• Title/Summary/Keyword: 0.18 ${\mu}m$ CMOS

Search Result 599, Processing Time 0.021 seconds

A Voltage-controlled Frequency Tunable CMOS Current-mode Filter for Software Radio (Software Radio용 전압제어 주파수가변 CMOS 전류모드 필터)

  • Bang, Jun-Ho;Ryu, In-Ho;Yu, Jae-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.871-876
    • /
    • 2011
  • In this paper, a voltage-controlled frequency tunable current-mode integrator and a 3rd-order current-mode Chebyshev filter in 1.8V-$0.18{\mu}m$ CMOS is realized for software radio applications in system-on-chips. This filter is used for reconstruction purposes between a current-steering DAC and a current-mode mixer. Power consumption of the designed filter can be reduced by using a current-mode small size integrator. And also, cutoff frequency of this filter is variable between 1.2MHz and 10.1MHz, the power consumption is 2.85mW. And the voltage bias compensated circuit is used to control the voltage variation.in the designed filter.

Design and Implementation of Low Power Touch Screen Controller for Mobile Devices (모바일용 저전력 터치 스크린 제어 회로 설계 및 구현)

  • Park, Sang-Bong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.279-283
    • /
    • 2012
  • In is paper, we design and implement the low power, high speed touch screen controller that calculates and outputs the coordinate of touch point on the touch screen of mobile devices. The system clock is 10HMz, the number of input channels is 21, standby current is $20{\mu}A$, dynamic range of input is 140pF~400pF and the response time is 0.1ms/frame. It contains the power management unit for low power, automatic impedance calibration unit in order to adapt to humidity, temperature and evaluation board, adjacent key and pattern interference suppression unit, serial interface unit of I2C and SPI. The function and performance is verified by using FPGA and $0.18{\mu}m$ CMOS standard process. The implemented touch screen is designed for using in the double layer ITO(Indium Thin Oxide) module with diamond pattern and single layer ITO module for cost-effective which are applied to mobile phone or smart remote controller.

A 1.8V 50-MS/s 10-bit 0.18-um CMOS Pipelined ADC without SHA

  • Uh, Ji-Hun;Kim, Won-Myung;Kim, Sang-Hun;Jang, Young-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.143-146
    • /
    • 2011
  • A 50-MS/s 10-bit pipelined ADC with 1.2Vpp differential input range is proposed in this paper. The designed pipelined ADC consists of eight stage of 1.5bit/stage, one stage of 2bit/stage, digital error correction block, bias & reference driver, and clock generator. 1.5bit/stage is consists of sub-ADC, DAC and gain stage, Specially, a sample-and hold amplifier (SHA) is removed in the designed pipelined ADC to reduce the hardware and power consumption. Also, the proposed bootstrapped switch improves the Linearity of the input analog switch and the dynamic performance of the total ADC. The reference voltage was driven by using the on-chip reference driver without external reference. The proposed pipelined ADC was designed by using a 0.18um 1-poly 5-metal CMOS process with 1.8V supply. The total area including the power decoupling capacitor and power consumption are $0.95mm^2$ and 60mW, respectively. Also, the simulation result shows the ENOB of 9.3-bit at the Nyquist sampling rate.

  • PDF

A Quadrature VCO Exploiting Direct Back-Gate Second Harmonic Coupling

  • Oh, Nam-Jin
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.3
    • /
    • pp.134-137
    • /
    • 2008
  • This paper proposes a novel quadrature VCO(QVCO) based on direct back-gate second harmonic coupling. The QVCO directly couples the current sources of the conventional LC VCOs through the back-gate instead of front-gate to generate quadrature signals. By the second harmonic injection locking, the two LC VCOs can generate quadrature signals without using on-chip transformer, or stability problem that is inherent in the direct front-gate second harmonic coupling. The proposed QVCO is implemented in $0.18{\mu}m$ CMOS technology operating at 2 GHz with 5.0 mA core current consumption from 1.8 V power supply. The measured phase noise of the proposed QVCO is - 63 dBc/Hz at 10 kHz offset, -95 dBc/Hz at 100 kHz offset, and -116 dBc/Hz at 1 MHz offset from the 2 GHz output frequency, respectively. The calculated figure of merit(FOM) is about -174 dBc/Hz at 1 MHz offset. The measured image band rejection is 46 dB which corresponds to the phase error of $0.6^{\circ}$.

Low Phase Noise LC-VCO with Active Source Degeneration

  • Nguyen, D.B. Yen;Ko, Young-Hun;Yun, Seok-Ju;Han, Seok-Kyun;Lee, Sang-Gug
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.3
    • /
    • pp.207-212
    • /
    • 2013
  • A new CMOS voltage-bias differential LC voltage-controlled oscillator (LC-VCO) with active source degeneration is proposed. The proposed degeneration technique preserves the quality factor of the LC-tank which leads to improvement in phase noise of VCO oscillators. The proposed VCO shows the high figure of merit (FOM) with large tuning range, low power, and small chip size compared to those of conventional voltage-bias differential LC-VCO. The proposed VCO implemented in 0.18-${\mu}m$ CMOS shows the phase noise of -118 dBc/Hz at 1 MHz offset oscillating at 5.03 GHz, tuning range of 12%, occupies 0.15 $mm^2$ of chip area while dissipating 1.44 mW from 0.8 V supply.

1-Gb/s Readout Amplifier Array for Panoramic Scan LADAR Systems (파노라믹 스캔 라이다용 1-Gb/s 리드아웃 증폭기 어레이)

  • Kim, Dayeong;Park, Sung Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.452-456
    • /
    • 2016
  • In this paper, a dual-channel readout amplifier array is realized in a standard $0.18{\mu}m$ CMOS technology for the applications of panoramic scan LADAR systems. Each channel consists of a PIN photodiode with 0.9 A/W responsivity and a 1.0 Gb/s readout amplifier(ROA). The proposed ROA shares the basic configuration of the previously reported feedforward TIA, except that it exploits a replica input to exclude a low pass filter(LPF), thus reducing chip area and improving integration level, and to efficiently reject common-mode noises. Measured results demonstrate that each channel achieves $70dB{\Omega}$ transimpedance gain, 829 MHz bandwidth, -22 dBm sensitivity for $10^{-9}BER$, -34 dB crosstalk between adjacent channels, and 45 mW power dissipation from a single 1.8 V supply.

Design of a Wide Tuning Range DCO for Mobile-DTV Applications (Mobile-DTV 응용을 위한 광대역 DCO 설계)

  • Song, Sung-Gun;Park, Sung-Mo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.5
    • /
    • pp.614-621
    • /
    • 2011
  • This paper presents design of a wide tuning range digitally controlled oscillator(DCO) for Mobile-DTV applications. DCO is the key element of the ADPLL block that generates oscillation frequencies. We proposed a binary delay chain(BDC) structure, for wide tuning range DCO, modifying conventional fixed delay chain. The proposed structure generates oscillation frequencies by delay cell combination which has a variable delay time of $2^i$ in the range of $0{\leq}i{\leq}n-1$. The BOC structure can reduce the number of delay cells because it make possible to select delay cell and resolution. We simulated the proposed DCO by Cadence's Spectre RF tool in 1.8V chartered $0.18{\mu}m$ CMOS process. The simulation results showed 77MHz~2.07GHz frequency range and 3ps resolution. The phase noise yields -101dBc/Hz@1MHz at Mobile-DTV maximum frequency 1675MHz and the power consumption is 5.87mW. The proposed DCO satisfies Mobile-DTV standards such as ATSC-M/H, DVB-H, ISDB-T, T-DMB.

A 145μW, 87dB SNR, Low Power 3rd order Sigma-Delta Modulator with Op-amp Sharing (연산증폭기 공유 기법을 이용한 145μW, 87dB SNR을 갖는 저전력 3차 Sigma-Delta 변조기)

  • Kim, Jae-Bung;Kim, Ha-Chul;Cho, Seong-Ik
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.87-93
    • /
    • 2015
  • In this paper, a $145{\mu}W$, 87dB SNR, Low power 3rd order Sigma-Delta Modulator with Op-amp sharing is proposed. Conventional architecture with analog path and digital path is improved by adding a delayed feed -forward path for disadvantages that coefficient value of the first integrator is small. Proposed architecture has a larger coefficient value of the first integrator to remove the digital path. Power consumption of proposed architecture using op-amp sharing is lower than conventional architecture. Simulation results for the proposed SDM designed in $0.18{\mu}m$ CMOS technology with power supply voltage 1.8V, signal bandwidth 20KHz and sampling frequency 2.8224MHz shows SNR(Signal to Noise Ratio) of 87dB, the power consumption of $145{\mu}W$.

Design of Low Dropout Regulator using self-cascode structure (셀프-캐스코드 구조를 적용한 LDO 레귤레이터 설계)

  • Choi, Seong-Yeol;Kim, Yeong-Seuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.7
    • /
    • pp.993-1000
    • /
    • 2018
  • This paper proposes a low-dropout voltage regulator(LDO) using self-cascode structure. The self-cascode structure was optimized by adjusting the channel length of the source-side MOSFET and applying a forward voltage to the body of the drain-side MOSFET. The self-cascode of the input differential stage of the error amplifier is optimized to give higher transconductance, but the self-cascode of the output stage is optimized to give higher output resistance, The proposed LDO using self-cascode structure was designed by a $0.18{\mu}m$ CMOS technology and simulated using SPECTRE. The load regulation of the proposed LDO regulator was 0.03V/A, whereas that of the conventional LDO was 0.29V/A. The line regulation of the proposed LDO regulator was 2.23mV/V, which is approximately three times improvement compared to that of the conventional LDO. The transient response of the proposed LDO regulator was 625ns, which is 346ns faster than that of the conventional LDO.

Design of a DC-DC Converter for Portable Device (휴대기기용 DC-DC 부스트 컨버터 집적회로설계)

  • Lee, Ja-kyeong;Song, Han-Jung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.2
    • /
    • pp.71-78
    • /
    • 2017
  • In This Paper, A DC-DC Boost Converter for Portable Device has been Proposed. The Converter Which is Operated with 1 MHz High Switching Frequency is Capable of Reducing Mounting Area of Passive Devices Such as Inductor and Capacitor, Consequently is Suitable for Portable Device. This Boost Converter Consists of a Power Stage and a Control Block and a Protect Block. Proposed DC-DC Boost Converter has been Designed a 0.18 um Magnachip CMOS Process Technology, we Examined Performances of the Fabricated Chip and Compared its Measured Results with SPICE Simulation Data. Simulation Results Show that the Output Voltage is 4.8 V in 3.3 V Input Voltage, Output Current 95 mA Which is Larger than 20~50 mA.