping.
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