YANG-MILLS INDUCED CONNECTIONS

JOON-SIK PARK*, HYUN WOONG KIM**, AND PU-YOUNG KIM***

ABSTRACT. Let G and H be compact connected Lie groups with biinvariant Riemannian metrics q and h respectively, ϕ a group isomorphism of G onto H, and $E := \phi^{-1}TH$ the induced bundle by ϕ over the base manifold G of the tangent bundle TH of H. Let ∇ and $^H\nabla$ be the Levi-Civita connections for the metrics gand h respectively, $\tilde{\nabla}$ the induced connection by the map ϕ and ${}^H\nabla.$ Then, a necessary and sufficient condition for $\tilde{\nabla}$ in the bundle $(\phi^{-1}TH, G, \pi)$ to be a Yang- Mills connection is the fact that the Levi-Civita connection ∇ in the tangent bundle over (G,g) is a Yang- Mills connection. As an application, we get the following: Let ψ be an automorphism of a compact connected semisimple Lie group G with the canonical metric g (the metric which is induced by the Killing form of the Lie algebra of G), ∇ the Levi-Civita connection for g. Then, the induced connection $\tilde{\nabla}$, by ψ and ∇ , is a Yang-Mills connection in the bundle $(\phi^{-1}TG, G, \pi)$ over the base manifold (G, g).

1. Introduction

Let (M,g), (N,h) be two Riemannian manifolds. Let $\phi: M \longrightarrow N$ be a smooth map. Let $E:=\phi^{-1}TN$ be the induced bundle by ϕ over M of the tangent bundle TN of N (cf.[8]). We denote by $\Gamma(E)$, the space of all smooth sections V of E. We denote by ∇ , $^{N}\nabla$ the Levi-Civita connections of (M,g), (N,h), respectively. Then we give the induced connection $\tilde{\nabla}$ on E by

$$(1.1) \quad (\tilde{\nabla}_X V)_x := \frac{d}{dt} \, {}^N P_{\phi(\gamma(t))}^{-1} V_{\gamma(t)}|_{t=0}, \quad X \in \Gamma(TM), \ V \in \Gamma(E),$$

Received October 04, 2010; Accepted November 09, 2010.

2010 Mathematics Subject Classification: Primary 53C07, 53A15.

Key words and phrases: Yang-Mills connection, induced connection, compact connected semisimple Lie group, canonical metric.

Correspondence should be addressed to Joon-Sik Park, iohpark@pufs.ac.kr.

^{*}This research was supported by Pusan University of Foreign Studies Research Grant in 2010.

where $x \in M$, $\gamma(t)$ is a curve through x at t=0 whose tangent vector at x is X_x , and ${}^NP_{\phi(\gamma(t))}: T_{\phi(x)}N \longrightarrow T_{\phi(\gamma(t))}N$ is the parallel displacement along a curve $\phi(\gamma(s))$, $0 \le s \le t$, given by the Levi-Civita connection ${}^N\nabla$ of (N,h) (cf. [8, p.126]). It is interesting to study conditions for the induced connection $\tilde{\nabla}$ in the bundle $(E:=\phi^{-1}TN,M,\pi)$ over the base manifold (M,g) to be a Yang-Mills connection.

The problem of finding metrics and connections which are critical points of some functional plays an important role in global analysis and Riemannian geometry. A Yang-Mills connection is a critical point of the Yang-Mills functional

(1.2)
$$\mathcal{YM}(D) = \frac{1}{2} \int_{M} \left\| R^{D} \right\|^{2} v_{g}$$

on the space \mathfrak{C}_E of all connections in a smooth vector bundle E over a closed (compact and connected) Riemannian manifold (M, g), where R^D is the curvature of $D \in \mathfrak{C}_E$. Equivalently, D is a Yang-Mills connection if it satisfies the Yang-Mills equation (cf. [1, 5, 6])

$$\delta_D R^D = 0,$$

(the Euler-Lagrange equations of the variational principle associated with (1.2)). If D is a connection in a vector bundle E with bundle metric h over a Riemannian manifold (M,g), then the connection D^* given by (1.4)

$$h(D^*_X s, t) = X(h(s, t)) - h(s, D_X t), \quad (X \in \mathfrak{X}(M)) \text{ and } s, t \in \Gamma(E)$$

is referred to *conjugate* (cf. [1, 5]) to D. A connection D in E is a Yang-Mills connection if only if (cf. [1, 5, 6])

(1.5)
$$(\delta_D R^D)(X)s = -\sum_{i=1}^n (D_{e_i}^* R^D)(e_i, X)s = 0$$

for arbitrary given $X \in \mathfrak{X}(M)$, where $s \in \Gamma(E)$ and $\{e_i\}_{i=1}^n$ is a local orthonormal frame on(M, g).

Let G and H be compact connected Lie groups with biinvariant Riemannian metrics g and h, $\phi: G \longrightarrow H$ a group isomorphism, $E := \phi^{-1}TN$ the induced bundle by ϕ over G of the tangent bundle TH of H. Let ∇ and $H\nabla$ be the Levi-Civita connections of (G,g) and (H,h), respectively. Then we get the fact that the induced connection $\tilde{\nabla}$, by ϕ and $H\nabla$, is a metric connection in the bundle $(\phi^{-1}TH, G, \pi)$ with bundle metric h. Moreover, we have the main result

THEOREM 1.1. Let G and H compact connected Lie groups, g and h biinvariant Riemannian metrics on G and H respectively. Let ϕ be a group isomorphism of G onto H, ∇ and $^H\nabla$ the Levi-Civita connections for the metric g and h respectively. Then, a necessary and sufficient condition for the induced connection $\tilde{\nabla}$ in the induced bundle $(\phi^{-1}TH, G, \pi)$ over the base manifold (G, g) to be a Yang-Mills connection is the fact that the Levi-Civita connection ∇ for g on (G, g) is a Yang-Mills connection.

Now, let G be a compact connected semisimple Lie group, $\mathfrak g$ the Lie algebra of G, g the canonical metric (cf.[7, p.194]) (the biinvariant Riemannian metric which is induced from the Killing form of $\mathfrak g$), $\psi:G\to G$ a group automorphism. Let ∇ be the Levi-Civita connection for the metric g. Then, we get that the Levi-Civita connection ∇ in the tangent bundle TG over (G,g) is a Yang-Mills connection (cf. Proposition 3.4). By virtue of this fact and Theorem 3.2, we obtain

THEOREM 1.2. Let ψ be an automorphism of a compact connected semisimple Lie group G. Let $\tilde{\nabla}$ be the induced connection by ψ and ∇ the Levi-Civita connection for the canonical metric g on (G,g). Then, the induced connection $\tilde{\nabla}$ in the induced bundle $(\psi^{-1}TG,G,\pi)$ over the base manifold (G,g) is a Yang-Mills connection.

2. Yang-Mills connections in vector bundles over a Riemannian manifold

Let E be a vector bundle, with bundle metric h, over an n-dimensional closed (compact and connected) Riemannian manifold (M, g). Let $D \in \mathfrak{C}_E$ and ∇ the Levi-Civita connection of (M, g). The pair (D, ∇) induces a connection in product bundles $\bigwedge^p TM^* \otimes E$, also denoted by D. Set $A^p(E) := \Gamma(\bigwedge^p TM^* \otimes E)$. We consider the differential operator

$$d_D: A^p(E) \longrightarrow A^{p+1}(E),$$

$$(d_D\varphi)(X_1, X_2, \cdots, X_{p+1}) = \sum_{i=1}^{p+1} (-1)^{i+1} (D_{X_i}\varphi)(X_1, \cdots, \widehat{X}_i, \cdots, X_{p+1}),$$

$$\varphi \in A^p(E), X_i \in \mathfrak{X}(M) \ (i = 1, 2, \cdots, p+1),$$

which are defined by

$$d_D(\omega \otimes \xi) := d\omega \otimes \xi + (-1)^p \omega \wedge D\xi,$$

$$D_X(\omega \otimes \xi) := (\nabla_X \omega) \otimes \xi + \omega \otimes D_X \xi,$$

for $\omega \in \Gamma(\bigwedge^p TM^*)$, $\xi \in \Gamma(E)$ and $X \in \mathfrak{X}(M)$.

Let δ_D be the formal adjoint of d_D with respect to the L^2 -inner product

$$(\varphi, \psi) = \int_{M} \langle \varphi, \psi \rangle v_g$$

for $\varphi, \psi \in A^p(E)$. Here $\langle \cdot, \cdot \rangle$ is the bundle metric in $\bigwedge^p TM^* \otimes E$ induced by the pair (g, h) and v_g is the canonical volume form on (M, g). The following identity is elementary, yet crucial (cf. [1, 2])

(2.1)
$$\delta_D \varphi = (-1)^{p+1} (*^{-1} \cdot d_{D^*} \cdot *)(\varphi) = (-1)^{np+1} (* \cdot d_{D^*} \cdot *)(\varphi)$$

for any $\varphi \in A^{p+1}(E)$. Here, $*: A^q(E) \longrightarrow A^{n-q}(E)$, $(0 \le q \le n)$, is the Hodge operator with respect to g. Let $\{e_i\}_{i=1}^n$ be a local orthonormal frame on (M, g). Note that (2.1) may also be written as (cf. [1])

(2.2)
$$(\delta_D \varphi)(X_1, \dots, X_p) = -\sum_{i=1}^n (D_{e_i}^* \varphi)(e_i, X_1, \dots, X_p).$$

The connections D, $D^* \in \mathfrak{C}_E$ naturally induce connections, denoted by the same symbols, in $\operatorname{End}(E)$ (:= $E \otimes E^*$). Then, a straightforward argument shows that D, $D^* \in \mathfrak{C}_{\operatorname{End}(E)}$ are conjugate connections. Thus, we find from (1.3) and (2.2) that a connection D in E is a Yang-Mills connection if and only if (cf. [1, 5, 6])

(2.3)
$$(\delta_D R^D)(X)s = -\sum_{i=1}^n (D_{e_i}^* R^D)(e_i, X)s = 0$$

for arbitrary given $X \in \mathfrak{X}(M)$ and $s \in \Gamma(E)$.

3. Yang-Mills induced connections

3.1. Let us denote by ∇ , ${}^N\nabla$, the Levi-Civita connections on Riemannian manifolds (M,g), (N,h) respectively. Then for a C^{∞} -map ϕ of M into N, we can define the *induced connection* $\tilde{\nabla}$ in the induced bundle $E = \phi^{-1}TN = \bigcup_{x \in M} T_{\phi(x)}N$ over the base manifold (M,g) as follows:

For $X \in \mathfrak{X}(M)$, $V \in \Gamma(\phi^{-1}TN)$, define $\tilde{\nabla}_X V \in \Gamma(\phi^{-1}TN)$ by

(3.1)
$$(\tilde{\nabla}_X V)(x) = {}^{N}\nabla_{\phi_* X} V := \frac{d}{dt}|_{t=0} {}^{N}P_{\phi \circ \sigma_t}^{-1} V(\sigma(t)), \quad x \in M,$$

where $t \mapsto \sigma(t) \in M$ is a smooth curve in M satisfying $\sigma(0) = x$, $\sigma'(0) = X_x \in T_xM$, and σ_t is a curve given by $\sigma_t(s) := \sigma(s)$, $0 \le t$

 $s \leq t$, i.e., the restriction of σ to the part between x and $\sigma(t)$. Here ${}^{N}P_{\phi\circ\sigma_{t}}:T_{\phi(x)}N\to T_{\phi(\sigma(t))}N$ is the parallel transport along the curve $\phi\circ\sigma_{t}$ with respect to the Levi-Civita connection ${}^{N}\nabla$ on (N,h), and ϕ_{*} is the differential map of ϕ . Then, since ${}^{N}\nabla$ is torsion free, the following Lemma ([8; Lemma 1.16, p.219]) is obtained.

Lemma 3.1. For any C^{∞} -map $\phi:(M,g)\to (N,h)$ and $X,Y\in\mathfrak{X}(M),$ we have

(3.2)
$$\tilde{\nabla}_X(\phi_* Y) - \tilde{\nabla}_Y(\phi_* X) - \phi_*([X, Y]) = 0.$$

3.2. Let G be a compact connected Lie group, g a biinvariant Riemannian metric on G, and \mathfrak{g} the Lie algebra of G. Here, \mathfrak{g} is identified with the algebra of all left invariant vector fields on G. Then, the Levi-Civita connection ∇ for the metric g is given as follows (cf. [4, Theorem 13.1]):

(3.3)
$$\nabla_X Y = \frac{1}{2} [X, Y], \quad (X, Y \in \mathfrak{g}).$$

3.3. Let G and H be compact connected Lie groups, g and h biinvariant Riemannian metrics on G and H respectively, ∇ and ${}^{H}\nabla$ the Levi-Civita connections for the metrics g and h on G and H respectively. Let $\{X_i\}_{i=1}^n$ (respectively $\{Y_\alpha\}_{\alpha=1}^n$) be an orthonormal basis of the Lie algebra \mathfrak{g} (resp. \mathfrak{h}) with respect to the metric g (resp. h). Let ϕ be an isomorphism of G onto H, $\phi^{-1}TH := \bigcup_{x \in G} T_{\phi(x)}H$ the induced bundle with fibre metric h over the base manifold (G,g), $\tilde{\nabla}$ the induced connection in the bundle $\phi^{-1}TH$ by ϕ and H. Then, for $X \in \mathfrak{X}(M)$ and $s,t \in \Gamma(\phi^{-1}TH)$,

 $X(h(s,t)) = (\tilde{\nabla}_X h)(s,t) + h(\tilde{\nabla}_X s,t) + h(s,\tilde{\nabla}_X t) = h(\tilde{\nabla}_X s,t) + h(s,\tilde{\nabla}_X^* t),$ and so $\tilde{\nabla} = \tilde{\nabla}^*$, *i.e.*, $\tilde{\nabla}$ is a metric connection. From this fact and (1.5), we have

$$(\delta_{\tilde{\nabla}}R^{\tilde{\nabla}})(X_j)\phi_*X_k = -\sum_{i=1}^n (\tilde{\nabla}_{X_i}R^{\tilde{\nabla}})(X_i, X_j)\phi_*X_k$$

$$(3.4) = -\sum_{i=1}^n {\{\tilde{\nabla}_{X_i}(R^{\tilde{\nabla}}(X_i, X_j)\phi_*X_k) - R^{\tilde{\nabla}}(\nabla_{X_i}X_i, X_j)\phi_*X_k - R^{\tilde{\nabla}}(X_i, \nabla_{X_i}X_j)\phi_*X_k - R^{\tilde{\nabla}}(X_i, X_j)\tilde{\nabla}_{X_i}(\phi_*X_k)\}}.$$

For the orthonormal bases $\{X_i\}_i$ and $\{Y_\alpha\}_\alpha$, we put (3.5)

$$\phi_* X_k =: \sum_{\alpha} \phi_k^{\alpha} Y_{\alpha}, \ [X_i, X_j] =: \sum_k D_{ij}^k X_k, \ [Y_{\alpha}, Y_{\beta}] =: \sum_{\gamma} C_{\alpha\beta}^{\gamma} Y_{\gamma}.$$

Each $\phi_k{}^{\alpha}$ appeared in (3.5) is constant. We get from this fact, (3.3) and (3.5)

(3.6)
$$\tilde{\nabla}_{X_i}(\phi_* X_k) = \frac{1}{2} \sum_{\alpha,\beta,\gamma} \phi_i{}^{\alpha} \phi_k{}^{\beta} C_{\alpha\beta}{}^{\gamma} Y_{\gamma}.$$

By the help of (3.2), (3.3), (3.5) and (3.6), we obtain

(3.7)
$$\sum_{\gamma} (\sum_{\alpha,\gamma} \phi_i{}^{\alpha} \phi_j{}^{\beta} C_{\alpha\beta}{}^{\gamma} - \sum_k \phi_k{}^{\gamma} D_{ij}{}^k) Y_{\gamma} = 0.$$

From (3.3) and (3.7), we get

(3.8)
$$\tilde{\nabla}_{X_i}(\phi_* X_k) = \phi_*(\nabla_{X_i} X_k).$$

Since

$$R^{\tilde{\nabla}}(X_i, X_j)\phi_*X_k = \tilde{\nabla}_{X_i}\tilde{\nabla}_{X_j}(\phi_*X_k) - \tilde{\nabla}_{X_j}\tilde{\nabla}_{X_i}(\phi_*X_k) - \tilde{\nabla}_{[X_i, X_j]}(\phi_*X_k),$$
we have from (3.8)

(3.9)
$$R^{\tilde{\nabla}}(X_i, X_j)\phi_* X_k = \phi_*(R^{\nabla}(X_i, X_j)X_k).$$

By virtue of (3.4) and (3.9), we obtain

$$(3.10) \qquad (\delta_{\tilde{\nabla}} R^{\tilde{\nabla}})(X_j) \phi_* X_k = \phi_* ((\delta_{\nabla} R^{\nabla})(X_j) X_k).$$

Thus, we get from (3.10)

THEOREM 3.2. Let G and H compact connected Lie groups, g and h bi-invariant Riemannian metrics on G and H respectively. Let ϕ be a group isomorphism of G onto H, ∇ and ${}^H\nabla$ the Levi-Civita connections for the metric g and h respectively. Let $\tilde{\nabla}$ be the induced connection by ϕ and ${}^H\nabla$. Then, a necessary and sufficient condition for the connection $\tilde{\nabla}$ to be a Yang-Mills connection is the fact that ∇ is a Yang-Mills connection.

Let G be an n-dimensional compact connected semisimple Lie group. Then, minus the Killing form of its Lie algebra \mathfrak{g} (the set of all left invariant vector fields on G) is said to be the canonical metric on the Lie group G. Let g be the canonical metric on the Lie group G. Then, g is bi-invariant on G. Let $\{X_i\}_{i=1}^n$ be an orthonormal basis of the semisimple Lie algebra \mathfrak{g} with respect to the canonical metric g. Let $\{\theta^j\}_{j=1}^n$ be the dual basis of the basis $\{X_i\}_{i=1}^n$. Then each θ^j is left invariant, that is, $L_x^*(\theta^j) = \theta^j$ ($x \in G$). From (3.3), the Levi-Civita connection ∇ for the metric g is given by

(3.11)
$$\theta^{l}(\nabla_{X_{i}}X_{j}) = \frac{1}{2} C_{ij}^{l}.$$

where $C_{ij}^l := \theta^l([X_i, X_j])$ for the orthonormal frame $\{X_i\}_{i=1}^n$. By virtue of (3.3) and properties of the Killing form on the semisimple Lie algebra \mathfrak{g} , we have for $X, Y, Z \in \mathfrak{g}$ (cf. [2, 3, 7])

(3.12)
$$g([X,Y],Z) + g(Y,[X,Z]) = 0$$
, $R^{\nabla}(X,Y) = -\frac{1}{4} ad([X,Y])$,

where ad is the adjoint representation of the semisimple Lie algebra \mathfrak{g} . From (3.12) and the definition of the Killing form B of the semisimple Lie algebra \mathfrak{g} such that $B(X,Y) := \text{Trace } (ad(X) \ ad(Y)) \ (X,Y \in \mathfrak{g}),$ we get for $Y,Z \in \mathfrak{g}$ (cf. [2, 3, 7])

(3.13)
$$\sum_{i=1}^{n} g(R^{\nabla}(X_i, Y)Z, X_i) = \frac{1}{4} g(Y, Z),$$

that is, the Riemannian manifold (G,g) is an Einstein manifold of Ricci curvature $\frac{1}{4}$. From the fact $g(\nabla_{X_i}X_j,X_l)+g(X_j,\nabla_{X_i}X_l)=0$, (3.3) and (3.11), we have

$$(3.14) C_{ij}{}^{k} = -C_{ik}{}^{j} = -C_{kj}{}^{i}.$$

By virtue of (3.12), (3.13) and (3.14), we get

(3.15)
$$\sum_{i,l=1}^{n} C_{il}{}^{k} C_{il}{}^{j} = \delta_{kj}.$$

Putting $R^{\nabla}(X_i, X_j)X_k =: \sum_t R_{ijk}^t X_t$, we have from (3.11)

(3.16)
$$R_{ijk}^{t} = \frac{1}{4} \sum_{s} (C_{jk}^{s} C_{is}^{t} - C_{ik}^{s} C_{js}^{t} - 2C_{ij}^{s} C_{sk}^{t}).$$

From (2.3), we get (3.17)

$$(\delta_{\nabla}R^{\nabla})(X_j)X_k = -\sum \{\nabla_{X_i}(R^{\nabla}(X_i, X_j)X_k) - R^{\nabla}(\nabla_{X_i}X_i, X_j)X_k - R^{\nabla}(X_i, \nabla_{X_i}X_j)X_k - R^{\nabla}(X_i, X_j)\nabla_{X_i}X_k\}.$$

By the helf of (3.11),(3.14)-(3.17), we have

$$(3.18) (\delta_{\nabla} R^{\nabla})(X_j) X_k = -\frac{1}{2} \sum_{l} (C_{jk}^{\ l} - 2 \sum_{i,t} C_{ij}^{\ t} C_{tk}^{\ s} C_{si}^{\ l}) X_l.$$

On the other hand, we get

Lemma 3.3.

$$2\sum_{i,s,t=1}^{n} C_{ij}{}^{t}C_{tk}{}^{s}C_{si}{}^{l} = C_{jk}{}^{l}.$$

Proof. By virtue of (3.12), (3.14) and (3.15),

$$\begin{split} \sum_{i,s,t} C_{ij}{}^t C_{tk}{}^s C_{si}{}^l \\ &= \sum_{i,s,t} g([[[X_i, X_j], X_k], X_i], X_l) \\ &= \sum_{i,s,t} g([[X_i, X_j], X_k], [X_i, X_l]) \\ &= -\sum_{i,s,t} g([[X_j, X_k], X_i] + [[X_k, X_i], X_j], [X_i, X_l]) \\ &= -\sum_{i,s,t} (C_{jk}{}^t C_{ti}{}^s C_{il}{}^s + C_{ki}{}^t C_{tj}{}^s C_{il}{}^s) \\ &= C_{jk}{}^l - \sum_{i,s,t} C_{tj}{}^i C_{ks}{}^t C_{sl}{}^i = C_{jk}{}^l - \sum_{i,s,t} C_{ij}{}^t C_{tk}{}^s C_{si}{}^l. \end{split}$$

Thus, the proof of this Lemma is completed.

By virtue of (3.18) and Lemma 3.3, we obtain

PROPOSITION 3.4. Let G be a compact connected semisimple Lie group, g the canonical metric on G, ∇ the Levi-Civita connection for the metric g. Then, ∇ is a Yang-Mills connection in the tangent bundle over the base manifold (G,g).

By the help of Theorem 3.2 and Proposition 3.4, we get

THEOREM 3.5. Let G be a compact connected semisimple Lie group, g the canonical metric on G, ∇ the Levi-Civita connection for g. Let ϕ be an automorphism of G, $\phi^{-1}TG := \bigcup_{x \in G} T_{\phi(x)}G$ the induced bundle, $\tilde{\nabla}$ the induced connection by ϕ and ∇ . Then, $\tilde{\nabla}$ is a Yang-Mills connection in the bundle $\phi^{-1}TG$ over the base manifold (G,g).

References

- [1] S. Dragomir, T. Ichiyama and H. Urakawa, Yang-Mills theory and conjugate connections, Differential Geom. Appl. 18 (2003), 229-238.
- [2] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.

- [3] S. Kobayashi and K. Nomizu, Foundation of Differential Geometry, Vol.I, Wiley-Interscience, New York, 1963.
- [4] K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. **76** (1954), 33-65.
- [5] J.-S. Park, The conjugate connection of a Yang-Mills connection, Kyushu J. Math. **62** (2008), 217-220.
- [6] J.-S. Park, Yang-Mills connections with Weyl structure, Proc. Japan Acad. 84(A) (2008), 129-132.
- [7] Walter A. Poor, Differential Geometric Structures, McGraw-Hill, Inc., 1981.
- [8] H. Urakawa, Calculus of Variations and Harmonic Maps, Transl. Math. Monographs, Vol. 99, Amer. Math. Soc., Providence, RI, 1993.

*

Department of Mathematics Pusan University of Foreign Studies Pusan 608-738, Republic of Korea E-mail: iohpark@pufs.ac.kr

**

Department of Applied Mathematics Pukyong National University Pusan 608-737, Republic of Korea E-mail: 0127woong@hanmail.net

Department of Applied Mathematics Pukyong National University Pusan 608-737, Republic of Korea E-mail: upsky@hanmail.net