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A NOTE ON DERIVATIONS OF A SULLIVAN MODEL

Rugare Kwashira

Abstract. Complex Grassmann manifolds Gn,k are a generalization of

complex projective spaces and have many important features some of
which are captured by the Plücker embedding f : Gn,k −→ CPN−1

where N = ( n
k ). The problem of existence of cross sections of fibrations

can be studied using the Gottlieb group. In a more generalized context
one can use the relative evaluation subgroup of a map to describe the

cohomology of smooth fiber bundles with fiber the (complex) Grassmann

manifold Gn,k. Our interest lies in making use of techniques of rational
homotopy theory to address problems and questions involving applica-

tions of Gottlieb groups in general.

In this paper, we construct the Sullivan minimal model of the (com-
plex) Grassmann manifold Gn,k for 2 ≤ k < n, and we compute the

rational evaluation subgroup of the embedding f : Gn,k −→ CPN−1.

We show that, for the Sullivan model φ : A −→ B, where A and B are
the Sullivan minimal models of CPN−1 and Gn,k respectively, the eval-

uation subgroup Gn(A,B;φ) of φ is generated by a single element and

the relative evaluation subgroup Grel
n (A,B;φ) is zero. The triviality of

the relative evaluation subgroup has its application in studying fibrations

with fibre the (complex) Grassmann manifold.

1. Introduction

The discoveries by Quillen [11] and by Sullivan [12] that associate to a topo-
logical space X an explicit algebraic model, gave a computational power to
rational homotopy theory. Sullivan algebras and models and Quillen mod-
els provide an effective computational approach to rational homotopy theory,
where, in each case, the rational homotopy type of a given topological space
is identified with the isomorphism class of its algebraic model. Similarly, the
rational homotopy type of a continuous map between spaces is the same as
the algebraic homotopy class of the corresponding morphism between models.
Thus, the rational homotopy of a simply connected topological space is identi-
fied with the corresponding Sullivan minimal model. Let Gn,k be the (complex)
Grassmann manifold of k-dimensional vector subspaces of Cn. The (complex)
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Grassmann manifold Gn,k is a homogeneous space that is simply connected,
so we may associate a Sullivan minimal model. Grassmann manifolds are use-
ful in the study of problems in topology, algebraic topology and differential
geometry. For instance, Grassmann manifolds provide non trivial fibrations
which have applications in other areas of algebraic topology like the theory of
fiber bundles, for example, in sphere bundles which are fiber bundles with fiber
an n-sphere. Let π : E −→ B be a fibration. A section (cross section) of a
fiber bundle π is a continuous map f : B −→ E such that (πf)(x) = x for
all x ∈ B. Since bundles do not in general have globally defined sections, one
purpose of study would be to account for their existence locally. Let Rn be the
Euclidean n-space, and let Tx(Sn−1) ⊂ Rn be the tangent space to the unit
sphere Sn−1 at x. A continuous tangent vector field on the sphere Sn−1 is a
function Υ : Sn−1 −→ Rn such that Υ(x) ∈ Tx(Sn−1) for all x ∈ Sn−1. The
existence of sections is closely related to the problem of existence or number
of vector fields on a sphere. For the real Stiefel manifold Vn,k, it is known that
Sn−1 has k − 1 linearly independent vector fields if and only if Vn,k −→ Sn−1

admits a section.
Let X be a based CW -complex. An element [g] ∈ πn(X,x0) is said to

be Gottlieb if there exist a continuous map φg : X × Sn −→ X making the
following diagram

X ∨ Sn

��

5◦(id∨g) // X

X × Sn
φg

66

commutative, where 5 : X ∨ X −→ X is the folding map. The set of all
Gottlieb elements [g] ∈ πn(X,x0) is denoted by Gn(X,x0) and is called the
Gottlieb group or the n-th evaluation subgroup of πn(X,x0) [4]. Gottlieb
groups have many applications in topology, covering spaces, fixed point theory,
homotopy theory of fibrations. The existence of cross-sections can also be
studied using the Gottlieb group. For instance Gn(X) = 0 implies that every
fibration X −→ E −→ Sn+1 has a section. Thus, triviality of Gottlieb groups
is related to the cross section problem of fibrations. Various authors have given
results on Gottlieb groups of Stiefel manifolds, homogeneous spaces, lens spaces
making use of fibrations (see [4, 6–8]).

One can use a more generalized and adapted concept of the Gottlieb group
to study the cross section problem for fibrations with fiber the (complex) Grass-
mann manifold Gn,k and questions involving applications of Gottlieb groups in
general.

Let f : X −→ Y be a based map of simply connected CW complexes, let
map(X,Y ; f) be the path component of the space of (unbased) maps from
X to Y homotopic to f and let ω : map(X,Y ; f) −→ Y be the evaluation
map. The map induced in homotopy groups ω] : πn(map(X,Y ; f)) −→ π(Y )
by the evaluation map satisfies that it has as image the evaluation subgroup
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Gn(Y,X; f). The Gottlieb group Gn(X) for a space X is special case X = Y
and f = 1. The map ω : map(X,X; 1) −→ X can be identified with the
connecting map in universal fibrations for fibrations with fiber X. Gottlieb
groups are important objects for the study of fibrations with fiber X. There
are not many explicit computations of G∗(X) in literature. A major difficulty
being the fact that the map f : X −→ Y is not necessarily a Gottlieb map
[14], since f](Gn(X)) is not a subset of Gn(Y ) in general, but it induces a
map f] : Gn(X) −→ Gn(Y,X; f) which fits into a general framework of a G-
sequence of f [13] given by the image of the long exact homotopy sequence
of f∗ : map(X,X; 1) −→ map(X,Y ; f) in the long exact homotopy sequence
of f . Now, the induced homomorphism on rational homotopy groups ω] :
πn(map(X,Y ; f)) −→ π(Y ) can be identified with the map of complexes of
derivations constructed from the Sullivan minimal model of f [3]. Thus, the
characterization of the evaluation subgroup Gn(A,B;φ) in terms of derivations
is a consequence of the particular Sullivan model for the map (also see [1, 2]).
In their paper [9] Smith and Lupton characterized the Gottlieb groups and the
rational evaluation subgroups through derivations of Sullivan minimal model
of the space. The construction of minimal models of the Grassmann manifolds
Gn,k can be found from the work of Sullivan [12] and others. However we
have not found references on explicit descriptions depending on parameters n
and k. In Section 3 we construct the Sullivan minimal model of the (complex)
Grassmann manifold Gn,k. In Section 4 we discuss the evaluation subgroup
of the map f : Gn,k −→ CPN−1 where N = ( nk ) and compute the relative
evaluation subgroup.

2. Preliminaries

Throughout this paper, spaces are assumed to be 1-connected finite CW -
complexes. Let k be a commutative ring with 1 and (A, d) a graded cochain
algebra over k. A Sullivan algebra is a cochain commutative graded algebra of
the form (∧V, d) where d is a differential, that is, d is a linear map d : V −→ V
such that d(xy) = (d x)y + (−1)deg xx(d y); x, y ∈ V . The Sullivan algebra
(∧V, d) is called minimal if dV ⊂ ∧≥2V . Sullivan minimal models have been
used to describe the rational homotopy of a space. For k = Q any simply
connected space, X has a model (∧V, d) such that

H(∧V, d) = H∗(X,Q), V n ' HomZ(πn(X),Q).

Let A be a cochain algebra. A derivation θ of degree p is a linear map such
that θ(Ak) ⊂ Ak−p and verifies

θ(xy) = θ(x)y + (−1)p|x|xθ(y).

If θ1, θ2 ∈ Der(A), then [θ1, θ2] = θ1θ2 − (−1)|θ1||θ2|θ2θ1 and δθ = [d, θ]. The
space (Der(A), δ) of derivations of A is a differential graded Lie algebra. If
(ΛV, d) is the Sullivan minimal model of a space X, an element v ∈ V n '
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HomZ(πn(X),Q) represents a Gottlieb element of πn(X) ⊗ Q if and only if
there is a derivation θ of ΛV verifying θ(v) = 1 and such that [d, θ] = 0 [3].

3. Minimal model of Gn,k

In this section we will consider Gn,k to be the complex Grassmann manifold
of k-dimensional vector subspaces of Cn. The Grassmann manifold Gn,k is a
homogeneous space that is simply connected. The following theorem gives a
procedure for computing Sullivan models for homogeneous spaces.

Theorem 1 ([5, Chapter XI.4]). Let H be a closed connected subgroup of a
compact connected Lie group G. Denote by i : H → G the canonical inclu-
sion and by Bi : BH → BG the induced map. Let H∗(BG;Q) = ∧V and
H∗(BH;Q) = ∧W be the respective cohomology algebras BG and BH. Denote
by sV a copy of the vector space V shifted by one degree, |sv| = |v| − 1, v ∈ V .
Define a differential V on ∧W ⊗ ∧(sV ) by dw = 0 and d(sv) = H∗(Bi)(v) if
sv ∈ sV . Then the commutative differential graded algebra (∧W ⊗∧(sV ), d) is
a Sullivan model for the homogeneous space G/H. In particular H∗(G/H;Q) =
H(∧W ⊗ ∧(sV ), d).

Note that the above model is not necessarily minimal. We compute the
Sullivan minimal model of the space Gn,k and we give the following result.

Theorem 2. (i) The minimal Sullivan model of Gn,k is given by

(∧(x2, . . . , x2k, y2(n−k)+1, . . . , y2(n−1)+1); d),

where d is the differential given by dxi = 0 and dy2(n−t)+1 ∈ ∧(x2, . . . , x2k).
(ii) The generators y2(n−k)+1, . . . , y2(n−1)+1 are Gottlieb elements.

Proof. (i) The model

(∧(x2, x4, . . . , x2k, y2(n−1)+1, . . . , y2(n−k)+1)⊗ ∧(z2(n−s)+1, d),

where s = 1, 2, . . . , n, is not minimal. Make change of variables and con-
sider the acyclic ideal I = 〈v2, v4, . . . , v2k, z2(n−s)+1〉, where dz1 = v2, dz3 =
v4, . . . , dz2(n−s)+1 = v2k for s = k + 1, . . . , n.

Taking the quotient with the acyclic ideal we obtain the minimal model

(∧(x2, x4, . . . , x2k)⊗ ∧(y2(n−1)+1, . . . , y2(n−k)+1), d′),

where d′xi = 0, d′y2(n−t)+1 ∈ ∧(x2, x4, . . . , x2k) for t = 1, . . . , k.
(ii) Denote by 〈y2(n−t)+1, 1〉 the derivation θ2(n−t)+1 such that

θ2(n−t)+1(y2(n−t)+1) = 1

and zero on other elements of the basis.
Therefore [d′, θ2(n−t)+1](y2(n−t)+1) = 0.
Hence the generators y2(n−t)+1 are Gottlieb elements for t = 1, . . . , k. �

We give the following example for k = 2.
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Example 3. (i) The Sullivan minimal model of Gn,2 is given by

(∧(x2, x4, y2n−3, y2n−1), d),

where dx2 = dx4 = 0 and dyi ∈ ∧(x2, x4) where i = 2n− 3, 2n− 1.
(ii) The generators y2n−3 and y2n−1 are Gottlieb elements.
First we observe that the model

(∧(x2, x4, y2, y4, . . . , y2n−4)⊗ ∧(z1, z3, . . . , z2n−1), d)

is not minimal. We make change of variables and the following substitutions,
let

v2 = x2 + y2,

y2 = v2 − x2,
v4 = x2y2 + x4 + y4,

y4 = v4 − x2y2 − x4,
vj+1 = x2yj−1 + x4yj−3 + yj+1,

yj+1 = vj+1 − x2yj−1 − x4yj−3; j = 3, 5, . . . , 2n− 5.

Therefore dz1 = v2, . . . , dzj = vj+1, j = 3, 5, . . . , 2n− 5. Let

I = 〈v2, v4, . . . , v2n−4, z1, z3, . . . , z2n−5〉.
The ideal I is acyclic and dzi = 0 for i = 1, 3, . . . , 2n− 5.

Secondly, let Dern(∧(x2, x4, y2n−3, y2n−1), d) be the vector space of positive
derivations that reduce degree by n. Denote by 〈yi, 1〉, i = 2n − 3, 2n − 1 the
derivation θi such that θi(yi) = 1 and zero on other elements of the basis. We
have [d, θi] = dθi − (−1)|θi|θid = dθi = 0 since dyi ∈ ∧(x2, x4). Therefore
[d, θi](yi) = 0 for i = 2n− 3, 2n− 1.

4. Evaluation subgroups of a map

Consider the embedding f : Gn,k ↪→ CPN−1, where N = ( nk ), 2 ≤ k ≤[
n
2

]
, n > 3.

The hypothesis that k ≤
[
n
2

]
is not a restriction since Gn,k ≡ Gn,n−k.

The minimal Sullivan model of CPN−1 is given by (
∧

(x2, y2n−1), d) where d

is the differential given by dx2 = 0, dy2N−1 = x2N−12 and the Sullivan minimal
model of f is given by

φ : (∧(x2, y2N−1), d) −→ (∧(x2, . . . , x2k, y2(n−k)+1, . . . , y2(n−1)+1), d′),

where φ is defined as follows: φ(x2) = x2, φ(y2N−1) = α where d′(α) = xN2 .
We study the evaluation subgroups of φ.
Following [9], let φ : A −→ B be a map of differential graded algebras, define

a φ-derivation of degree n to be a linear map θ : A −→ B that reduces degree
by n and satisfy θ(xy) = θ(x)φ(y) + (−1)n|x|φ(x)θ(y). Consider the vector
space of φ-derivations Der∗(A,B;φ) which are derivations that decrease degree
by some positive number n. When n = 1, we restrict to derivations θ such that
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dB ◦ θ+ θ ◦ dA = 0. The differential D is defined D(θ) = dB ◦ θ− (−1)|θ|θ ◦ dA
where dA and dB are the differentials for A and B respectively. Pre-composition
with φ gives a chain complex map φ∗ : Der(B,B; 1) −→ Der(A,B;φ) given by
φ∗(θ)(a) = θ(φ(a)) and post-composition by the augmentation ε : B → Q
gives ε∗ : Der∗(A,B;φ) −→ Der∗(A,Q; ε) given by ε∗(ϕ)(a) = ε(ϕ(a)) for
ϕ ∈ Der∗(A,B;φ). Note that the augmentation ε will be either of A or B.

The evaluation subgroup of φ is defined by

Gn(A,B;φ) = im{H(ε∗) : Hn(Der(A,B;φ) −→ Hn(Der(A,Q; ε))}.

The Gottlieb group of the differential graded algebra (A, dA) is obtained as a
special case

Gn(A,A; id) = im{H(ε∗) : Hn(Der(A,A; id) −→ Hn(Der(A,Q; ε))}.

In particular Gn(A,A; id) ∼= Gn(X) where A is the Sullivan minimal model of
X.

Proposition 4. Let A and B denote the minimal models of CPN−1 and Gn,k
respectively where N = ( nk ) and let f : Gn,k −→ CPN−1 be the embedding.
Define φ : A −→ B as follows: φ(x2) = x2 and φ(y2N−1) = α, | d′α = xN2 .
Then Gn(A,B;φ) = 〈ϕ2N−1〉 where ϕ2N−1 ∈ Der(A,Q; ε).

Proof. We have H∗(Der (A,Q; ε)) = 〈ϕ2N−1〉. Let λ ∈ Der(A,B;φ) such
that λ(y2N−1) = 1 and λ is zero on x2. Clearly λ ∈ H∗(Der(A,B;φ)) and
H(ε∗)(λ) = ϕ2N−1. �

Following [10], let φ : A −→ B be a map of differential graded vector spaces,
the mapping cone of φ denoted by Rel∗(φ) is defined as follows: Reln(φ) =
An−1⊕Bn with the differential δ(a, b) = (−dA(a), φ(a) + dB(b)). Define inclu-
sion and projection chain maps J : Bn −→ Reln(φ) and P : Reln(φ) −→ An−1
by J(b) = (0, b), P (a, b) = a.

We have short exact sequences of chain complexes

0→ B∗
J→ Rel∗(φ)

P−→ A∗−1 −→ 0

and a long exact sequence in homology

· · · → Hn+1(Rel∗(φ))→ Hn(A)
H(φ)→ Hn(B)→ Hn(Rel(φ))→ · · · .

We consider the commutative diagram:

Der∗(B,B; 1)
φ∗

//

��

Der∗(A,B;φ)

��
Der∗(B,Q; ε)

φ̂∗
// Der∗(A,Q; ε)
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and we have the following homology ladder,

· · ·
H(J) // Hn+1(Rel(φ∗))

H(P ) //

H(ε∗,ε∗)

��

Hn(Der(B,B; 1))
H(φ∗) //

H(ε∗)

��

Hn(Der(A,B;φ))

H(ε∗)

��

H(J) // · · ·

· · ·
H(J) // Hn+1(Rel(φ̂∗))

H(P̂ ) // Hn(Der(B,Q; ε))
H(φ̂∗) // Hn(Der(A,Q; ε))

H(J) // · · ·
for n ≥ 2.

The nth relative evaluation subgroup of φ is defined by

Greln (A,B;φ) = im{H(ε∗, ε∗) : Hn(Rel(φ∗)) −→ Hn(Rel(φ̂∗))}.

Theorem 5. Grel∗ (A,B;φ) = 0.

Proof. Hn(Rel(φ̂∗)) = 0. We have Rel∗(φ̂
∗) = Der∗−1(A,Q; ε)⊕Der∗(B,Q; ε)

and H∗(Der∗(A,Q; ε)) = 〈ϕ2N−1〉, H∗(Der∗(B,Q; ε)) = 〈θ2(n−t)+1〉, where
θ2(n−t)+1 ∈ Der(B,Q; ε), t = 1, . . . , k.

We have G∗(B) = 〈θ2(n−k)+1, . . . , θ2(n−1)+1〉 and G∗(A,B;φ) = 〈ϕ2N−1〉.
We claim that 2n−1 ≤ 2N−1, that is, n ≤ N where N = ( nk ), 2 ≤ k ≤

[
n
2

]
,

n > 3.
For k = 2, we have N = ( nk ) = n!

(n−2)!2! = n(n−1)
2 ≥ n. Suppose the inequal-

ity holds for k, that is, n!
(n−k)!k! ≥ n and we prove for k + 1. We show that

N ≥ n for 2 ≤ (k + 1) ≤
[
n
2

]
. Now ( n

k+1 ) = n!
(k+1)!(n−k−1)! = n!

k!(n−k)!
n−k
k+1 ≥ n

since n−k
k+1 ≥ 1.

Since N ≥ n therefore Rel∗(φ̂
∗) = 0. From

Greln (A,B;φ) = im{H(ε∗, ε∗) : Hn(Rel(φ∗)) −→ Hn(Rel(φ̂∗))}
we have Greln (A,B;φ) = 0 �

Question 6. Does triviality of the relative evaluation subgroup provide us
with information on the cohomology of smooth fiber bundles with fiber complex
Grassmann manifold Gn,k?
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