• Title/Summary/Keyword: 단채널효과

Search Result 112, Processing Time 0.019 seconds

Analysis of Threshold Voltage Roll-off for Ratio of Channel Length and Thickness in DGMOSFET (DGMOSFET에서 채널길이와 두께 비에 따른 문턱전압변화분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2305-2309
    • /
    • 2010
  • In this paper, the variations of threshold voltage characteristics for ratio of channel length and thickness have been alanyzed for DG(Double Gate)MOSFET having top gate and bottom gate. Since the DGMOSFET has two gates, it has advantages that contollability of gate for current is nearly twice and SCE(Short Channel Effects) shrinks in nano devices. The channel length and thickness in MOSFET determines device size and extensively influences on SCEs. The threshold voltage roll-off, one of the SCEs, is large with decreasing channel length. The threshold voltage roll-off and drain induced barrier lowing have been analyzed with various ratio of channel length and thickness for DGMOSFET in this study.

Analysis of Threshold Voltage Roll-off for Ratio of Channel Length and Thickness in DGMOSFET (DGMOSFET에서 채널길이와 두께 비에 따른 문턱전압변화분석)

  • Jung, Hak-Kee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.765-767
    • /
    • 2010
  • In this paper, the variations of threshold voltage characteristics for ratio of channel length and thickness have been alanyzed for DG(Double Gate)MOSFET having top gate and bottom gate. Since the DGMOSFET has two gates, it has advantages that contollability of gate for current is nearly twice and SCE(Short Channel Effects) shrinks in nano devices. The channel length and thickness in MOSFET determines device size and extensively influences on SCEs. The threshold voltage roll-off, one of the SCEs, is large with decreasing channel length. The threshold voltage roll-off has been analyzed with various ratio of channel length and thickness for DGMOSFET in this study.

  • PDF

Relation of Short Channel Effect and Scaling Theory for Double Gate MOSFET in Subthreshold Region (문턱전압이하 영역에서 이중게이트 MOSFET의 스켈링 이론과 단채널효과의 관계)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1463-1469
    • /
    • 2012
  • This paper has presented the influence of scaling theory on short channel effects of double gate(DG) MOSFET in subthreshold region. In the case of conventional MOSFET, to preserve constantly output characteristics,current and switching frequency have been analyzed based on scaling theory. To analyze the results of application of scaling theory for short channel effects of DGMOSFET, the changes of threshold voltage, drain induced barrier height and subthreshold swing have been observed according to scaling factor. The analytical potential distribution of Poisson equation already verified has been used. As a result, it has been observed that threshold voltage among short channel effects is grealty changed according to scaling factor. The best scaling theory for DGMOSFET has been explained as using modified scaling theory, applying weighting factor reflected the influence of two gates when scaling theory has been applied for channel length.

Analysis of subthreshold region transport characteristics according to channel doping for DGMOSFET using MicroTec (MicroTec을 이용한 DGMOSFET의 채널도핑에 따른 문턱전압이하영역 특성분석)

  • Han, Ji-Hyung;Jung, Hak-Kee;Lee, Jong-In;Jeong, Dong-Soo;Kwon, Oh-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.715-717
    • /
    • 2010
  • In this paper, the subthreshold characteristics have been alanyzed using MicroTec4.0 for double gate MOSFET(DGMOSFET). The DGMOSFET is extensively been studing since it can reduce the short channel effects due to structural characteristics. We have presented the short channel effects such as subthreshold swing and threshold voltage for DGMOSFET, using MicroTec, semiconductor simulator. We have analyzed for channel length, thickness and width to consider the structural characteristics for DGMOSFET. The subthreshold swing and threshold voltage have been analyzed for DGMOSFET using MicroTec since MicroTec is well verified as comparing with results of the numerical three dimensional models.

  • PDF

Analysis of Drain Induced Barrier Lowering for Double Gate MOSFET According to Channel Doping Concentration (채널도핑강도에 대한 이중게이트 MOSFET의 DIBL분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.579-584
    • /
    • 2012
  • In this paper, drain induced barrier lowering(DIBL) has been analyzed as one of short channel effects occurred in double gate(DG) MOSFET. The DIBL is very important short channel effects as phenomenon that barrier height becomes lower since drain voltage influences on potential barrier of source in short channel. The analytical potential distribution of Poisson equation, validated in previous papers, has been used to analyze DIBL. Since Gaussian function been used as carrier distribution for solving Poisson's equation to obtain analytical solution of potential distribution, we expect our results using this model agree with experimental results. The change of DIBL has been investigated for device parameters such as channel thickness, oxide thickness and channel doping concentration.

Analysis of Drain Induced Barrier Lowering for Double Gate MOSFET According to Channel Doping Intensity (채널도핑강도에 대한 DGMOSFET의 DIBL분석)

  • Jung, Hak-Kee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.888-891
    • /
    • 2011
  • In this paper, drain induced barrier lowering(DIBL) has been analyzed as one of short channel effects occurred in double gate(DG) MOSFET. The DIBL is very important short channel effects as phenomenon that barrier height becomes lower since drain voltage influences on potential barrier of source in short channel. The analytical potential distribution of Poisson equation, validated in previous papers, has been used to analyze DIBL. Since Gaussian function been used as carrier distribution for solving Poisson's equation to obtain analytical solution of potential distribution, we expect our results using this model agree with experimental results. The change of DIBL has been investigated for device parameters such as channel thickness, oxide thickness and channel doping intensity.

  • PDF

Poly-gate Quantization Effect in Double-Gate MOSFET (폴리 게이트의 양자효과에 의한 Double-Gate MOSFET의 특성 변화 연구)

  • 박지선;이승준;신형순
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.17-24
    • /
    • 2004
  • Quantum effects in the poly-gate are analyzed in two dimensions using the density-gradient method, and their impact on the short-channel effect of double-gate MOSFETs is investigated. The 2-D effects of quantum mechanical depletion at the gate to sidewall oxide is identified as the cause of large charge-dipole formation at the corner of the gate. The bias dependence of the charge dipole shows that the magnitude of the dipole peak-value increases in the subthreshold region and there is a large difference in carrier and potential distribution compared to the classical solution. Using evanescent-nude analysis, it is found that the quantum effect in the poly-gate substantially increases the short-channel effect and it is more significant than the quantum effect in the Si film. The penetration of potential contours into the poly-gate due to the dipole formation at the drain side of the gate corner is identified as the reason for the substantial increase in short-channel effects.

Ion Implant 시뮬레이션을 통한 MOSFET 최적점에 대한 연구

  • Lee, Dong-Bin
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.347-349
    • /
    • 2015
  • 본 연구에서는 MOSFET 제작방법중 하나인 이온주입법에서 다양한 변수로 작용하는 도핑농도, 에너지주입, 바탕농도의 역할에 대해서 알아보고 채널길이가 감소함에 따른 단채널효과를 억제할 수 있는 최적점에 대하여 분석하였으며 Ion Implant 이차원 시뮬레이션값과 비교하였다. 결과적으로 농도와 에너지주입 그리고 채널길이에 따른 MOSFET의 최적화된 모델을 분석하였다.

  • PDF

Movement of Conduction Path for Electron Distribution in Channel of Double Gate MOSFET (DGMOSFET에서 채널내 전자분포에 따른 전도중심의 이동)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.805-811
    • /
    • 2012
  • In this paper, movement of conduction path has been analyzed for electron distribution in the channel of double gate(DG) MOSFET. The analytical potential distribution model of Poisson equation, validated in previous researches, has been used to analyze transport characteristics. DGMOSFETs have the adventage to be able to reduce short channel effects due to improvement for controllability of current by two gate voltages. Since short channel effects have been occurred in subthreshold region including threshold region, the analysis of transport characteristics in subthreshold region is very important. Also transport characteristics have been influenced on the deviation of electron distribution and conduction path. In this study, the influence of electron distribution on conduction path has been analyzed according to intensity and distribution of doping and channel dimension.

Doping Profile Dependent Subthreshold Swing for Double Gate MOSFET (DGMOSFET에서 문턱전압이하 스윙의 도핑분포 의존성)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1764-1770
    • /
    • 2011
  • In this paper, the subthreshold swings for doping distribution in the channel have been analyzed in double gate MOSFET(DGMOSFET). The DGMOSFET is extensively been studying since it can lessen the short channel effects(SCEs) as next -generation nano device. The degradation of subthreshold swing(SS) known as SCEs has greatly influenced on application of digital devices, and has been analyzed for structural parameter and variation of channel doping profile in DGMOSFET. The analytical model of Poisson equation has been derived from nonuniform doping distribution for DGMOSFET. To verify potential and subthreshold swing model based on this analytical Poisson's equation, the results have been compared with those of the numerical Poisson's equation, and subthreshold swing for DGMOSFET has been analyzed using these models.