References
-
T. Abualrub and I. Siap, Cyclic codes over the rings
$Z_2+uZ_2$ and$Z_2+uZ_2+u^2Z_2$ , Des. Codes Cryptogr. 42 (2007), no. 3, 273-287. https://doi.org/10.1007/s10623-006-9034-5 -
T. Abualrub, I. Siap, and N. Aydin,
${\mathbb{Z}}_2{\mathbb{Z}}_4$ -additive cyclic codes, IEEE Trans. Inform. Theory 60 (2014), no. 3, 1508-1514. https://doi.org/10.1109/TIT.2014.2299791 -
I. Aydogdu, T. Abualrub, and I. Siap, On
${\mathbb{Z}}_2{\mathbb{Z}}_2[u]$ -additive codes, Int. J. Comput. Math. 92 (2015), no. 9, 1806-1814. https://doi.org/10.1080/00207160.2013.859854 -
I. Aydogdu and I. Siap, The structure of
${\mathbb{Z}}_2{\mathbb{Z}}_2s$ -additive codes: bounds on the minimum distance, Appl. Math. Inf. Sci. 7 (2013), no. 6, 2271-2278. https://doi.org/10.12785/amis/070617 -
I. Aydogdu and I. Siap, On
${\mathbb{Z}}_pr{\mathbb{Z}}_ps$ -additive codes, Linear Multilinear Algebra 63 (2015), no. 10, 2089-2102. https://doi.org/10.1080/03081087.2014.952728 -
J. J. Bernal, J. Borges, C. Fernandez-Cordoba, and M. Villanueva, Permutation decoding of
${\mathbb{Z}}_2{\mathbb{Z}}_4$ -linear codes, Des. Codes Cryptogr. 76 (2015), no. 2, 269-277. https://doi.org/10.1007/s10623-014-9946-4 -
M. Bilal, J. Borges, S. T. Dougherty, and C. Fernandez-Cordoba, Maximum distance separable codes over
${\mathbb{Z}}_4$ and${\mathbb{Z}}_2{\times}{\mathbb{Z}}_4$ , Des. Codes Cryptogr. 61 (2011), no. 1, 31-40. https://doi.org/10.1007/s10623-010-9437-1 -
J. Borges and C. Fernandez-Cordoba, There is exactly one
${\mathbb{Z}}_2{\mathbb{Z}}_4$ -cyclic 1-perfect code, Des. Codes Cryptogr. 85 (2017), no. 3, 557-566. https://doi.org/10.1007/s10623-016-0323-3 -
J. Borges, C. Fernandez-Cordoba, J. Pujol, J. Rifa, and M. Villanueva,
${\mathbb{Z}}_2{\mathbb{Z}}_4$ -linear codes: generator matrices and duality, Des. Codes Cryptogr. 54 (2010), no. 2, 167-179. https://doi.org/10.1007/s10623-009-9316-9 -
J. Borges, C. Fernandez-Cordoba, and R. Ten-Valls, On
${\mathbb{Z}}_pr{\mathbb{Z}}_ps$ -additive cyclic codes, (2016). - J. Borges, C. Fernandez-Cordoba, and R. Ten-Valls, Linear and cyclic codes over direct product of chain rings, Math. Meth. Appl. Sci. (2017).
- H. Q. Dinh and S. R. Lopez-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory 50 (2004), no. 8, 1728-1744. https://doi.org/10.1109/TIT.2004.831789
-
S. T. Dougherty and C. Fernandez-Cordoba,
${\mathbb{Z}}_2{\mathbb{Z}}_4$ -additive formally self-dual codes, Des. Codes Cryptogr. 72 (2014), no. 2, 435-453. https://doi.org/10.1007/s10623-012-9773-4 - S. T. Dougherty, H. Liu, and Y. H. Park, Lifted codes over finite chain rings, Math. J. Okayama Univ. 53 (2011), 39-53.
-
S. T. Dougherty, H. Liu, and L. Yu, One weight
${\mathbb{Z}}_2{\mathbb{Z}}_4$ additive codes, Appl. Algebra Engrg. Comm. Comput. 27 (2016), no. 2, 123-138. https://doi.org/10.1007/s00200-015-0273-4 -
C. Fernandez-Cordoba, J. Pujol, and M. Villanueva,
${\mathbb{Z}}_2{\mathbb{Z}}_4$ -linear codes: rank and kernel, Des. Codes Cryptogr. 56 (2010), no. 1, 43-59. https://doi.org/10.1007/s10623-009-9340-9 -
J. Rifa, F. I. Solov'eva, and M. Villanueva, On the intersection of
${\mathbb{Z}}_2{\mathbb{Z}}_4$ -additive perfect codes, IEEE Trans. Inform. Theory 54 (2008), no. 3, 1346-1356. https://doi.org/10.1109/TIT.2007.915917 -
K. Samei and M. R. Alimoradi, Cyclic codes over the ring
$F_2+uF_2+vF_2$ , Comput. Appl. Math. 37 (2018), no. 3, 2489-2502. https://doi.org/10.1007/s40314-017-0460-y - K. Samei and S. Mahmoudi, Cyclic R-additive codes, Discrete Math. 340 (2017), no. 7, 1657-1668. https://doi.org/10.1016/j.disc.2016.11.007
- K. Samei and S. Mahmoudi, Singleton bounds for R-additive codes, Adv. Math. Commun. 12 (2018), no. 1, 107-114. https://doi.org/10.3934/amc.2018006
-
K. Samei and S. Sadeghi, Maximum distance separable codes over
${\mathbb{Z}}_2{\times}{\mathbb{Z}}_2s$ , J. Algebra Appl. 17 (2018), no. 7, 1850136, 12 pp. https://doi.org/10.1142/S0219498818501360 -
B. Srinivasulu and M. Bhaintwal,
${\mathbb{Z}}_2({\mathbb{Z}}_2+u{\mathbb{Z}}_2)$ -additive cyclic codes and their duals, Discrete Math. Algorithms Appl. 8 (2016), no. 2, 1650027, 19 pp. https://doi.org/10.1142/S1793830916500270 - J. A. Wood, The structure of linear codes of constant weight, Trans. Amer. Math. Soc. 354 (2002), no. 3, 1007-1026. https://doi.org/10.1090/S0002-9947-01-02905-1