• Title/Summary/Keyword: *-algebra

Search Result 1,782, Processing Time 0.026 seconds

On freshmen's academic achievements of college mathematics and the efficient methods of education (이공계열 대학 신입생의 기초 수학분야 학업성취도 및 효율적인 교육 방안에 대한 연구)

  • Kim, Byung Hak;Kim, Jae Woong;Kim, Jiyun
    • Communications of Mathematical Education
    • /
    • v.31 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • The university entrance examination in deeply related to high school education, adaptation and study ability in university. In this point of view, we investigate the scholastic achievement to the Calculus 1,2, linear algebra and differential equation from academic year 2006 to 2016. The above four subjects contain elementary and essential contents to study for science and engineering major in university. We compare and analyse the data of scholastic achievement and system of various university entrance examination, and we discuss and propose the methods of improvements for adaptation to each major field and study ability.

Chosun Mathematics Book Suan Xue Qi Meng Ju Hae (조선(朝鮮) 산서(算書) 산학계몽주해(算學啓蒙註解))

  • Hong, Sung-Sa;Hong, Young-Hee
    • Journal for History of Mathematics
    • /
    • v.22 no.2
    • /
    • pp.1-12
    • /
    • 2009
  • Zhu Shi Jie's Suan Xue Qi Meng is one of the most important books which gave a great influence to the development of Chosun Mathematics. Investigating San Hak Gye Mong Ju Hae(算學啓蒙註解) published in the middle of the 19th century, we study the development of Chosun Mathematics in the century. The author studied western mathematics together with theory of equations in Gu Il Jib (九一集) written by Hong Jung Ha(洪正夏) and then wrote the commentary, which built up a foundation on the development of Algebra of Chosun in the century.

  • PDF

The Effects of Mathematics Education Program Utilizing Food on 4-Year-Old Children's Mathematical Ability (먹거리를 활용한 유아 수학교육 프로그램이 만 4세 유아의 수학능력에 미치는 효과)

  • Oh, Mi Ra;Min, Ha Young;Cho, Woo Mi
    • Korean Journal of Childcare and Education
    • /
    • v.15 no.3
    • /
    • pp.115-133
    • /
    • 2019
  • Objective: The purpose of the study was to develop a mathematics education program utilizing food to improve the mathematical abilities of 4-year-olds and to analyze the effects of this program on 4-years-olds' mathematical concepts (number and operation, algebra, geometry, measurement, data analysis, and probability). Methods: The study selected 30 4-year-olds from two daycare centers located in K city. The experimental group (N=15) participated in the mathematics education program utilizing food, 10 times for five weeks, while the comparative group (N=15) participated in the seasonal mathematics education program based on the Nuri Curriculum. The activities of this intervention program were designed to cover all domains of Mathematical Exploratory areas in the Nuri Curriculum. For data processing and analysis, pre-test and post-test score differences between the two groups were analyzed through MANCOVA. Results: The experimental group had significantly higher scores on five mathematical concepts compared with the control group. A mathematics education program utilizing food had the positive effect of improving 4-year-olds' mathematical ability. Conclusion/Implications: Mathematic education programs utilizing food are recommended as necessary pedagogical data to develop the mathematical abilities of children in education centers, families, or relating to parenting education.

RINGS IN WHICH SUMS OF d-IDEALS ARE d-IDEALS

  • Dube, Themba
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.539-558
    • /
    • 2019
  • An ideal of a commutative ring is called a d-ideal if it contains the annihilator of the annihilator of each of its elements. Denote by DId(A) the lattice of d-ideals of a ring A. We prove that, as in the case of f-rings, DId(A) is an algebraic frame. Call a ring homomorphism "compatible" if it maps equally annihilated elements in its domain to equally annihilated elements in the codomain. Denote by $SdRng_c$ the category whose objects are rings in which the sum of two d-ideals is a d-ideal, and whose morphisms are compatible ring homomorphisms. We show that $DId:\;SdRng_c{\rightarrow}CohFrm$ is a functor (CohFrm is the category of coherent frames with coherent maps), and we construct a natural transformation $RId{\rightarrow}DId$, in a most natural way, where RId is the functor that sends a ring to its frame of radical ideals. We prove that a ring A is a Baer ring if and only if it belongs to the category $SdRng_c$ and DId(A) is isomorphic to the frame of ideals of the Boolean algebra of idempotents of A. We end by showing that the category $SdRng_c$ has finite products.

A NOTE ON DERIVATIONS OF A SULLIVAN MODEL

  • Kwashira, Rugare
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.279-286
    • /
    • 2019
  • Complex Grassmann manifolds $G_{n,k}$ are a generalization of complex projective spaces and have many important features some of which are captured by the $Pl{\ddot{u}}cker$ embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$ where $N=\(^n_k\)$. The problem of existence of cross sections of fibrations can be studied using the Gottlieb group. In a more generalized context one can use the relative evaluation subgroup of a map to describe the cohomology of smooth fiber bundles with fiber the (complex) Grassmann manifold $G_{n,k}$. Our interest lies in making use of techniques of rational homotopy theory to address problems and questions involving applications of Gottlieb groups in general. In this paper, we construct the Sullivan minimal model of the (complex) Grassmann manifold $G_{n,k}$ for $2{\leq}k<n$, and we compute the rational evaluation subgroup of the embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$. We show that, for the Sullivan model ${\phi}:A{\rightarrow}B$, where A and B are the Sullivan minimal models of ${\mathbb{C}}P^{N-1}$ and $G_{n,k}$ respectively, the evaluation subgroup $G_n(A,B;{\phi})$ of ${\phi}$ is generated by a single element and the relative evaluation subgroup $G^{rel}_n(A,B;{\phi})$ is zero. The triviality of the relative evaluation subgroup has its application in studying fibrations with fibre the (complex) Grassmann manifold.

SR-ADDITIVE CODES

  • Mahmoudi, Saadoun;Samei, Karim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1235-1255
    • /
    • 2019
  • In this paper, we introduce SR-additive codes as a generalization of the classes of ${\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}$ and ${\mathbb{Z}}_2{\mathbb{Z}}_2[u]$-additive codes, where S is an R-algebra and an SR-additive code is an R-submodule of $S^{\alpha}{\times}R^{\beta}$. In particular, the definitions of bilinear forms, weight functions and Gray maps on the classes of ${\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}$ and ${\mathbb{Z}}_2{\mathbb{Z}}_2[u]$-additive codes are generalized to SR-additive codes. Also the singleton bound for SR-additive codes and some results on one weight SR-additive codes are given. Among other important results, we obtain the structure of SR-additive cyclic codes. As some results of the theory, the structure of cyclic ${\mathbb{Z}}_2{\mathbb{Z}}_4$, ${\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}$, ${\mathbb{Z}}_2{\mathbb{Z}}_2[u]$, $({\mathbb{Z}}_2)({\mathbb{Z}}_2+u{\mathbb{Z}}_2+u^2{\mathbb{Z}}_2)$, $({\mathbb{Z}}_2+u{\mathbb{Z}}_2)({\mathbb{Z}}_2+u{\mathbb{Z}}_2+u^2{\mathbb{Z}}_2)$, $({\mathbb{Z}}_2)({\mathbb{Z}}_2+u{\mathbb{Z}}_2+v{\mathbb{Z}}_2)$ and $({\mathbb{Z}}_2+u{\mathbb{Z}}_2)({\mathbb{Z}}_2+u{\mathbb{Z}}_2+v{\mathbb{Z}}_2)$-additive codes are presented.

A Two-Step Screening Algorithm to Solve Linear Error Equations for Blind Identification of Block Codes Based on Binary Galois Field

  • Liu, Qian;Zhang, Hao;Yu, Peidong;Wang, Gang;Qiu, Zhaoyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3458-3481
    • /
    • 2021
  • Existing methods for blind identification of linear block codes without a candidate set are mainly built on the Gauss elimination process. However, the fault tolerance will fall short when the intercepted bit error rate (BER) is too high. To address this issue, we apply the reverse algebra approach and propose a novel "two-step-screening" algorithm by solving the linear error equations on the binary Galois field, or GF(2). In the first step, a recursive matrix partition is implemented to solve the system linear error equations where the coefficient matrix is constructed by the full codewords which come from the intercepted noisy bitstream. This process is repeated to derive all those possible parity-checks. In the second step, a check matrix constructed by the intercepted codewords is applied to find the correct parity-checks out of all possible parity-checks solutions. This novel "two-step-screening" algorithm can be used in different codes like Hamming codes, BCH codes, LDPC codes, and quasi-cyclic LDPC codes. The simulation results have shown that it can highly improve the fault tolerance ability compared to the existing Gauss elimination process-based algorithms.

Trends of Compiler Development for AI Processor (인공지능 프로세서 컴파일러 개발 동향)

  • Kim, J.K.;Kim, H.J.;Cho, Y.C.P.;Kim, H.M.;Lyuh, C.G.;Han, J.;Kwon, Y.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.2
    • /
    • pp.32-42
    • /
    • 2021
  • The rapid growth of deep-learning applications has invoked the R&D of artificial intelligence (AI) processors. A dedicated software framework such as a compiler and runtime APIs is required to achieve maximum processor performance. There are various compilers and frameworks for AI training and inference. In this study, we present the features and characteristics of AI compilers, training frameworks, and inference engines. In addition, we focus on the internals of compiler frameworks, which are based on either basic linear algebra subprograms or intermediate representation. For an in-depth insight, we present the compiler infrastructure, internal components, and operation flow of ETRI's "AI-Ware." The software framework's significant role is evidenced from the optimized neural processing unit code produced by the compiler after various optimization passes, such as scheduling, architecture-considering optimization, schedule selection, and power optimization. We conclude the study with thoughts about the future of state-of-the-art AI compilers.

ON S-MULTIPLICATION RINGS

  • Mohamed Chhiti;Soibri Moindze
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.327-339
    • /
    • 2023
  • Let R be a commutative ring with identity and S be a multiplicatively closed subset of R. In this article we introduce a new class of ring, called S-multiplication rings which are S-versions of multiplication rings. An R-module M is said to be S-multiplication if for each submodule N of M, sN ⊆ JM ⊆ N for some s ∈ S and ideal J of R (see for instance [4, Definition 1]). An ideal I of R is called S-multiplication if I is an S-multiplication R-module. A commutative ring R is called an S-multiplication ring if each ideal of R is S-multiplication. We characterize some special rings such as multiplication rings, almost multiplication rings, arithmetical ring, and S-P IR. Moreover, we generalize some properties of multiplication rings to S-multiplication rings and we study the transfer of this notion to various context of commutative ring extensions such as trivial ring extensions and amalgamated algebras along an ideal.

YANG-MILLS INDUCED CONNECTIONS

  • Park, Joon-Sik;Kim, Hyun Woong;Kim, Pu-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.813-821
    • /
    • 2010
  • Let G and H be compact connected Lie groups with biinvariant Riemannian metrics g and h respectively, ${\phi}$ a group isomorphism of G onto H, and $E:={\phi}^{-1}TH$ the induced bundle by $\phi$ over the base manifold G of the tangent bundle TH of H. Let ${\nabla}$ and $^H{\nabla}$ be the Levi-Civita connections for the metrics g and h respectively, $\tilde{\nabla}$ the induced connection by the map ${\phi}$ and $^H{\nabla}$. Then, a necessary and sufficient condition for $\tilde{\nabla}$ in the bundle (${\phi}^{-1}TH$, G, ${\pi}$) to be a Yang- Mills connection is the fact that the Levi-Civita connection ${\nabla}$ in the tangent bundle over (G, g) is a Yang- Mills connection. As an application, we get the following: Let ${\psi}$ be an automorphism of a compact connected semisimple Lie group G with the canonical metric g (the metric which is induced by the Killing form of the Lie algebra of G), ${\nabla}$ the Levi-Civita connection for g. Then, the induced connection $\tilde{\nabla}$, by ${\psi}$ and ${\nabla}$, is a Yang-Mills connection in the bundle (${\phi}^{-1}TH$, G, ${\pi}$) over the base manifold (G, g).