• Title/Summary/Keyword: 수학문제해결능력

Search Result 338, Processing Time 0.027 seconds

Effects on Mathematical Thinking Ability of Mathematising Learning with RME -Based on measurement region for fifth grade in elementary school- (RME를 적용한 수학화 학습이 수학적 사고능력에 미치는 효과 -초등학교 5학년 측정 영역을 중심으로-)

  • Baek, In su;Choi, Chang Woo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.19 no.3
    • /
    • pp.323-345
    • /
    • 2015
  • This study is intended to establish and apply a program created with RME for mathematising instruction and learning and identify how it influences on the mathematical thinking process in the field. In order to deal with this study inquiries, related theories have been analyzed establishing a program for mathematising instruction and learning method based on a model of them and RME theory principles and re-organizing education courses for instruction on the fields concerned. Study subjects were limited to two classes consisting of fifth graders in S elementary school located in the city of Daegu and divided them in an experiment group and a control group. An experiment group was given a mathematising learning method applied with RME, while a control group had a class with regular methods of learning and instruction during the period of experiment. As a summary of aforementioned results of the study, mathematising learning method applied with RME had an effect on improving mathematical thinking ability for students and also on promoting mathematising outcome through a repetitive experience in each procedure obtained on a regular basis.

Development Teaching Material for the Korea Information Olympiad Preliminary Round Test -Focusing on Elementary Students- (기출문제 분석을 통한 한국정보올림피아드 경시부문 지역 예선 교재 개발 -초등부를 중심으로 -)

  • Kim, Tae-Hun;Hyun, Dong-Lim;Kim, Jong-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.1
    • /
    • pp.448-457
    • /
    • 2011
  • In this study, the teaching material has been developed based on Polya's Problem Solving Techniques for preparing Korea Information Olympiad qualification and studying principle of computer. the basis of discrete mathematics and data structures were selected as the content of textbooks for students to learn computer programming principles. After the developed textbooks were applied to elementary school students of Science Gifted Education Center of J University, the result of study proves that textbook helps improve problem-solving ability using the testing tool restructured sample questions from previous test. We need guidebook and training course for teachers and realistic conditions for teaching the principles of computer.

An Analysis on Problem Solving Ability of 3rd Grade Types of Multiplication and Division Word Problem (곱셈과 나눗셈 문장제 유형에 따른 문제해결능력)

  • Lim, Ja Sun;Kim, Sung Joon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.19 no.4
    • /
    • pp.501-525
    • /
    • 2015
  • This study analyzes arithmetic word problem of multiplication and division in the mathematics textbooks and workbooks of 3rd grade in elementary school according to 2009 revised curriculum. And we analyzes type of the problem solving ability which 4th graders prefer in the course of arithmetic word problem solving and the problem solving ability as per the type in order to seek efficient teaching methods on arithmetic word problem solving of students. First, in the mathematics textbook and workbook of 3rd grade, arithmetic word problem of multiplication and division suggested various things such as thought opening, activities, finish, and let's check. As per the semantic element, multiplication was classified into 5 types of cumulated addition of same number, rate, comparison, arrayal and combination while division was classified into 2 types of division into equal parts and division by equal part. According to result of analysis, the type of cumulated addition of same number was the most one for multiplication while 2 types of division into equal parts and division by equal part were evenly spread in division. Second, according to 1st test result of arithmetic word problem solving ability in the element of arithmetic operation meaning, 4th grade showed type of cumulated addition of same number as the highest correct answer ratio for multiplication. As for division, 4th grade showed 90% correct answer ratio in 4 questionnaires out of 5 questionnaires. And 2nd test showed arithmetic word problem solving ability in the element of arithmetic operation construction, as for multiplication and division, correct answer ratio was higher in the case that 4th grade students did not know the result than the case they did not know changed amount or initial amount. This was because the case of asking the result was suggested in the mathematics textbook and workbook and therefore, it was difficult for students to understand such questions as changed amount or initial amount which they did not see frequently. Therefore, it is required for students to experience more varied types of problems so that they can more easily recognize problems seen from a textbook and then, improve their understanding of problems and problem solving ability.

The Effect of Problem-posing Activities on the Affective Domain of Mathematics (문제제기 활동이 수학에 대한 정의적 영역에 미치는 영향)

  • Oh, Yeongsu;Jeon, Youngju
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.2
    • /
    • pp.541-552
    • /
    • 2018
  • The purpose of this study was to investigate the effects of 'problem posing from mathematical problems' on the students' affective domain of mathematics, and to conduct evaluation and management of teachers' respectively. The quantitative and qualitative approaches were combined to analyze the changes in the affective achievement of all the students and individual students in the study. The conclusions of this study are as follows: First, problem-posing class improved the problem-solving ability and meaningful experience in the learning activity itself, thus improving students' self-confidence, interest, value, and desire to learn. Second, The students' affective domain of mathematics should be emphasized, and systematic evaluation and management should be carried out from the first grade of middle school to high school senior in mathematics. Third, it is necessary to present and disseminate them in detail on the national-level to evaluation system and method of affective domain of mathematics. Therefore, the teacher should actively implement the problem-posing teaching and learning in the classroom lesson and help students' affective achievement. and teachers need to measure and manage the affective achievement of all students on a regular basis.

The Effect of Problem Based Learning on Academic Achievement and Mathematical Attitudes of the Middle and High Class Students (문제중심학습이 중.상위권 학생의 학업 성취도 및 수학적 태도에 미치는 영향)

  • Kim, Moon-Hee;Kwean, Hyuk-Jin
    • Journal of the Korean School Mathematics Society
    • /
    • v.12 no.2
    • /
    • pp.171-193
    • /
    • 2009
  • Although Korea students have been showed the top academic achievement in the international evaluation test for mathematics academic achievement, they have the low confidence, low interest and unwelcome attention about mathematics. In order to change student's affective aspects about mathematics, we introduced the problem based learning(PBL) method which is based on constructivist learning theories. By applying PBL to the middle and high class students, we investigated the effect of PBL on the students' academic achievement and mathematical attitudes. The study shows that there are the statistically significant differences between a control group and a comparison group both in academic achievement and mathematical attitudes.

  • PDF

An Analysis of Teaching and Learning Methods Focusing on the Representation-Shift of the Functional Context (일차함수 활용문제의 해결을 위한 강의식, 모델링, 과제기반 표현변환 학습의 교수학적 효과 분석)

  • 이종희;김부미
    • Journal of Educational Research in Mathematics
    • /
    • v.14 no.1
    • /
    • pp.39-69
    • /
    • 2004
  • This paper investigates the teaching and learning of Linear function relating functional contexts and suggests the improved methods of representation-shift through this analysis. The methods emphasize the link between students' preacquired knowledge of mathematical representations and the way of using those. This methods are explanatory teaching, teaching and teaming based on modelling perspectives or tasks (interpretation, prediction, translation and scaling). We categorize the 8th grade middle school students' errors on the linear function relating real contexts and make a comparative study of the error-remedial effects and the teaching and teaming methods. We present the results of a study in which representation-shift methods based on modelling perspectives and tasks are more effective in terms of flexible connection of representations and error remediation. Also, We describe how students used modelling perspective-taking to explain and justify their conceptual models, to assess the quality of their models and to make connection to other mathematical representation during the problem solving focusing on the students' self-diagnosis.

  • PDF

A Case Study for Creativity Assessment of Problem Solving Process of Mathematically Gifted High School Students Utilizing Construction Protocol of GeoGebra (GeoGebra의 구성단계 기능을 활용한 고등학교 수학 영재 문제해결 과정의 창의성 평가 사례 연구)

  • Yang, Seonghyun
    • Journal of Gifted/Talented Education
    • /
    • v.24 no.6
    • /
    • pp.897-916
    • /
    • 2014
  • In this study, we presented a teaching-learning method that can apply process-focused assessment for mathematical creativity of problem solving process of the gifted student, By necessity of appropriate teaching-learning program development to the level and ability of students who belong to high school gifted classes and courses evaluation for students who participated in education programs for the gifted. In the construction implementation process of students utilizing a kind of teaching-learning software, GeoGebra. We analyzed process of a variety of creative constructing figures using interfaces of GeoGebra and algebraic calculation. Utilizing 'Construction Protocol' and 'Navigation Bar' of GeoGebra, We identified computer languages, construction order, run times used in construction process of individual student and found mathematical creativity of students in the process. Comparing this result with prerequisite learning degree of individual student, We verified that this teaching-learning method can apply at the high school gifted classes as well as institutes for the gifted education in the city office.

Educational Application of Turtle Representation System for Linking Cube Mathematics Class (연결큐브 수업을 위한 거북표현체계의 활용)

  • Jeong, Hye Rim;Lee, Seung Joo;Cho, Han Hyuk
    • School Mathematics
    • /
    • v.18 no.2
    • /
    • pp.323-348
    • /
    • 2016
  • The 2009 revised national mathematics curriculum have inserted mathematical 'linking cube' activities in the 6th grade math classes to improve students' spatial problem solving abilities and communication skills. However, we found that it was hard for teachers to teach problem solving and communication skills due to the absence of mathematical way of representing linking cubes in the classroom. In this paper, we propose 3D 'turtle representation system' as teaching and learning tools for linking cube activities. After using turtle representation system for linking cube activities, teachers responded that turtle representation system is a valuable problem solving and communication tools for the linking cube mathematics classes. We conclude that turtle representation system is a well designed teaching and learning tools for linking cube activities, and there are lots of educational meanings in the 3D turtle representation system.

Analysis of Belief Types in Mathematics Teachers and their Students by Latent Class Analysis (잠재집단분석(LCA)에 의한 수학교사와 학생들의 신념유형 분석)

  • Kang, Sung Kwon;Hong, Jin-Kon
    • Communications of Mathematical Education
    • /
    • v.34 no.1
    • /
    • pp.17-39
    • /
    • 2020
  • The purpose of this study is to analyze the mathematical beliefs of students and teachers by Latent Class Analysis(LCA). This study surveyed 60 teachers about beliefs of 'nature of mathematics', 'mathematic teaching', 'mathematical ability' and also asked 1850 students about beliefs of 'school mathematics', 'mathematic problem solving', 'mathematic learning' and 'mathematical self-concept'. Also, this study classified each student and teacher into a class that are in a similar response, analyzed the belief systems and built a profile of the classes. As a result, teachers were classified into three types of belief classes about 'nature of mathematics' and two types of belief classes about 'teaching mathematics' and 'mathematical ability' respectively. Also, students were classfied into three types of belief classes about 'self concept' and two types of classes about 'School Mathematics', 'Mathematics Problem Solving' and 'Mathematics Learning' respectively. This study classified the mathematics belief systems in which students were categorized into 9 categories and teachers into 7 categories by LCA. The belief categories analyzed through these inductive observations were found to have statistical validity. The latent class analysis(LCA) used in this study is a new way of inductively categorizing the mathematical beliefs of teachers and students. The belief analysis method(LCA) used in this study may be the basis for statistically analyzing the relationship between teachers' and students' beliefs.

Case Study on self-directed learning of mathematics using EBS contents for students at Child care centers (지역아동센터학생 대상 EBS 동영상을 활용한 자기 주도적 수학학습 사례 연구)

  • Park, Kyung-Eun;Lee, Sang-Gu
    • Communications of Mathematical Education
    • /
    • v.29 no.4
    • /
    • pp.589-623
    • /
    • 2015
  • This study is to find out a way to foster self-directed learning math skills for the low-income youth at child care centers. Taking advantage of EBS materials, we found the youth, low-income youth in particular, were positively influenced to learn mathematics in the way of self-directed and action learning. This program gives a model of the self-directed math learning using the EBS mathematics materials. From the survey of this study, we found see that students started to have a positive attitude for learning and they started to gain new mathematical concept, and improved their problem solving, reasoning, communication and representation skills with these new leaning environments. This study tells us that this type of cooperative learning could help them to have an objective assessment, and gave a positive impact on self-directed learning.