• 제목/요약/키워드: 수학수업활동유형

검색결과 56건 처리시간 0.032초

수학 교과에서의 추론 유형의 문제에 관한 탐색 -집합과 명제, 수열 영역을 중심으로- (An Investigation on the Reasoning Types of Mathematical Problems on the Content of 'Set and Statement' and 'Sequences')

  • 황혜정;김슬비
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제28권4호
    • /
    • pp.529-552
    • /
    • 2014
  • 본 연구에서는 수학에서 추론의 중요성과 그 역할에 의미를 두고, 고등학교 수학 내용(문제)의 분석을 통해 학생들이 제공받는 추론의 유형이 얼마나 높은 수준, 즉 다양한 것인지에 대해 살펴보고자 한다. 현재, '수학 II' 교과목은 2009 개정에 따른 교과목들 중에서 '수학 I' 교과목을 이수한 후 선택하는 것(신이섭, 2011)으로, 중등 수학에서 가장 심도 있는 학습 내용을 다룬다고 볼 수 있다. 이러한 점에 감안하여 본 연구에서는 '수학 II' 교과목의 내용을 중심으로 Johnson, et al.(2010)의 여섯 가지 추론 유형을 재구성하여 이를 바탕으로 현행 9종의 모든 교과서에 수록된 추론 문제의 정도(비율) 및 유형을 파악하고자 한다. 이로써, 학생들에게 어느 정도의 추론 활동의 기회가 제공되고 있는지 살펴보고, 수학 수업에서의 추론 능력 신장의 긍정적 가능성을 가늠해 보고자 한다.

합동과 대칭의 지도를 위한 융합 프로그램 개발 및 적용 (Application and Development of Convergence Program for Congruence and Symmetry Teaching)

  • 이지해;신항균
    • 한국초등수학교육학회지
    • /
    • 제22권3호
    • /
    • pp.267-282
    • /
    • 2018
  • 본 연구는 합동과 대칭의 지도를 위하여 융합 프로그램을 개발하고, 초등학생에게 적용하여 그 효과를 확인하고자 하였다. 수학 영역에서 학생의 선호도가 가장 높은 합동과 대칭을 주제로 선정하고, Drake의 주제중심 통합단원 수업설계 절차를 토대로 프로그램을 개발하였다. 학습자의 학습 유형을 고려하여 다양한 활동이 가능한 미술 교과와 융합하였으며 초등학교 5학년 학생에게 적용 가능한 활동계획안을 개발하였다. 총 12가지 활동계획안을 개발하고 그 중 5가지 활동의 수업안과 학습지를 학생들에게 적용하였다. 연구대상은 서울시 송파구 소재의 초등학교 5학년 1개반 16명의 단일집단으로 구성하였다. 개발된 융합프로그램은 학생들의 수학적 창의성과 융합인재소양을 신장시키는 데 긍정적인 영향을 미쳤다.

  • PDF

수학 영재교육 대상 학생과 일반 학생의 개방형 문제해결 전략 및 행동 특성 분석 (An Analysis on the Responses and the Behavioral Characteristics between Mathematically Promising Students and Normal Students in Solving Open-ended Mathematical Problems)

  • 김은혜;박만구
    • 한국초등수학교육학회지
    • /
    • 제15권1호
    • /
    • pp.19-38
    • /
    • 2011
  • 본 연구의 목적은 개방형 수학 문제 해결 과정에서 수학 영재교육 대상 학생과 일반 학생의 문제해결 전략과 그 해결 과정에서 보이는 행동 특성을 비교 분석하는 것이다. 이 분석을 토대로 일반 수학 수업에서의 영재교육 대상 학생들을 위한 창의성을 강조한 수업의 가능성을 탐구하였다. 이를 위해 수학 영재교육 대상 학생집단과 일반 학생 집단을 다단계 군집표집하여 수학 영재교육 대상 학생 55명과 일반 학생 100명을 선정하여 다양한 해법이 가능한 개방형 문제를 6개월 동안 제시하여 해결 전략 및 행동 특성을 분석하였다. 행동특성은 수업 관찰과 활동지 분석 및 개별 면담을 사용하였다. 연구결과 수학 영재 교육 대상 학생들이 일반 학생들에 비하여 다양한 전략을 보여 주었으나 많은 수학 영재교육 대상 학생도 고차원적 조작 능력이 미흡하였다. 또한 수학 영재교육 대상 학생의 행동 특성은 일반에 비하여 집착력이 강하고 다양한 해법을 추구하는 면에서 뛰어났다. 그런데 과제의 특성에 따라서 반응의 양상이 다르게 나타나므로 수학 영재교육 대상 학생의 수준과 능력에 맞게 다양한 유형의 과제를 개발하여 제시할 필요가 있다.

  • PDF

수학과 내용 교수 지식(PCK)의 의미 및 분석틀 개발에 관한 연구 (The Research on Pedagogical Content Knowledge in Mathematics Teaching)

  • 최승현;황혜정
    • 한국학교수학회논문집
    • /
    • 제11권4호
    • /
    • pp.569-593
    • /
    • 2008
  • 학교 교육의 질 개선을 위한 교실 수업 살리기의 핵심에는 교사가 있다는 인식에 따라 교수 활동에 전문성을 부여함으로써 전문가로서의 교사의 능력을 신장시킬 수 있는 지원방안에 대한 관심이 날로 높아지고 있다. 특히 내용 교수 지식(PCK)은 Shulman(1986)에 의해 교수 활동의 기반 지식으로 제기된 이래 교사의 전문성 논의에서 핵심으로 자리 잡고 있다. 이러한 취지하에 한국교육과정평가원의 교수학습연구센터(KICE-TLC)에서는 2007년부터 내용 교수 지식 및 수업 컨설팅 지원에 관한 3개년에 걸친 중장기 연구 계획을 수립하고 KICE-TLC 고유의 PCK 연구 방법과 PCK에 대한 관점을 정립하고자 하였다. 일차년도인 2007년도 연구에서는 모든 교과가 공유할 수 있는 기본 연구의 틀을 마련하여 이를 토대로 참여 교과별로 구체적인 PCK의 구성 영역이나 접근 방법을 차별화하는 방식을 취하였다. 수학 교과의 경우, 국내 외 PCK 관련 연구 동향을 분석하여 2007년 개정 교육과정에 따른 수학과 PCK의 의미를 정립하고, 이를 기반으로 수학과 PCK 분석틀을 설정함으로써 다양한 유형의 PCK를 개발하고자 하였다. 단, 본 고에서는 지면 관계상 일차적으로 PCK 분석틀을 설정하는 과정과 절차까지를 다루었다.

  • PDF

문제해결 과정에서의 수학 학습 성취 수준에 따른 메타정의의 기능적 특성 비교 분석 (Aspects of Meta-affect According to Mathematics Learning Achievement Level in Problem-Solving Processes)

  • 도주원;백석윤
    • 한국초등수학교육학회지
    • /
    • 제22권2호
    • /
    • pp.143-159
    • /
    • 2018
  • 수학 문제해결 교육 연구에 있어서 문제해결 과정에 나타나는 인지적, 정의적 요소의 상호작용 및 메타정의적 측면에 대한 연구의 비중이 점차 증가하고 있다. 이에 본 연구에서는 수학 학습 성취 수준에 따라 초등학생의 문제해결 과정에 작용하는 메타정의의 기능적 특성을 파악하기 위하여 빈도 분석과 사례 분석을 병행하였다. 수학 학습 성취 수준에 따라 협업적 문제해결 활동에서 나타나는 메타정의 출현 빈도, 메타정의 유형별 빈도, 메타정의의 메타적 기능 유형별 빈도를 비교 분석하였다. 또한, 수학 학습 성취 수준별 메타정의의 메타적 기능 유형별 사례의 분석을 통하여 메타정의의 실제적인 작용 메카니즘을 파악하였다. 그 결과, 수학 학습 성취 하 수준 집단의 문제해결 과정에서 상 수준 집단에 비해 메타정의의 출현 비율이 상대적으로 높았으며, 상 수준 집단의 메타정의는 하 수준 집단에 비해 상대적으로 다양한 유형의 메타적 기능으로 작용하였다. 이와 같은 연구 결과로부터 수학 문제해결 수업에 적용해 볼 수 있는 메타정의의 기능적 특성과 관련한 교육적 시사점을 도출하였다.

  • PDF

개방형 문제와 선택형 문제 해결에 나타난 학생의 추론 비교 (A Comparison of Students' Reasoning Shown in Solving Open-Ended and Multiple-Choice Problems)

  • 이명화;김선희
    • 대한수학교육학회지:학교수학
    • /
    • 제19권1호
    • /
    • pp.153-170
    • /
    • 2017
  • 본 연구는 학생들의 추론 활동이 활발할 것으로 기대되는 개방형 문제와 학생들이 익숙해하는 선택형 문제에서 학생들이 문제를 해결하면서 보이는 추론의 유형과 추론 과정이 어떠한지 분석하였다. 그리고 개방형 문제 해결에서 추론을 증진시키는 교사의 역할에 대해 알아보았다. 선택형 문제에 비해 개방형 문제 해결에서 학생들은 더 다양한 추론 유형을 나타냈고, 추론이 연쇄적으로 진행되면서 확장되는 과정을 보여주었다. 개방형 문제에서는 학생들의 개연적 추론의 한 유형인 가추가 활발하였는데, 이에 따라 교사는 격려, 촉진, 안내의 역할을 하였다. 이에 교사는 수업과 평가에서 개방형 문제를 제시하고, 학생들이 추론에 어려움을 느낄 때 적절한 발문으로 학생들의 추론이 더욱 활발해지도록 돕는 역할을 해야 한다.

개방형 과제를 활용한 수학 영재아 수업 사례 분석 (A Case Study on Instruction for Mathematically Gifted Children through The Application of Open-ended Problem Solving Tasks)

  • 박화영;김수환
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제20권1호
    • /
    • pp.117-145
    • /
    • 2006
  • 수학 영재들은 타고난 수학적 소질과 적성, 지적인 능력과 창의성을 바탕으로 참신한 과제에 대한 도전적이고 창조적인 호기심을 가지고 있다. 영재아들의 창의적인 사고력을 길러주기 위해서는 다양한 방법으로 문제 해결에 접근하게 하고 전략적 시도를 할 수 있도록 만들어주어야 한다. 이런 관점에서 볼 때 개방적이고 비정형적인 문제를 영재 교육프로그램의 과제로 선정하는 것은 바람직하다 할 수 있다. 본 논문에서는 다양한 유형의 개방형 문제를 구안하고, 이를 토대로 영재 학급에서 학습 활동을 전개한 후, 문제해결 과정에서 영재아들의 수학적 사고 능력의 특성과 문제 해결 전략 사례를 분석하여, 개방형 과제를 활용한 초등학교 영재 수업에 관한 시사점을 얻고자 하였다.

  • PDF

개방형 문제 활용이 수학적 창의력과 뇌기능에 미치는 효과 (The Effects of Open-ended Problems on Mathematical Creativity and Brain Function)

  • 김상정;권영민;배종수
    • 한국초등수학교육학회지
    • /
    • 제14권3호
    • /
    • pp.723-744
    • /
    • 2010
  • 오늘날 사회에서는 다양하고, 유연한 사고능력을 가진 창의적인 인재 육성을 필요로 하고 있다. 이에 개방형 문제는 다양한 답을 찾는 과정에서 학습자의 창의력 계발에 효과적인 학습방법으로 생각된다. 이러한 개방형 문제는 두뇌 발달에 어떠한 영향을 미칠 것인가? 최근 두뇌 기능 상태를 고려한 교수-학습 활동 개발의 필요성이 제안되면서 이를 위한 기초 연구로 학습자의 뇌파 측정 및 뇌파를 통한 교육 효과 검증 등이 시도되고 있다. 본 연구에서는 개방형 문제가 수학적 창의력에 미치는 영향과 함께 뇌파 측정을 통해 뇌기능 발달에 미치는 효과를 파악하고자 하였다. 연구 결과 개방형 문제는 학습자의 수학적 창의력과 두뇌 각성, 긍정적인 학습 성향, 두뇌 활동의 효율성을 높이는데 효과적인 문제 유형이었다. 따라서 개방형 문제가 꾸준히 개발되어 학생들에게 다양한 답을 찾는 문제 해결 경험을 제공해야 한다. 또한 개방형 문제를 활용한 수업에도 적극 활용될 필요가 있다. 특히 개방형 문제 해결이 뇌기능에 미치는 긍정적인 효과를 고려해 볼 때, 주의가 낮고, 수학 학습에 소극적인 학습자에게 개방형 문제를 제시하고, 꾸준한 학습 경험을 제공할 필요가 있다.

  • PDF

등호 문맥에 따른 초등학생의 등호 개념 이해와 지도 방법 연구 (The Analysis of Elementary School Students' Understanding of the Concept of Equality Sign in Contexts and the Effects of its Teaching Methods)

  • 기정순;정영옥
    • 대한수학교육학회지:학교수학
    • /
    • 제10권4호
    • /
    • pp.537-555
    • /
    • 2008
  • 본 연구는 학교수학에 매우 중요한 등호 개념과 관련하여 등호 문맥을 중심으로 초등학생들의 등호 개념 이해를 조사하고, 수학 교과서를 분석하며, 등호 개념 이해를 신장하기 위한 지도 방법을 모색하여 그 효과를 분석하는 데 목적이 있다. 이를 위한 이론적 배경으로 등호의 기원, 등호 개념, 등호 문맥, 등호 사용 오류 유형을 고찰하고, 분석을 위한 틀을 마련하였다. 등호 개념 이해를 위한 수업은 모델 만들기, 수식의 참 거짓 판단하기, 수와 연산의 관계 파악하기, 수와 연산의 기본 성질 추측하기, 다양한 등호 문맥 경험하기, 등호 문맥 만들기 활동을 중심으로 이루어졌다. 학생들의 등호 개념 이해는 등호 양쪽에 연산이 있는 문맥에서 매우 부족하며, 이와 관련하여 등호를 결과로 인식하는 오류가 가장 많이 나타났다. 교과서는 등호 왼쪽에 연산이 있는 문맥이 거의 대부분을 차지하는 관계로 이에 대한 제고가 필요하며, 본 연구에서 제시한 수업 방법은 등호 개념의 관계적 이해에 효과가 있는 것으로 나타났다.

  • PDF

평면도형에 관한 학생들의 오류에 대한 초임 초등 교사들의 교수학적 내용 지식 분석 (Novice Elementary Teachers' Knowledge of Students' Errors on Plane Figures)

  • 송근영;방정숙
    • 한국학교수학회논문집
    • /
    • 제15권3호
    • /
    • pp.429-451
    • /
    • 2012
  • 본 연구는 8명의 초임 초등 교사들을 대상으로 설문지와 전체 토의 과정에서의 응답을 중심으로 평면도형에 관한 학생들의 오류와 원인 그리고 오류에 대한 지도법 측면에서 교수학적 내용 지식을 분석하였다. 분석 결과 초임 교사들은 학생들의 오류 유형에 관해서 어느 정도 잘 예상하는 것으로 드러났지만, 그러한 오류의 원인에 대해서는 주로 학생들과 관련된 요인만 찾는 경향이 짙었다. 또한 오류에 대한 지도법에 관해서는 교사의 명확한 설명과 반복 그리고 학생들의 문제 풀이를 선호하였다. 한편, 수업 중 다양한 범례를 제시하거나 분류하기 그리기 만들기와 같은 활동의 중요성을 인식하였지만 이를 직접 실행하는 것에 대한 어려움을 토로하였다. 이러한 결과를 바탕으로 본 논문은 초임 초등 교사들의 전문성 발달 프로그램에 대한 시사점을 제공하고자 한다.

  • PDF