• Title/Summary/Keyword: 0.18 ${\mu}m$ CMOS

Search Result 599, Processing Time 0.026 seconds

Small-Swing Low-Power SRAM Based on Source-Controlled 4T Memory Cell (소스제어 4T 메모리 셀 기반 소신호 구동 저전력 SRAM)

  • Chung, Yeon-Bae;Kim, Jung-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.3
    • /
    • pp.7-17
    • /
    • 2010
  • In this paper, an innovative low-power SRAM based on 4-transistor latch cell is described. The memory cells are composed of two cross-coupled inverters without access transistors. The sources of PMOS transistors are connected to bitlines while the sources of NMOS transistors are connected to wordlines. They are accessed by totally new read and write method which results in low operating power dissipation in the nature. Moreover, the design reduces the leakage current in the memory cells. The proposed SRAM has been demonstrated through 16-kbit test chip fabricated in a 0.18-${\mu}m$ CMOS process. It shows 17.5 ns access at 1.8-V supply while consuming dynamic power of $87.6\;{\mu}W/MHz$ (for read cycle) and $70.2\;{\mu}W/MHz$ (for write cycle). Compared with those of the conventional 6-transistor SRAM, it exhibits the power reduction of 30 % (read) and 42 % (write) respectively. Silicon measurement also confirms that the proposed SRAM achieves nearly 64 % reduction in the total standby power dissipation. This novel SRAM might be effective in realizing low-power embedded memory in future mobile applications.

Dual Bias Modulator for Envelope Tracking and Average Power Tracking Modes for CMOS Power Amplifier

  • Ham, Junghyun;Jung, Haeryun;Bae, Jongsuk;Lim, Wonseob;Hwang, Keum Cheol;Lee, Kang-Yoon;Park, Cheon-Seok;Yang, Youngoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.802-809
    • /
    • 2014
  • This paper presents a dual-mode bias modulator (BM) for complementary metal oxide semiconductor (CMOS) power amplifiers (PAs). The BM includes a hybrid buck converter and a normal buck converter for an envelope tracking (ET) mode for high output power and for an average power tracking (APT) mode for low output power, respectively. The dual-mode BM and CMOS PA are designed using a $0.18-{\mu}m$ CMOS process for the 1.75 GHz band. For the 16-QAM LTE signal with a peak-to-average power ratio of 7.3 dB and a bandwidth of 5 MHz, the PA with the ET mode exhibited a poweradded efficiency (PAE) of 39.2%, an EVM of 4.8%, a gain of 19.0 dB, and an adjacent channel leakage power ratio of -30 dBc at an average output power of 22 dBm, while the stand-alone PA has a PAE of 8% lower at the same condition. The PA with APT mode has a PAE of 21.3%, which is an improvement of 13.4% from that of the stand-alone PA at an output power of 13 dBm.

A Design of 1.42 - 3.97GHz Digitally Controlled LC Oscillator (1.42 - 3.97GHz 디지털 제어 방식 LC 발진기의 설계)

  • Lee, Jong-Suk;Moon, Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.7
    • /
    • pp.23-29
    • /
    • 2012
  • The LC-based digitally controlled oscillator (LC-DCO), a key component of the all digital phase locked loop (ADPLL), is designed using $0.18{\mu}m$ RFCMOS process with 1.8 V supply. The NMOS core with double cross-coupled pair is chosen to realize wide tuning range, and the PMOS varactor pair that has small capacitance of a few aF and the capacitive degeneration technique to shrink the capacitive element are adopted to obtain the high frequency resolution. Also, the noise filtering technique is used to improve phase noise performance. Measurement results show the center frequency of 2.7 GHz, the tuning range of 2.5 GHz and the high frequency resolution of 2.9 kHz ~7.1 kHz. Also the fine tuning range and the current consumption of the core could be controlled by using the array of PMOS transistors using current biasing. The current consumption is between 17 mA and 26 mA at 1.8V supply voltage. The proposed DCO could be used widely in various communication system.

Investigation for Multi-bit per Cell on the CSL-NOR Type SONOS Flash Memories (CSL-NOR형 SONOS 플래시 메모리의 멀티비트 적용에 관한 연구)

  • Kim Joo-Yeon;An Ho-Myoung;Lee Myung-Shik;Kim Byung-Cheul;Seo Kwang-Yell
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.3
    • /
    • pp.193-198
    • /
    • 2005
  • NOR type flash 32 ${\times}$ 32 way are fabricated by using the typical 0.35 ${\mu}{\textrm}{m}$ CMOS process. The structure of array is the NOR type with common source line. In this paper, optimized program and erase voltage conditions are presented to realize multi-bit per cell at the CSL-NOR array. These are considered selectivity of selected bit and disturbances of unselected bits. Retention characteristics of locally trapped-charges in the nitride layer are investigated. The lateral diffusion and vertical detrapping to the tunneling oxide of locally trapped charges as a function of retention time are investigated by using the charge pumping method. The results are directly shown by change of the trapped-charges quantities.

Implementation of Single-Wire Communication Protocol for 3D IC Thermal Management Systems using a Thin Film Thermoelectric Cooler

  • Kim, Nam-Jae;Lee, Hyun-Ju;Kim, Shi-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.18-23
    • /
    • 2012
  • We propose and implement a single-wire communication protocol for thermal management systems using thin film thermoelectric modules for 3D IC cooling. The proposed single-wire communication protocol connects the temperature sensors, located near hot spots, to measure the local temperature of the chip. A unique ID number identifying the location of each hot spot is assigned to each temperature sensor. The prototype chip was fabricated by a $0.13{\mu}m$ CMOS MPW process, and the operation of the chip is verified.

A Low-Power Portable ECG Touch Sensor with Two Dry Metal Contact Electrodes

  • Yan, Long;Yoo, Hoi-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.4
    • /
    • pp.300-308
    • /
    • 2010
  • This paper describes the development of a low-power electrocardiogram (ECG) touch sensor intended for the use with two dry metal electrodes. An equivalent ECG extraction circuit model encountered in a ground-free two-electrode configuration is investigated for an optimal sensor read-out circuit design criteria. From the equivalent circuit model, (1) maximum sensor resolution is derived based on the electrode's background thermal noise, which originates from high electrode-skin contact impedance, together with the input referred noise of instrumentation amplifier (IA), (2) 60 Hz electrostatic coupling from mains and motion artifact are also considered to determine minimum requirement of common mode rejection ratio (CMRR) and input impedance of IA. A dedicated ECG read-out front end incorporating chopping scheme is introduced to provide an input referred circuit noise of 1.3 ${\mu}V_{rms}$ over 0.5 Hz ~ 200 Hz, CMRR of IA > 100 dB, sensor resolution of 7 bits, and dissipating only 36 ${\mu}W$. Together with 8 bits synchronous successive approximation register (SAR) ADC, the sensor IC chip is implemented in 0.18 ${\mu}m$ CMOS technology and integrated on a 5 cm $\times$ 8 cm PCB with two copper patterned electrodes. With the help of proposed touch sensor, ECG signal containing QRS complex and P, T waves are successfully extracted by simply touching the electrodes with two thumbs.

Dynamic Range Extension of CMOS Image Sensor with Column Capacitor and Feedback Structure (컬럼 커패시터와 피드백 구조를 이용한 CMOS 이미지 센서의 동작 범위 확장)

  • Lee, Sanggwon;Jo, Sung-Hyun;Bae, Myunghan;Choi, Byoung-Soo;Kim, Heedong;Shin, Eunsu;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.131-136
    • /
    • 2015
  • This paper presents a wide dynamic range complementary metal oxide semiconductor (CMOS) image sensor with column capacitor and feedback structure. The designed circuit has been fabricated by using $0.18{\mu}m$ 1-poly 6-metal standard CMOS technology. This sensor has dual mode operation using combination of active pixel sensor (APS) and passive pixel sensor (PPS) structure. The proposed pixel operates in the APS mode for high-sensitivity in normal light intensity, while it operates in the PPS mode for low-sensitivity in high light intensity. The proposed PPS structure is consisted of a conventional PPS with column capacitor and feedback structure. The capacitance of column capacitor is changed by controlling the reference voltage using feedback structure. By using the proposed structure, it is possible to store more electric charge, which results in a wider dynamic range. The simulation and measurement results demonstrate wide dynamic range feature of the proposed PPS.

Design of a TRIAC Dimmable LED Driver Chip with a Wide Tuning Range and Two-Stage Uniform Dimming

  • Chang, Changyuan;Li, Zhen;Li, Yuanye;Hong, Chao
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.640-650
    • /
    • 2018
  • A TRIAC dimmable LED driver with a wide tuning range and a two-stage uniform dimming scheme is proposed in this paper. To solve the restricted dimming range problem caused by the limited conduction ratio of TRIAC dimmers, a conduction ratio compensation technique is introduced, which can increase the output current up to the rated output current when the TRIAC dimmer turns to the maximum conduction ratio. For further optimization, a two-stage uniform dimming diagram with a rapid dimming curve and a slow dimming curve is designed to make the LED driver regulated visually uniform in the whole adjustable range of the TRIAC dimmer. The proposed control chip is fabricated in a TSMC $0.35{\mu}m$ 5V/650V CMOS/LDMOS process, and verified on a 21V/500mA circuit prototype. The test results show that, in the 90V/60Hz~132V/60Hz ac input range, the voltage linear regulation is 2.6%, the power factor is 99.5% and the efficiency is 83%. Moreover, in the dimming mode, the dimming rate is less than 1% when the maximum dimming current is 516mA and the minimum dimming current is only about 5mA.

A VHF/UHF-Band Variable Gain Low Noise Amplifier for Mobile TV Tuners (모바일 TV 튜너용 VHF대역 및 UHF 대역 가변 이득 저잡음 증폭기)

  • Nam, Ilku;Lee, Ockgoo;Kwon, Kuduck
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.90-95
    • /
    • 2014
  • This paper presents a VHF/UHF-band variable gain low noise amplifier for multi-standard mobile TV tuners. A proposed VHF-band variable gain amplifier is composed of a resistive shunt-feedback low noise amplifier to remove external matching components, a single-to-differential amplifier with input PMOS transcoductors to improve low frequency noise performance, a variable shunt-feedback resistor and an attenuator to control variable gain range. A proposed UHF-band variable gain amplifier consists of a narrowband low noise amplifier with capacitive tuning to improve noise performance and interference rejection performance, a single-to-differential with gm gain control and an attenuator to adjust gain control range. The proposed VHF-band and UHF-band variable gain amplifier were designed in a $0.18{\mu}m$ RF CMOS technology and draws 22 mA and 17 mA from a 1.8 V supply voltage, respectively. The designed VHF-band and UHF-band variable gain amplifier show a voltage gain of 27 dB and 27 dB, a noise figure of 1.6-1.7 dB and 1.3-1.7 dB, OIP3 of 13.5 dBm and 16 dBm, respectively.

Digital Calibration Technique for Cyclic ADC based on Digital-Domain Averaging of A/D Transfer Functions (아날로그-디지털 전달함수 평균화기법 기반의 Cyclic ADC의 디지털 보정 기법)

  • Um, Ji-Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.6
    • /
    • pp.30-39
    • /
    • 2017
  • A digital calibration technique based on digital-domain averaging for cyclic ADC is proposed. The proposed calibration compensates for nonlinearity of ADC due to capacitance mismatch of capacitors in 1.5-bit/stage MDAC. A 1.5-bit/stage MDAC with non-matched capacitors has symmetric residue plots with respect to the ideal residue plot. This intrinsic characteristic of residue plot of MDAC is reflected as symmetric A/D transfer functions. A corrected A/D transfer function can be acquired by averaging two transfer functions with non-linearity, which are symmetric with respect to the ideal analog-digital transfer function. In order to implement the aforementioned averaging operation of analog-digital transfer functions, a 12-bit cyclic ADC of this work defines two operational modes of 1.5-bit/stage MDAC. By operating MDAC as the first operational mode, the cyclic ADC acquires 12.5-bits output code with nonlinearity. For the same sampled input analog voltage, the cyclic ADC acquires another 12.5-bits output code with nonlinearity by operating MDAC as the second operational mode. Since analog-digital transfer functions from each of operational mode of 1.5-bits/stage MDAC are symmetric with respect to the ideal analog-digital transfer function, a corrected 12-bits output code can be acquired by averaging two non-ideal 12.5-bits codes. The proposed digital calibration and 12-bit cyclic ADC are implemented by using a $0.18-{\mu}m$ CMOS process in the form of full custom. The measured SNDR(ENOB) and SFDR are 65.3dB (10.6bits) and 71.7dB, respectively. INL and DNL are measured to be -0.30/-0.33LSB and -0.63/+0.56LSB, respectively.