$S R$-ADDITIVE CODES

Saadoun Mahmoudi and Karim Samei

Abstract

In this paper, we introduce $S R$-additive codes as a generalization of the classes of $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$ and $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-additive codes, where S is an R-algebra and an $S R$-additive code is an R-submodule of $S^{\alpha} \times R^{\beta}$. In particular, the definitions of bilinear forms, weight functions and Gray maps on the classes of $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$ and $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-additive codes are generalized to $S R$-additive codes. Also the singleton bound for $S R$-additive codes and some results on one weight $S R$-additive codes are given. Among other important results, we obtain the structure of $S R$-additive cyclic codes. As some results of the theory, the structure of cyclic $\mathbb{Z}_{2} \mathbb{Z}_{4}, \mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}, \mathbb{Z}_{2} \mathbb{Z}_{2}[u]$, $\left(\mathbb{Z}_{2}\right)\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}+u^{2} \mathbb{Z}_{2}\right),\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}\right)\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}+u^{2} \mathbb{Z}_{2}\right),\left(\mathbb{Z}_{2}\right)\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}+v \mathbb{Z}_{2}\right)$ and $\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}\right)\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}+v \mathbb{Z}_{2}\right)$-additive codes are presented.

1. Introduction

An important class of additive codes is $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes. A subgroup of $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$, where α and β are positive integers, is called a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code. A comprehensive study on $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes has been introduced in [9] by Borges et al. The studies on $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes and their algebraic structures have attracted many researchers; see $[2,6-9,13,15-17]$.
$\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes were generalized to $\mathbb{Z}_{2} \mathbb{Z}_{2^{s}}$-additive codes $[4,21]$. Also $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-additive codes is another generalization of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes which has been introduced by Aydogdu et al. [3].

Recently, Aydogdu and Siap generalized $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes and $\mathbb{Z}_{2} \mathbb{Z}_{2^{s-}}$ additive codes to $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive codes [5]. Also, $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive cyclic codes have been studied in [10]. Also additive codes were studied over direct product of chain rings in [11].

Note that in $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes and $\mathbb{Z}_{2} \mathbb{Z}_{2^{s}}$-additive codes, \mathbb{Z}_{2} is a $\mathbb{Z}_{4^{-}}$ algebra and $\mathbb{Z}_{2^{s}}$-algebra; respectively. Also in $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-additive codes, \mathbb{Z}_{2} is considered as a $\mathbb{Z}_{2}[u]$-algebra and $\mathbb{Z}_{p^{r}}$ is a $\mathbb{Z}_{p^{s}}$-algebra in $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive codes. Also in additive codes over product of two chain rings, one of the rings is an algebra over another ring.

Received October 18, 2018; Accepted December 18, 2018.
2010 Mathematics Subject Classification. 94B15.
Key words and phrases. additive code, chain ring, Galois ring.

In this paper, we generalize above codes to $S R$-additive codes, where S is an R-algebra. In this generalization, a subset C of $S^{\alpha} \times R^{\beta}$ is called an $S R$ additive code if C is an R-submodule of $S^{\alpha} \times R^{\beta}$. We present the structure of $S R$-additive cyclic codes. Also we give the structure of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive cyclic codes, $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive cyclic codes, $\left(\mathbb{Z}_{2}\right)\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}\right)$-additive cyclic codes and cyclic codes over direct product of chain rings as results of this theory, which the structure of these codes are the main parts of [2], [10], [22] and [11]; respectively.

Also, we obtain the structure of $\left(\mathbb{Z}_{2}\right)\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}+u^{2} \mathbb{Z}_{2}\right)$, $\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}\right)\left(\mathbb{Z}_{2}+\right.$ $\left.u \mathbb{Z}_{2}+u^{2} \mathbb{Z}_{2}\right),\left(\mathbb{Z}_{2}\right)\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}+v \mathbb{Z}_{2}\right)$ and $\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}\right)\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}+v \mathbb{Z}_{2}\right)$-additive cyclic codes as other results of this theory.

In Section 4, we define an inner product over $S R$-additive codes which is a generalization of the inner products over $\mathbb{Z}_{2} \mathbb{Z}_{4}, \mathbb{Z}_{2} \mathbb{Z}_{2^{s}}, \mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}, \mathbb{Z}_{2} \mathbb{Z}_{2}[u]$ additive codes. We show that the dual code of any $S R$-additive cyclic code is also an $S R$-additive cyclic code.

In Section 5, we find the Singleton bound for $S R$-additive codes. As examples, the Singleton bound for $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-additive codes and $\mathbb{Z}_{2}[u] \mathbb{Z}_{2}$-additive codes are given. In Section 6, we investigate one weight $S R$-additive codes. In particular, one weight $\mathbb{Z}_{2} \mathbb{Z}_{2^{s}}$-additive codes are determined.

Throughout this paper R and S are finite commutative rings such that S is an R-algebra.

2. Preliminaries

In this section, we remind some facts of R-additive codes which are applied throughout this paper. Also the structure of cyclic codes over some rings are given.

Definition 2.1. Let S be an R-algebra with a ring homomorphism $f: R \rightarrow S$. A nonempty subset C of S^{n} is called R-additive code if C is an R-submodule of S^{n}, where the scalar multiplication is defined as follows: for $r \in R$ and $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in C$, we have

$$
r .\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)=\left(f(r) a_{0}, f(r) a_{1}, \ldots, f(r) a_{n-1}\right) .
$$

Example 2.2 (Linear codes). Let R be a commutative ring with identity. A subset C of R^{n} is called a linear code if C is an R-submodule of R^{n}. Now consider R as R-algebra with identity homomorphism. Clearly, the subset C of R^{n} is a linear code if and only if C is an R-additive code.

Above example shows that R-additive codes is a generalization of linear codes. The following example give some special cases which R-additive codes and linear codes are the same.

Example 2.3. (1) Let $f: R \rightarrow S$ be a ring isomorphism. In this case, R additive codes over S are exactly linear codes over S.
(2) Let $S=R / I$, where I is an ideal of R and $f: R \rightarrow R / I$ is the natural homomorphism. For any nonempty subset C of S^{n}, we have $I . C=0$. Hence
R-additive codes over S are exactly linear codes over S. Moreover, if $f: R \rightarrow S$ is a surjective ring homomorphism, then R-additive codes over S are exactly linear codes.
Example 2.4 (Additive codes). Let S be a local ring of characteristic p^{r}. A subset C of S^{n} is called an additive code if C is a subgroup of S^{n} under addition. But we have the injective ring homomorphism $f: \mathbb{Z}_{p^{r}} \rightarrow S, x \mapsto x .1_{S}$. It is easy to see that additive codes are exactly $\mathbb{Z}_{p^{r}}$-submodules of S^{n}. In other words, additive codes over S are exactly $\mathbb{Z}_{p^{r}}$-additive codes over S.

Example $2.5\left(\mathbb{F}_{q^{-}}\right.$-linear codes over $\left.\mathbb{F}_{q^{t}}\right)$. A subset C of $\left(\mathbb{F}_{q^{t}}\right)^{n}$ is called an $\mathbb{F}_{q^{-}}$linear code over $\mathbb{F}_{q^{t}}$ of length n, if C is an \mathbb{F}_{q}-submodule of $\left(\mathbb{F}_{q^{t}}\right)^{n}$. Clearly these codes are R-additive codes, where $R=\mathbb{F}_{q}$ and $S=\mathbb{F}_{q^{t}}$.

For a positive integer n, let $R_{n}=R[x] /\left\langle x^{n}-1\right\rangle$ and $S_{n}=S[x] /\left\langle x^{n}-1\right\rangle$. Consider the following correspondence map.

$$
\begin{align*}
\pi: S^{n} & \longrightarrow S_{n} \\
\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) & \longmapsto a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+\left\langle x^{n}-1\right\rangle . \tag{1}
\end{align*}
$$

Clearly π is an R-module isomorphism. We will identify S^{n} with S_{n} under π and for simplicity, we write the polynomial $a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$ for the residue class $a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+\left\langle x^{n}-1\right\rangle$. The following proposition gives the structure of cyclic R-additive codes.
Proposition 2.6 ([19, Proposition 3.1]). Let π be the correspondence map defined in (1). Then a nonempty subset C of S^{n} is a cyclic R-additive code if and only if $\pi(C)$ is an R_{n}-submodule of S_{n}.

Let ω be a weight function over S. If $A_{S}=\operatorname{Max}\{\omega(x): x \in S\}$, then we have the following bound for minimum weight of R-additive codes.

Theorem 2.7 ([20, Theorem 3.5]). Let R be a finite chain ring and S be a free R-algebra of $\operatorname{dim}_{R}(S)=m$. If there exists a nondegenerate bilinear form $\beta: S \times S \rightarrow R$, then $\left\lfloor\frac{d_{\omega}(C)-1}{A_{S}}\right\rfloor \leq n-\left\lceil\frac{\operatorname{rank}(C)}{m}\right\rceil$.

Now we remind the structure of cyclic codes over a chain ring R of length n coprime to Char (R). Also the structure of cyclic codes over $\mathbb{Z}_{2}+u \mathbb{Z}_{2}, \mathbb{Z}_{2}+$ $u \mathbb{Z}_{2}+u^{2} \mathbb{Z}_{2}$ and $\mathbb{Z}_{2}+u \mathbb{Z}_{2}+v \mathbb{Z}_{2}$ for an arbitrary length are given.

Theorem 2.8. Let R be a chain ring with the maximal ideal $\mathfrak{m}=\langle\gamma\rangle$ of nilpotency index s and C be a cyclic code of length n over R, where $(n, \operatorname{Char}(R))=1$. Then
(1) There is a unique set of pairwise co-prime monic polynomials g_{0}, \ldots, g_{s} over R (possibly, some of them are equal to 1) such that $g_{0} g_{1} \cdots g_{s}=$ $x^{n}-1$ in $R[x]$ and $C=\left\langle\widehat{g_{1}}, \gamma \widehat{g_{2}}, \ldots, \gamma^{s-1} \widehat{g_{s}}\right\rangle$, where $\widehat{g_{i}}=\prod_{j \neq i} g_{j}$. Moreover, $|C|=|R / \mathfrak{m}|^{\sum_{i=0}^{s-1}(s-i) \operatorname{deg} g_{i+1}}$.
(2) If $h_{i}=g_{0} g_{i+2} \cdots g_{s}$ for $i=0,1, \ldots, s-2$ and $h_{s-1}=g_{0}$. Then $h_{s-1}\left|h_{s-2}\right| \cdots\left|h_{0}\right|\left(x^{n}-1\right)$, and $C=\left\langle h_{0}+\gamma h_{1}+\cdots+\gamma^{s-1} h_{s-1}\right\rangle$.

Proof. Part (1) follows from Theorem 3.4 in [12]. We have part (2) by Theorem 3.5 in [12] and Theorem 2.4 in [11].

The following corollary is a result of Proposition 2.8.
Corollary 2.9. Let C be a cyclic code of length n over $R=\mathbb{Z}_{p^{s}}$, where $(n, p)=$ 1. Then there exists a set of polynomials $h_{0}, h_{1}, \ldots, h_{s-1}$ in $R[x]$ such that $h_{0}\left|\left(x^{n}-1\right), h_{i}\right| h_{i-1}$ for $i=1, \ldots, s-1$ and $C=\left\langle h_{0}+p h_{1}+\cdots+p^{s-1} h_{s-1}\right\rangle$. Moreover if $\widehat{h_{i}}=\frac{h_{i-1}}{h_{i}}$ for $i \geq 1$ and $\widehat{h_{0}}=\frac{x^{n}-1}{h_{0}}$, then $|C|=p^{d}$, where $d=$ $\sum_{i=0}^{s-1}(s-i) \operatorname{deg} \widehat{h_{i}}$. In special case, if n is odd and C is a cyclic code of length n over $R=\mathbb{Z}_{4}$, then $C=\langle g(x)+2 a(x)\rangle$, where $a(x)|g(x)|\left(x^{n}-1\right)$ in $\mathbb{Z}_{4}[x]$. In this case, $|C|=2^{2 t_{1}+t_{2}}$, where $t_{1}=\operatorname{deg} \frac{x^{n}-1}{g(x)}$ and $t_{2}=\operatorname{deg} \frac{g(x)}{a(x)}$.

Theorem 2.10 ([1, Theorem 1]). Let C be a cyclic code over $\mathbb{Z}_{2}+u \mathbb{Z}_{2}$ of length n. Then
(1) If n is odd, then $\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}\right)_{n}$ is principal ideal ring and $C=\langle g(x)+$ $u a(x)\rangle$, where $g(x)$ and $a(x)$ are polynomials in $\mathbb{Z}_{2}[x]$ such that $a(x)|g(x)|\left(x^{n}-1\right) \bmod 2$.
(2) If n is not odd, then
(a) $C=\langle g(x)+u p(x)\rangle$ such that $g(x) \mid\left(x^{n}-1\right) \bmod 2$, $(g(x)+u p(x)) \mid\left(x^{n}-1\right)$ in $\mathbb{Z}_{2}+u \mathbb{Z}_{2}$ and $g(x) \left\lvert\, p(x)\left(\frac{x^{n}-1}{g(x)}\right)\right.$. Or
(b) $C=\langle g(x)+u p(x), u a(x)\rangle$ such that $g(x), a(x)$ and $p(x)$ are polynomials in $\mathbb{Z}_{2}[x]$. And $a(x)|g(x)|\left(x^{n}-1\right) \bmod 2, a(x) \left\lvert\, p(x)\left(\frac{x^{n}-1}{g(x)}\right)\right.$ and $\operatorname{deg} a(x)>\operatorname{deg} p(x)$.

Theorem 2.11 ([1, Theorem 2]). Let C be a cyclic code over $\mathbb{Z}_{2}+u \mathbb{Z}_{2}+u^{2} \mathbb{Z}_{2}$ of length n. Then
(1) If n is odd, then $\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}+u^{2} \mathbb{Z}_{2}\right)_{n}$ is principal ideal ring. $C=$ $\left\langle g(x)+u a_{1}(x)+u^{2} a_{2}(x)\right\rangle$, where $a_{1}(x), a_{2}(x)$ and $g(x)$ are polynomials in $\mathbb{Z}_{2}[x]$ such that $a_{2}(x)\left|a_{1}(x)\right| g(x) \mid\left(x^{n}-1\right) \bmod 2$.
(2) If n is not odd, then
(a) $C=\left\langle g+u p_{1}+u^{2} p_{2}\right\rangle$, where $p_{2}\left|p_{1}\right| g\left|\left(x^{n}-1\right) \bmod 2,\left(g+u p_{1}\right)\right|\left(x^{n}-\right.$ 1) in $\mathbb{Z}_{2}+u \mathbb{Z}_{2}$ and $\left(g+u p_{1}+u^{2} p_{2}\right) \mid\left(x^{n}-1\right)$ in $\mathbb{Z}_{2}+u \mathbb{Z}_{2}+u^{2} \mathbb{Z}_{2}$ and $\operatorname{deg} p_{2}<\operatorname{deg} p_{1}$.
(b) $C=\left\langle g+u p_{1}+u^{2} p_{2}, u^{2} a_{2}\right\rangle$, where $a_{2}|g|\left(x^{n}-1\right) \bmod 2,(g+$ $\left.u p_{1}\right) \mid\left(x^{n}-1\right)$ in $\mathbb{Z}_{2}+u \mathbb{Z}_{2}, g(x) \left\lvert\, p_{1}\left(\frac{x^{n}-1}{g(x)}\right)\right.$ and a_{2} divides $p_{1}\left(\frac{x^{n}-1}{g(x)}\right)$ and $p_{2}\left(\frac{x^{n}-1}{g(x)}\right)\left(\frac{x^{n}-1}{g(x)}\right)$ and $\operatorname{deg} p_{2}<\operatorname{deg} a_{2}$. Or
(c) $C=\left\langle g+u p_{1}+u^{2} p_{2}, u a_{1}+u^{2} q_{1}, u^{2} a_{2}\right\rangle$, where $a_{2}\left|a_{1}\right| g \mid\left(x^{n}-1\right)$ $\bmod 2, a_{1} \left\lvert\, p_{1}\left(\frac{x^{n}-1}{g(x)}\right)\right.$ and a_{2} divides $q_{1}\left(\frac{x^{n}-1}{a_{1}(x)}\right)$ and $p_{2}\left(\frac{x^{n}-1}{g(x)}\right)\left(\frac{x^{n}-1}{a_{1}(x)}\right)$. Moreover, $\operatorname{deg} p_{2}<\operatorname{deg} a_{2}, \operatorname{deg} q_{1}<\operatorname{deg} a_{2}$ and $\operatorname{deg} p_{1}<\operatorname{deg} a_{1}$.

The following theorem gives the structure of cyclic codes over the non Frobenius ring $\mathbb{Z}_{2}+u \mathbb{Z}_{2}+v \mathbb{Z}_{2}=\{0,1, u, v, 1+u, 1+v, u+v, 1+u+v\}$.

Theorem 2.12. Let C be a cyclic code over $R=\mathbb{Z}_{2}+u \mathbb{Z}_{2}+v \mathbb{Z}_{2}$ of length n. Then C has a unique representation as follows:

$$
C=\left\langle g+u p_{1}+v p_{2}, u a_{1}+v q_{1}, v a_{2}\right\rangle
$$

where
(1) $a_{2}\left|a_{1}\right| g \mid\left(x^{n}-1\right)$ and $a_{1} \left\lvert\, p_{1}\left(\frac{x^{n}-1}{g}\right)\right.$,
(2) $a_{2} \left\lvert\, q_{1}\left(\frac{x^{n}-1}{a_{1}}\right)\right.$ and $a_{2} \left\lvert\, p_{2}\left(\frac{x^{n}-1}{g}\right)\left(\frac{x^{n}-1}{a_{1}}\right)\right.$,
(3) $\operatorname{deg} p_{2}, \operatorname{deg} q_{1}<\operatorname{deg} a_{2}$.

Moreover if n is odd, then $C=\left\langle g+u a_{1}, v a_{2}\right\rangle$, where $a_{2}\left|a_{1}\right| g \mid\left(x^{n}-1\right)$.
Proof. See Theorems 1 and 2, Lemmas 3 and 4 and Corollary 1 in [18].

3. $S R$-additive cyclic codes

The structure of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive cyclic codes investigated in [2]. As generalizations of these codes, recently $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$ and $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$ additive codes have been introduced in [3] and [5]. Also the generator polynomials of $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive cyclic codes were given in [10]. Moreover, additive codes studied over direct product of chain rings with the same residue fields in [11]. In this section, we define and extend these codes to $S R$-additive codes, where R is a finite commutative ring and S is a finite commutative R-algebra. A theory to find the generators of $S R$-additive cyclic codes is given. As results, we obtain the generators of $\mathbb{Z}_{2} \mathbb{Z}_{4}, \mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}, \mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-additive cyclic codes. Also the results in [11] on the structure of cyclic codes over direct product of chain rings with the same residue fields are given as a result of the theory. Moreover the structure of $\left(\mathbb{Z}_{2}\right)\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}+u^{2} \mathbb{Z}_{2}\right),\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}\right)\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}+u^{2} \mathbb{Z}_{2}\right),\left(\mathbb{Z}_{2}\right)\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}+v \mathbb{Z}_{2}\right)$ and $\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}\right)\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}+v \mathbb{Z}_{2}\right)$-additive cyclic codes as new examples of $S R$ additive cyclic codes are given, which we can not obtain their structures by previous works.
Definition 3.1. Let α and β be two positive integers. A nonempty subset C of $S^{\alpha} \times R^{\beta}$ is called an $S R$-additive code if C is an R-submodule with the following scalar multiplication: for $r \in R$ and $\left(s_{\alpha}, r_{\beta}\right)=\left(s_{0}, s_{1}, \ldots, s_{\alpha-1}, r_{0}, r_{1}, \ldots, r_{\beta-1}\right)$ $\in C$,
$r .\left(s_{\alpha}, r_{\beta}\right)=\left(f(r) s_{\alpha}, r r_{\beta}\right)=\left(f(r) s_{0}, f(r) s_{1}, \ldots, f(r) s_{\alpha-1}, r r_{0}, r r_{1}, \ldots, r r_{\beta-1}\right)$.
We say that an $S R$-additive code C is cyclic if $\left(s_{\alpha-1}, s_{0}, \ldots, s_{\alpha-2}, r_{\beta-1}, r_{0}, \ldots\right.$, $\left.r_{\beta-2}\right) \in C$ whenever $\left(s_{0}, s_{1}, \ldots, s_{\alpha-1}, r_{0}, r_{1}, \ldots, r_{\beta-1}\right) \in C$.

Consider the map $\pi^{\prime}: S^{\alpha} \times R^{\beta} \rightarrow S_{\alpha} \times R_{\beta},\left(s_{0}, s_{1}, \ldots, s_{\alpha-1}, r_{0}, r_{1}, \ldots, r_{\beta-1}\right)$ $\mapsto\left(s_{0}+s_{1} x+\cdots+s_{\alpha-1} x^{\alpha-1}+\left\langle x^{\alpha}-1\right\rangle, r_{0+} r_{1} x+\cdots+r_{\beta-1} x^{\beta-1}+\left\langle x^{\beta}-1\right\rangle\right)$. Clearly π^{\prime} is an R-module isomorphism. We will identify $S^{\alpha} \times R^{\beta}$ with $S_{\alpha} \times R_{\beta}$ under π^{\prime} and for simplicity we write $\left(s_{0}+s_{1} x+\cdots+s_{\alpha-1} x^{\alpha-1}, r_{0+} r_{1} x+\cdots+\right.$ $\left.r_{\beta-1} x^{\beta-1}\right)$ for above residue class.
Lemma 3.2. A subset C of $S^{\alpha} \times R^{\beta}$ is an $S R$-additive cyclic code if and only if $\pi^{\prime}(C)$ is an $R[x]$-submodule of $S_{\alpha} \times R_{\beta}$.

Proof. Clearly $S_{\alpha} \times R_{\beta}$ is an $R[x]$-module. Since π^{\prime} is an R-module isomorphism, C is an R-submodule if and only if $\pi^{\prime}(C)$ is an R-submodule. Now for an element $\left(s_{\alpha}, r_{\beta}\right)=\left(s_{0}, s_{1}, \ldots, s_{\alpha-1}, r_{0}, r_{1}, \ldots, r_{\beta-1}\right) \in C$, the cyclic shift $\sigma\left(s_{\alpha}, r_{\beta}\right)=\left(s_{\alpha-1}, s_{0}, \ldots, s_{\alpha-2}, r_{\beta-1}, r_{0}, \ldots, r_{\beta-2}\right) \in C$ if and only if $x \pi^{\prime}\left(s_{\alpha}, r_{\beta}\right)=\pi^{\prime}\left(\sigma\left(s_{\alpha}, r_{\beta}\right)\right) \in \pi^{\prime}(C)$. This completes the proof.

We identify C with $\pi^{\prime}(C)$. Now we find the generator polynomials of C.
Theorem 3.3. A subset C of $S_{\alpha} \times R_{\beta}$ is an $S R$-additive cyclic code if and only if $C=\left\langle\left(g_{1}, 0\right), \ldots,\left(g_{s}, 0\right),\left(h_{1}, f_{1}\right), \ldots,\left(h_{r}, f_{r}\right)\right\rangle_{R[x]}$ such that
(1) $C_{1}=\left\langle f_{1}, \ldots, f_{r}\right\rangle_{R[x]}$ is a cyclic linear code over R of length β,
(2) $C_{2}=\left\langle g_{1}, \ldots, g_{s}\right\rangle_{R[x]}$ is a cyclic R-additive code over S of length α,
(3) h_{1}, \ldots, h_{r} are elements of S_{α},
(4) $|C|=\left|C_{1}\right|\left|C_{2}\right|$.

Proof. Let $C \subseteq S_{\alpha} \times R_{\beta}$ be an $S R$-additive cyclic code. Clearly the projection map $\phi: C \rightarrow R_{\beta}$ is an $R[x]$-homomorphism. Hence $\operatorname{Im}(\phi)$ is an $R[x]$ submodule of R_{β}. As $\left\langle x^{\beta}-1\right\rangle \cdot \operatorname{Im}(\phi) \subseteq\left\langle x^{\beta}-1\right\rangle \cdot R_{\beta}=0, \operatorname{Im}(\phi)$ is an ideal of R_{β}. In other words $\operatorname{Im}(\phi)$ is a linear cyclic code over R of length β, say C_{1}. Let $C_{1}=\left\langle f_{1}, \ldots, f_{r}\right\rangle_{R[x]}=\left\langle\phi\left(h_{1}, f_{1}\right), \ldots, \phi\left(h_{r}, f_{r}\right)\right\rangle_{R[x]}$. Now, ker ϕ is an $R[x]$-submodule of C. Let $C_{2}=\left\{g \in S_{\alpha}:(g, 0) \in \operatorname{ker} \phi\right\}$, then clearly C_{2} is an $R[x]$-submodule of S_{α}. Since $\left\langle x^{\alpha}-1\right\rangle . C_{2} \subseteq\left\langle x^{\alpha}-1\right\rangle . S_{\alpha}=0, C_{2}$ is an R_{α}-module. In other words C_{2} is a cyclic R-additive code of length α over S. If $C_{2}=\left\langle g_{1}, \ldots, g_{s}\right\rangle_{R_{\alpha}}$, then $\operatorname{ker} \phi=\left\langle\left(g_{1}, 0\right), \ldots,\left(g_{s}, 0\right)\right\rangle_{R[x]}$. Therefore $C=\left\langle\left(g_{1}, 0\right), \ldots,\left(g_{s}, 0\right),\left(h_{1}, f_{1}\right), \ldots,\left(h_{r}, f_{r}\right)\right\rangle_{R[x]}$. Since ϕ is an $R[x]$ homomorphism, $\frac{C}{\operatorname{ker} \phi} \cong C_{1}$, hence $|C|=|\operatorname{ker} \phi|\left|C_{1}\right|=\left|C_{2}\right|\left|C_{1}\right|$.
Proposition 3.4. With the above assumptions, let $f: R \rightarrow S$ be a surjective ring homomorphism and $C=\left\langle\left(g_{1}, 0\right), \ldots,\left(g_{s}, 0\right),\left(h_{1}, f_{1}\right), \ldots,\left(h_{r}, f_{r}\right)\right\rangle_{R[x]}$ be an $S R$-additive cyclic code. Also let $\left\{g_{i_{1}}, \ldots, g_{i_{t}}\right\}$ be a subset of $\left\{g_{1}, \ldots, g_{s}\right\}$ such that $g_{i_{j}}$ is monic for all $j ; j=1, \ldots, t$. Then we can assume that $\operatorname{deg} h_{i}<$ $\min \left\{\operatorname{deg} g_{i_{j}}: 1 \leq j \leq t\right\}$ for all $i ; 1 \leq i \leq r$.
Proof. Since f is surjective, every R-additive code over S is linear. In particular, C_{2} is a cyclic linear code over S. Let g_{j} be monic and $\operatorname{deg} h_{i} \geq \operatorname{deg} g_{j}$ for some i. Let $\operatorname{deg} h_{i}-\operatorname{deg} g_{j}=\ell$ and $a \in S$ be the leading coefficient of h_{i}. Then $\left(h_{i}, f_{i}\right)=\left(h_{i}-a x^{\ell} g_{j}, f_{i}\right)+a x^{\ell}\left(g_{j}, 0\right)$. Thus $\left\langle\left(h_{i}, f_{i}\right),\left(g_{j}, 0\right)\right\rangle=$ $\left\langle\left(h_{i}-a x^{\ell} g_{j}, f_{i}\right),\left(g_{j}, 0\right)\right\rangle$. Hence we can use $h_{i}-a x^{\ell} g_{j}$ instead of h_{i}. By this method we can reduce $\operatorname{deg} h_{i}$.

Proposition 3.5. Let $C=\left\langle\left(g_{1}, 0\right), \ldots,\left(g_{s}, 0\right),\left(h_{1}, f_{1}\right), \ldots,\left(h_{r}, f_{r}\right)\right\rangle_{R[x]}$ be an $S R$-additive cyclic code as in Theorem 3.3. Then

$$
\left(x^{\beta}-1\right) h_{i} \in C_{2}=\left\langle g_{1}, \ldots, g_{s}\right\rangle_{R[x]} .
$$

Proof. Clearly $\left(x^{\beta}-1\right)\left(h_{i}, f_{i}\right)=\left(\left(x^{\beta}-1\right) h_{i}, 0\right) \in \operatorname{ker} \phi$. Hence $\left(x^{\beta}-1\right) h_{i} \in$ $C_{2}=\left\langle g_{1}, \ldots, g_{s}\right\rangle_{R[x]}$.

Corollary $3.6((R / \mathfrak{m}) R$-additive cyclic codes). Let R be a finite local ring with the unique maximal ideal \mathfrak{m} and $C \subseteq(R / \mathfrak{m})^{\alpha} \times R^{\beta}$ be an $(R / \mathfrak{m}) R$-additive cyclic code. Then $C=\left\langle(g, 0),\left(h_{1}, f_{1}\right), \ldots,\left(h_{r}, f_{r}\right)\right\rangle$ with the following conditions:
(a) $g \mid x^{\alpha}-1 \operatorname{over}(R / \mathfrak{m})$,
(b) $h_{i} \in(R / \mathfrak{m})_{\alpha}$,
(c) $C_{1}=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ is a linear cyclic code over R.

Proof. R / \mathfrak{m} is an R-algebra with the natural ring homomorphism $f: R \rightarrow$ R / \mathfrak{m}. Since f is surjective, R-additive codes over R / \mathfrak{m} are linear over R / \mathfrak{m}. Now, we have the results by Theorem 3.3.
$\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive cyclic codes is an example of $(R / \mathfrak{m}) R$-additive cyclic codes. This class of codes is discussed in [2]. We obtain the structure of these codes as a result of above discussion.

Corollary $3.7\left(\mathbb{Z}_{2} \mathbb{Z}_{4}\right.$-additive cyclic codes). Let $C \subseteq\left(\mathbb{Z}_{2}\right)_{\alpha} \times\left(\mathbb{Z}_{4}\right)_{\beta}$ be a $\mathbb{Z}_{2} \mathbb{Z}_{4^{-}}$ additive cyclic code. If β is an odd integer, then
(1) $C=\langle(h(x), 0),(\ell(x), g(x)+2 a(x))\rangle$, where
(a) $h(x)$ is a monic polynomial over \mathbb{Z}_{2} such that $h(x) \mid\left(x^{\alpha}-1\right)$,
(b) $a(x)|g(x)|\left(x^{\beta}-1\right)$ in $\mathbb{Z}_{4}[x]$,
(c) $\ell(x) \in\left(\mathbb{Z}_{2}\right)_{\alpha}$ and $\operatorname{deg} \ell(x)<\operatorname{deg} h(x)$.
(2) If $t_{1}=\operatorname{deg} \frac{x^{\beta}-1}{g(x)}, t_{2}=\operatorname{deg} \frac{g(x)}{a(x)}$ and $t=\operatorname{deg} h(x)$, then $|C|=2^{2 t_{1}+t_{2}+\alpha-t}$.

Proof. By above corollary, $C=\left\langle(h(x), 0),\left(\ell_{1}, f_{1}\right), \ldots,\left(\ell_{r}, f_{r}\right)\right\rangle$, where $h(x)$ is a monic polynomial over \mathbb{Z}_{2} such that $h(x) \mid\left(x^{\alpha}-1\right)$. Also $C_{1}=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ is a linear cyclic code over \mathbb{Z}_{4}. By Corollary 2.9, there exist polynomials $g(x)$ and $a(x)$ over \mathbb{Z}_{4} such that $C_{1}=\langle g(x)+2 a(x)\rangle$, where $a(x)|g(x)|\left(x^{\beta}-1\right)$ in $\mathbb{Z}_{4}[x]$. Hence $C=\langle(h(x), 0),(\ell(x), g(x)+2 a(x))\rangle$, where $\ell(x) \in\left(\mathbb{Z}_{2}\right)_{\alpha}$ and $\operatorname{deg} \ell(x)<\operatorname{deg} h(x)$. By Corollary 2.9, $\left|C_{1}\right|=2^{2 t_{1}+t_{2}}$, where $t_{1}=\operatorname{deg} \frac{x^{\beta}-1}{g(x)}$ and $t_{2}=\operatorname{deg} \frac{g(x)}{a(x)}$. Also $\left|C_{2}\right|=|\langle h(x)\rangle|=2^{\alpha-t}$, where $t=\operatorname{deg} h(x)$. Therefore by Theorem 3.3, $|C|=\left|C_{1}\right|\left|C_{2}\right|=2^{2 t_{1}+t_{2}+\alpha-t}$.

Another example of $S R$-additive codes is the class of $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive cyclic codes (see [10]). We give the structure of these codes as another result of above discussion.

Corollary $3.8\left(\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}\right.$-additive cyclic codes). Let $1 \leq r<s$ and $C \subseteq\left(\mathbb{Z}_{p^{r}}\right)_{\alpha} \times$ $\left(\mathbb{Z}_{p^{s}}\right)_{\beta}$ be a $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive cyclic code. If $(p, \beta)=1$ and $(p, \alpha)=1$, then
(1) $C=\left\langle\left(h_{0}^{\prime}+p h_{1}^{\prime}+\cdots+p^{r-1} h_{r-1}^{\prime}, 0\right),\left(\ell(x), h_{0}+p h_{1}+\cdots+p^{s-1} h_{s-1}\right)\right\rangle$, where
(a) $h_{0}, h_{1}, \ldots, h_{s-1}$ are polynomials in $\mathbb{Z}_{p^{s}}[x]$ such that $h_{0} \mid\left(x^{\beta}-1\right)$ and $h_{i} \mid h_{i-1}$ for $i=1, \ldots, s-1$,
(b) $h_{0}^{\prime}, h_{1}^{\prime}, \ldots, h_{r-1}^{\prime}$ are polynomials in $Z_{p^{r}}[x]$ such that $h_{0}^{\prime} \mid\left(x^{\alpha}-1\right)$ and $h_{i}^{\prime} \mid h_{i-1}^{\prime}$ for $i=1, \ldots, r-1$.
(2) $|C|=p^{d_{1}+d_{2}}$, where $d_{1}=\sum_{i=0}^{s-1}(s-i) \operatorname{deg} \widehat{h_{i}}$ and $d_{2}=\sum_{i=0}^{r-1}(r-$ i) $\operatorname{deg} \widehat{h_{i}^{\prime}}$.

Proof. Since $f: \mathbb{Z}_{p^{s}} \rightarrow \mathbb{Z}_{p^{r}}$ is surjective, by the same argument of Corollary 3.7, $C=\langle(h(x), 0),(\ell(x), g(x))\rangle$, where $g(x) \in\left(\mathbb{Z}_{p^{s}}\right)_{\beta}$ is a generator of a cyclic code over $\mathbb{Z}_{p^{s}}$ of length $\beta, h(x) \in\left(\mathbb{Z}_{p^{r}}\right)_{\alpha}$ is a generator of a cyclic code over $\mathbb{Z}_{p^{r}}$ of length α and $\ell(x) \in\left(\mathbb{Z}_{p^{r}}\right)_{\alpha}$ is a polynomial. By Corollary 2.9, there exists a set of polynomials $h_{0}, h_{1}, \ldots, h_{s-1}$ in $\mathbb{Z}_{p^{s}}[x]$ such that $h_{0} \mid\left(x^{\beta}-1\right)$ and $h_{i} \mid h_{i-1}$ for $i=1, \ldots, s-1$ and $g(x)=h_{0}+p h_{1}+\cdots+p^{s-1} h_{s-1}$. Similarly, there exists a set of polynomials $h_{0}^{\prime}, h_{1}^{\prime}, \ldots, h_{r-1}^{\prime}$ in $\mathbb{Z}_{p^{r}}[x]$ such that $h_{0}^{\prime} \mid\left(x^{\alpha}-1\right)$ and $h_{i}^{\prime} \mid h_{i-1}^{\prime}$ for $i=1, \ldots, r-1$ and $h(x)=h_{0}^{\prime}+p h_{1}^{\prime}+\cdots+p^{r-1} h_{r-1}^{\prime}$. In this case, $|C|=p^{d_{1}+d_{2}}$, where $d_{1}=\sum_{i=0}^{s-1}(s-i) \operatorname{deg} \widehat{h_{i}}$ and $d_{2}=\sum_{i=0}^{r-1}(r-i) \operatorname{deg} \widehat{h_{i}^{\prime}}$.

Recently, $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive codes generalized to codes over direct product of two finite chain rings in some special case [11]. More precisely, let R_{1} and R_{2} be two chain rings with the maximal ideals $\mathfrak{m}_{1}=\left\langle\gamma_{1}\right\rangle$ and $\mathfrak{m}_{2}=\left\langle\gamma_{2}\right\rangle$ of the nilpotency indexes e_{1} and e_{2}; respectively. Let $e_{1} \leq e_{2}$, and R_{1} and R_{2} have the same residue field $R_{1} / \mathfrak{m}_{1}=R_{2} / \mathfrak{m}_{2}=\mathbb{F}$. If $a_{1} \in R_{1}$ and $a_{2} \in R_{2}$, then a_{1} and a_{2} can be uniquely written as follows:
$a_{1}=a_{1,0}+a_{1,1} \gamma_{1}+\cdots+a_{1, e_{1}-1} \gamma_{1}^{e_{1}-1}, \quad a_{2}=a_{2,0}+a_{2,1} \gamma_{2}+\cdots+a_{2, e_{2}-1} \gamma_{2}^{e_{2}-1}$,
where the $a_{1, i} \mathrm{~S}$ and $a_{2, i} \mathrm{~s}$ can be viewed as elements in \mathbb{F} (see [14, Lemma 2]). Now define $\psi: R_{2} \rightarrow R_{1}$ by $\psi\left(\sum_{i=0}^{e_{2}-1} a_{i} \gamma_{2}^{i}\right)=\sum_{i=0}^{e_{1}-1} a_{i} \gamma_{1}^{i}$. It is easy to see that ψ is a ring homomorphism. Hence R_{1} is an R_{2}-algebra. For positive integers α and β, an R_{2}-submodule $C \subseteq R_{1}^{\alpha} \times R_{2}^{\beta}$ is called an $R_{1} R_{2}$-additive code. When α and β are coprime integers with $\operatorname{Char}\left(R_{i} / \mathfrak{m}\right)$, the structure of these codes have been given (see [11, Theorem 4.3]). Now we obtain the structure of these codes as a result of the structure of $S R$-additive codes.

Corollary 3.9 (Additive cyclic codes over direct product of finite chain rings). With above assumptions, let $C \subseteq\left(R_{1}\right)_{\alpha} \times\left(R_{2}\right)_{\beta}$ be an $R_{1} R_{2}$-additive cyclic code. If α and β are coprime integers with $\operatorname{Char}\left(R_{i} / \mathfrak{m}\right)$, Then
(1) $C=\left\langle\left(h_{0}^{\prime}+\gamma_{1} h_{1}^{\prime}+\cdots+\gamma_{1}^{e_{1}-1} h_{e_{1}-1}^{\prime}, 0\right),\left(\ell(x), h_{0}+\gamma_{2} h_{1}+\cdots+\gamma_{2}^{e_{2}-1} h_{e_{2}-1}\right)\right\rangle$, where
(a) $h_{0}, h_{1}, \ldots, h_{e_{2}-1}$ are polynomials in $R_{2}[x]$ such that $h_{0} \mid\left(x^{\beta}-1\right)$ and $h_{i} \mid h_{i-1}$ for $i=1, \ldots, e_{2}-1$,
(b) $h_{0}^{\prime}, h_{1}^{\prime}, \ldots, h_{e_{1}-1}^{\prime}$ are polynomials in $R_{1}[x]$ such that $h_{0}^{\prime} \mid\left(x^{\alpha}-1\right)$ and $h_{i}^{\prime} \mid h_{i-1}^{\prime}$ for $i=1, \ldots, e_{1}-1$.
(2) $|C|=p^{d_{1}+d_{2}}$, where $d_{1}=\sum_{i=0}^{e_{2}-1}\left(e_{2}-i\right) \operatorname{deg} \widehat{h_{i}}$ and $d_{2}=\sum_{i=0}^{e_{1}-1}\left(e_{1}-\right.$ i) $\operatorname{deg} \widehat{h_{i}^{\prime}}$.

Proof. By the same argument as Corollary 3.8, it follows from Theorem 3.3 and Theorem 2.8.

Now we give new examples of $S R$-additive codes. First we give some examples of additive codes over direct products of chain rings that we can not
obtain their structures by [11]; see Corollaries $3.10,3.11$ and 3.12. Note that in [11], they considered an additive code $C \subseteq R_{1}^{\alpha} \times R_{2}^{\beta}$ over the chain rings R_{1} and R_{2} in a case that α and β are coprime integers with $\operatorname{Char}\left(R_{i} / \mathfrak{m}\right)$. But in the structure of $S R$-additive codes we haven't any restriction on α and β.

Let $R_{1}=\mathbb{Z}_{2}, R_{2}=\mathbb{Z}_{2}+u \mathbb{Z}_{2}=\{0,1, u, 1+u\}$ such that $u^{2}=0$ and $R_{3}=\mathbb{Z}_{2}+u \mathbb{Z}_{2}+u^{2} \mathbb{Z}_{2}=\left\{0,1, u, 1+u, u^{2}, 1+u^{2}, 1+u+u^{2}, u+u^{2}\right\}$ such that $u^{3}=0$. By the following maps, R_{i} is an R_{j}-algebra for $1 \leq i<j \leq 3$.

$$
\begin{array}{ll}
f_{2,1}: R_{2} \longrightarrow R_{1} ; & \lambda_{0}+\lambda_{1} u \longmapsto \lambda_{0}, \\
f_{3,1}: R_{3} \longrightarrow R_{1} ; & \lambda_{0}+\lambda_{1} u+\lambda_{2} u^{2} \longmapsto \lambda_{0}, \\
f_{3,2}: R_{3} \longrightarrow R_{2} ; & \lambda_{0}+\lambda_{1} u+\lambda_{2} u^{2} \longmapsto \lambda_{0}+\lambda_{1} u .
\end{array}
$$

We want to describe $R_{i} R_{j}$-additive cyclic codes for $1 \leq i<j \leq 3$. First we find the generators of $R_{1} R_{2}$-additive cyclic codes which are known as $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$ additive codes and studied in [3,22].

Corollary 3.10 ($R_{1} R_{2}$-additive cyclic codes). Let $C \subseteq\left(R_{1}\right)_{\alpha} \times\left(R_{2}\right)_{\beta}$ be an $R_{1} R_{2}$-additive cyclic code.
(1) If β is odd, then $C=\langle(h(x), 0),(\ell(x), g(x)+u a(x))\rangle$ such that $h(x) \mid\left(x^{\alpha}-1\right) \bmod 2, \ell(x) \in\left(\mathbb{Z}_{2}\right)_{\alpha}$ and $g(x)+u a(x) \in\left(R_{2}\right)_{\beta}$ with the same condition as the part (1) of Theorem 2.10.
(2) If β is not odd, then
(a) $C=\langle(h(x), 0),(\ell(x), g(x)+u p(x))\rangle$, where $h(x)$ and $\ell(x)$ are such as (1). $g(x)$ and $p(x)$ have the same conditions as Theorem 2.10 part 2(a). Or
(b) $C=\left\langle(h(x), 0),\left(\ell_{1}(x), g(x)+u p(x)\right),\left(\ell_{2}(x), u a(x)\right)\right\rangle$, where $h(x)$ and $\ell_{i}(x)$ are such as (1). $g(x), p(x)$ and $a(x)$ have the same conditions as Theorem 2.10 part 2(b).

Proof. By Corollary 3.6, $C=\left\langle(h(x), 0),\left(\ell_{1}, f_{1}\right), \ldots,\left(\ell_{r}, f_{r}\right)\right\rangle$, where $h(x)$ is a monic polynomial over R_{1} such that $h(x) \mid\left(x^{\alpha}-1\right)$. Also $C_{1}=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ is a linear cyclic code over R_{2}. Now we have the result by Theorem 2.10.

Corollary 3.11 ($R_{1} R_{3}$-additive cyclic codes). Let $C \subseteq\left(R_{1}\right)_{\alpha} \times\left(R_{3}\right)_{\beta}$ be an $R_{1} R_{3}$-additive cyclic code.
(1) If β is odd, then $C=\left\langle(h(x), 0),\left(\ell(x), g(x)+u a_{1}(x)+u^{2} a_{2}(x)\right)\right\rangle$, where $h(x), \ell(x)$ are elements of $\mathbb{Z}_{2}[x], h(x) \mid\left(x^{\alpha}-1\right)$ in $\mathbb{Z}_{2}[x]$ and g, a_{1}, a_{2} have the same conditions as Theorem 2.11 part (1).
(2) If β is not odd, then
(a) $C=\left\langle(h(x), 0),\left(\ell(x), g(x)+u p_{1}(x)+u^{2} p_{2}(x)\right)\right\rangle$, where ℓ, h are such as (1) and g, p_{1}, p_{2} have the same conditions as Theorem 2.11 part 2(a).
(b) $C=\left\langle(h(x), 0),\left(\ell_{1}(x), g(x)+u p_{1}(x)+u^{2} p_{2}(x)\right),\left(\ell_{2}(x), u^{2} a_{2}(x)\right)\right\rangle$, where ℓ_{i} and h are such as (1) and g, p_{1}, p_{2}, a_{2} have the same conditions as Theorem 2.11 part 2(b).
(c) $C=\left\langle(h(x), 0),\left(\ell_{1}(x), g(x)+u p_{1}(x)+u^{2} p_{2}(x)\right),\left(\ell_{2}(x), u a_{1}(x)+\right.\right.$ $\left.\left.u^{2} q_{1}(x)\right),\left(\ell_{3}, u^{2} a_{2}(x)\right)\right\rangle$, where ℓ_{i} and h are such as (1) and g, p_{1}, $p_{2}, a_{1}, q_{1}, a_{2}$ have the same conditions as Theorem 2.11 part 2(c).

Proof. By the same argument as Corollary 3.10, it follows from Corollary 3.6 and Theorem 2.11.

Corollary 3.12 ($R_{2} R_{3}$-additive cyclic codes). Let $C \subseteq\left(R_{2}\right)_{\alpha} \times\left(R_{3}\right)_{\beta}$ be an $R_{2} R_{3}$-additive cyclic code.
(1) If β and α are odd, then $C=\left\langle(h(x), 0),\left(\ell(x), g(x)+u a_{1}(x)+u^{2} a_{2}(x)\right)\right\rangle$, where $h(x), \ell(x)$ are elements of $\left(R_{2}\right)_{\alpha} . h(x)$ is a generator of a code such as Theorem 2.10 part (1) and g, a_{1}, a_{2} have the same conditions as Theorem 2.11 part (1).
(2) If β is odd and α is not odd, then
(a) $C=\langle(g+u p, 0),(\ell, f)\rangle$, where g, p have the same conditions as Theorem 2.10 part $2(a) . \ell \in\left(R_{2}\right)_{\alpha}$ and $f \in\left(R_{3}\right)_{\beta}$ is a generator of a code such as Theorem 2.11 part (1). Or
(b) $\langle(g+u p, 0),(u a, 0),(\ell, f)\rangle$, where g, p, a are polynomials with the same conditions as Theorem 2.10 part $2(b) . \ell \in\left(R_{2}\right)_{\alpha}$ and $f \in$ $\left(R_{3}\right)_{\beta}$ is a generator of a code such as Theorem 2.11 part (1).
(3) If α is odd and β is not odd, then
(a) $\left\langle(f, 0),\left(\ell, g+u a_{1}+u^{2} a_{2}\right)\right\rangle$, where $\ell \in\left(R_{2}\right)_{\alpha}, f$ is a generator of a code such as Theorem 2.10 part (1) and g, a_{1}, a_{2} are such as Theorem 2.11 part 2(a). Or
(b) $C=\left\langle(f, 0),\left(\ell_{1}, g+u p_{1}+u^{2} p_{2}\right),\left(\ell_{2}, u^{2} a_{2}\right)\right\rangle$, where f and ℓ_{i} are such as (a) and g, p_{1}, p_{2}, a_{2} have the same conditions as Theorem 2.11 part $2(\mathrm{~b})$. Or
(c) $C=\left\langle(f, 0),\left(\ell_{1}, g+u p_{1}+u^{2} p_{2}\right),\left(\ell_{2}, u a_{1}+u^{2} q_{1}\right)\left(\ell_{3}, u^{2} a_{2}\right)\right\rangle$, where f and ℓ_{i} are such as (a) and $g, p_{1}, p_{2}, a_{1}, a_{2}, q_{1}$ have the same conditions as Theorem 2.11 part 2(c).
(4) If α and β are not odd, then we have one of the following states.
(a) $C=\left\langle\left(g_{1}, 0\right),\left(\ell_{1}, f_{1}\right)\right\rangle$, where g_{1} is a generator of a code in Theorem 2.10 part 2(a), f_{1} is a generator of a code in Theorem 2.11 part $2(\mathrm{a})$ and ℓ_{1} is an elements of $\left(R_{2}\right)_{\alpha}$.
(b) $C=\left\langle\left(g_{1}, 0\right),\left(\ell_{1}, f_{1}\right),\left(\ell_{2}, f_{2}\right)\right\rangle$, where g_{1} is a generator of a code in Theorem 2.10 part 2(a), f_{i} are generators of a code in Theorem 2.11 part $2(\mathrm{~b})$ and ℓ_{i} are elements of $\left(R_{2}\right)_{\alpha}$.
(c) $C=\left\langle\left(g_{1}, 0\right),\left(\ell_{1}, f_{1}\right),\left(\ell_{2}, f_{2}\right),\left(\ell_{3}, f_{3}\right)\right\rangle$, where g_{1} is a generator of a code in Theorem 2.10 part 2(a), f_{i} are generators of a code in Theorem 2.11 part $2(\mathrm{c})$ and ℓ_{i} are elements of $\left(R_{2}\right)_{\alpha}$.
(d) $C=\left\langle\left(g_{1}, 0\right),\left(g_{2}, 0\right),\left(\ell_{1}, f_{1}\right)\right\rangle$, where g_{i} are generators of a code in Theorem 2.10 part 2(b), f_{1} is a generator of a code in Theorem 2.11 part $2(\mathrm{a})$ and ℓ_{1} is an element of $\left(R_{2}\right)_{\alpha}$.
(e) $C=\left\langle\left(g_{1}, 0\right),\left(g_{2}, 0\right),\left(\ell_{1}, f_{1}\right),\left(\ell_{2}, f_{2}\right)\right\rangle$, where g_{i} are generators of a code in Theorem 2.10 part 2(b), f_{i} are generators of a code in Theorem 2.11 part $2(\mathrm{~b})$ and ℓ_{i} is an element of $\left(R_{2}\right)_{\alpha}$.
(f) $C=\left\langle\left(g_{1}, 0\right),\left(g_{2}, 0\right),\left(\ell_{1}, f_{1}\right),\left(\ell_{2}, f_{2}\right),\left(\ell_{3}, f_{3}\right)\right\rangle$, where g_{i} are generators of a code in Theorem 2.10 part 2(b). f_{i} are generators of a code in Theorem 2.11 part 2(c) and ℓ_{i} are elements of $\left(R_{2}\right)_{\alpha}$.

Proof. By Theorem 3.3, $C=\left\langle\left(g_{1}, 0\right), \ldots,\left(g_{s}, 0\right),\left(h_{1}, f_{1}\right), \ldots,\left(h_{r}, f_{r}\right)\right\rangle_{R[x]}$ such that $C_{1}=\left\langle f_{1}, \ldots, f_{r}\right\rangle_{R_{3}[x]}$ is a cyclic linear code over R_{3} of length β and $C_{2}=\left\langle g_{1}, \ldots, g_{s}\right\rangle_{R_{3}[x]}$ is a cyclic R_{3}-additive code over R_{2} of length α. Since $f_{3,2}: R_{3} \rightarrow R_{2}$ is a surjective map, C_{2} is a linear code over R_{2}. Now the result follows from Theorems 2.10 and 2.11.

Now we give some examples that the ring R in $S R$-additive codes is not a chain ring (moreover this ring is not a Frobenius ring). Let $R_{4}=\mathbb{Z}_{2}+u \mathbb{Z}_{2}+$ $v \mathbb{Z}_{2}=\{0,1, u, v, 1+u, 1+v, u+v, 1+u+v\}$ such that $u^{2}=v^{2}=u v=0$. This ring is not a chain ring. Moreover R_{4} is a non Frobenius ring. Consider the rings $R_{1}=\mathbb{Z}_{2}$ and $R_{2}=\mathbb{Z}_{2}+u \mathbb{Z}_{2}$ in above corollaries. It is easy to see that the following maps are ring homomorphisms:

$$
\begin{array}{ll}
f_{4,1}: R_{4} \longrightarrow R_{1} ; & \lambda_{1}+\lambda_{2} u+\lambda_{3} v \longmapsto \lambda_{1}, \\
f_{4,2}: R_{4} \longrightarrow R_{2} ; & \\
\lambda_{1}+\lambda_{2} u+\lambda_{3} v \longmapsto \lambda_{1}+\lambda_{2} u .
\end{array}
$$

Hence R_{4} is an R_{i}-algebra for $i=1,2$. Now we want to describe $R_{1} R_{4}$ and $R_{2} R_{4}$-additive cyclic codes.

Corollary 3.13 ($R_{1} R_{4}$-additive cyclic codes). Let $C \subseteq\left(R_{1}\right)_{\alpha} \times\left(R_{4}\right)_{\beta}$ be an $R_{1} R_{4}$-additive cyclic code. Then $C=\left\langle(f, 0),\left(h_{1}, g+u p_{1}+v p_{2}\right),\left(h_{2}, u a_{1}+\right.\right.$ $\left.\left.v q_{1}\right),\left(h_{3}, v a_{2}\right)\right\rangle$, where $f \mid\left(x^{\alpha}-1\right), h_{i} \in\left(R_{1}\right)_{\alpha}$ and $p_{1}, p_{2}, q_{1}, a_{1}, a_{2}$ have the same conditions as Theorem 2.12. Moreover if β is odd, then $C=\left\langle(f, 0),\left(h_{1}, g+\right.\right.$ $\left.\left.u a_{1}\right),\left(h_{2}, v a_{2}\right)\right\rangle$, where $a_{2}\left|a_{1}\right| g \mid\left(x^{n}-1\right)$.

Proof. It follows from Corollary 3.6 and Theorem 2.12.
Corollary 3.14 ($R_{2} R_{4}$-additive cyclic codes). Let $C \subseteq\left(R_{2}\right)_{\alpha} \times\left(R_{4}\right)_{\beta}$ be an $R_{2} R_{4}$-additive cyclic code. Then
(1) If α is odd, then $C=\left\langle(g+u a, 0),\left(h_{1}, g_{1}+u p_{1}+v p_{2}\right),\left(h_{2}, u a_{1}+\right.\right.$ $\left.\left.v q_{1}\right),\left(h_{3}, v a_{2}\right)\right\rangle$, where g and a are polynomials in $\mathbb{Z}_{2}[x]$ such that $a|g|\left(x^{\alpha}-1\right) \bmod 2, h_{i} \in\left(R_{2}\right)_{\alpha}$ and $p_{1}, p_{2}, q_{1}, g_{1}, a_{1}, a_{2}$ have the same conditions as Theorem 2.12.
(2) If α is not odd, then
(a) $C=\left\langle(g+u p, 0),\left(h_{1}, g_{1}+u p_{1}+v p_{2}\right),\left(h_{2}, u a_{1}+v q_{1}\right),\left(h_{3}, v a_{2}\right)\right\rangle_{\alpha}$ such that $g\left|\left(x^{\alpha}-1\right) \bmod 2,(g+u p)\right|\left(x^{\alpha}-1\right)$ in $\mathbb{Z}_{2}+u \mathbb{Z}_{2}$ and $g \left\lvert\, p\left(\frac{x^{\alpha}-1}{g}\right)\right.$. Or
(b) $C=\left\langle(u a, 0),(g+u p, 0),\left(h_{1}, g_{1}+u p_{1}+v p_{2}\right),\left(h_{2}, u a_{1}+v q_{1}\right),\left(h_{3}, v a_{2}\right)\right\rangle$ such that g, a and p are polynomials in $\mathbb{Z}_{2}[x]$. $a|g|\left(x^{\alpha}-1\right) \bmod 2$, $a \left\lvert\, p\left(\frac{x^{\alpha}-1}{g}\right)\right.$ and $\operatorname{deg} a>\operatorname{deg} p$.

Where $h_{i} \in\left(R_{2}\right)_{\alpha}$ and $p_{1}, p_{2}, q_{1}, g_{1}, a_{1}, a_{2}$ have the same conditions as Theorem 2.12.

Proof. It follows from Theorem 3.3 and Theorem 2.12.
In the above examples the ring homomorphisms between R_{i} and R_{j} are surjective, hence cyclic $R_{i} R_{j}$-additive codes are constructed by linear cyclic codes over R_{i} and R_{j}. But when f is not surjective to construct cyclic $S R$ additive codes we need the structure of R-additive codes over S. See the following examples.

Example 3.15. Let $R_{1}=\mathbb{Z}_{2}$ and $R_{2}=\mathbb{Z}_{2}+u \mathbb{Z}_{2}$ be the rings in above corollaries. Then R_{2} is an R_{1}-algebra with the including map. Let $C \subseteq\left(R_{2}\right)_{\alpha} \times$ $\left(R_{1}\right)_{\beta}$ be an $R_{2} R_{1}$-additive cyclic code. Then $C=\left\langle\left(g_{1}, 0\right), \ldots,\left(g_{s}, 0\right),(h, f)\right\rangle$, where $f \mid\left(x^{\beta}-1\right), h \in\left(R_{2}\right)_{\alpha}$, and $C_{1}=\left\langle g_{1}, \ldots, g_{s}\right\rangle$ is a cyclic R_{1}-additive code over R_{2} (C_{1} is an additive cyclic code over R_{2}).

Example 3.16. Let $R=G R\left(p^{s}, m\right)$ and $S=R[\xi]=G R\left(p^{s}, m \ell\right)$ be the Galois extension of R. Then S is an R-algebra with the including map. Let $C \subseteq S_{\alpha} \times R_{\beta}$ be an $S R$-additive cyclic code. If $\operatorname{gcd}(\beta, p)=1$ and $\operatorname{gcd}(\alpha, p)=1$, then $C=\left\langle\left(g_{1}, 0\right), \ldots,\left(g_{\ell}, 0\right),(h, f)\right\rangle$, where $C_{2}=\langle f\rangle$ is a cyclic code over R, $C_{1}=\left\langle g_{1}, \ldots, g_{\ell}\right\rangle$ is a cyclic R-additive code over S of length α and $h \in S_{\alpha}$ is a polynomial.

4. Duality of $\boldsymbol{S R}$-additive codes

In this section, we define a bilinear form on $S R$-additive codes which is a generalization of the bilinear forms over $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive cyclic codes in [2], $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-additive codes in [3] and $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive cyclic codes in [10].

Definition 4.1. Let $\tau: S \rightarrow R$ be an R-module homomorphism, then

$$
\begin{aligned}
\beta^{\prime}:\left(S^{\alpha} \times R^{\beta}\right) \times\left(S^{\alpha} \times R^{\beta}\right) & \longrightarrow R \\
\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & \longmapsto \tau\left(x_{1} \cdot x_{2}\right)+\left(y_{1} \cdot y_{2}\right)
\end{aligned}
$$

is an R-bilinear form where $x_{1} \cdot x_{2}$ and $y_{1} \cdot y_{2}$ are standard inner products. For an $S R$-additive code C, C^{\perp} is the dual of C with respect to β^{\prime}.

Proposition 4.2. Let R be a chain ring with maximal ideal $\mathfrak{m}=\langle\gamma\rangle$ of nilpotency index e. If β^{\prime} is a bilinear form on $(R / \mathfrak{m}) R$-additive codes defined by an R-module homomorphism $\tau: R / \mathfrak{m} \rightarrow R$, then there is a unit element $a \in R$ such that

$$
\begin{aligned}
\beta^{\prime}:\left((R / \mathfrak{m})^{\alpha} \times R^{\beta}\right) \times\left((R / \mathfrak{m})^{\alpha} \times R^{\beta}\right) & \longrightarrow R \\
\left(\left(\bar{x}_{1}, y_{1}\right),\left(\bar{x}_{2}, y_{2}\right)\right) & \longmapsto a \gamma^{e-1}\left(x_{1} \cdot x_{2}\right)+\left(y_{1} \cdot y_{2}\right) .
\end{aligned}
$$

Where $\bar{x}_{1}=\left(x_{1, i}+\mathfrak{m}\right), \bar{x}_{2}=\left(x_{2, i}+\mathfrak{m}\right)$, and $x_{1}=\left(x_{1, i}\right)$ and $x_{2}=\left(x_{2, i}\right)$.

Proof. By the definition of β^{\prime}, it suffices to determine $\operatorname{Hom}_{R}(R / \mathfrak{m}, R)$. But we have the following R-module isomorphism

$$
\begin{aligned}
\operatorname{Hom}_{R}(R / \mathfrak{m}, R) & \longrightarrow \operatorname{Ann}_{R}(\mathfrak{m}) \\
\tau & \longmapsto \tau(1+\mathfrak{m}) .
\end{aligned}
$$

Since R is a chain ring and $\operatorname{Ann}_{R}(\mathfrak{m})$ is an ideal of $R, \operatorname{Ann}_{R}(\mathfrak{m})=\left\langle\gamma^{j}\right\rangle$ for some $j ; 1 \leq j \leq e$. Clearly $\gamma^{e-1} \mathfrak{m}=0$. On other hand $\gamma^{e-2} \gamma \neq 0$. Hence $\operatorname{Ann}_{R}(\mathfrak{m})=$ $\left\langle\gamma^{e-1}\right\rangle$. Thus there is a unit element $a \in R \backslash \mathfrak{m}$ such that $\tau(1+\mathfrak{m})=a \gamma^{e-1}$. Hence for $r+\mathfrak{m} \in R / \mathfrak{m}, \tau(r+\mathfrak{m})=r \tau(1+\mathfrak{m})=r a \gamma^{e-1}$. This completes the proof.

Now we give some examples of this bilinear form over $S R$-additive codes, which we see some of them in [2] and [3].

Corollary 4.3 (The bilinear form of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes). The following bilinear form is the only form on $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes defined by Definition 4.1.

$$
\beta^{\prime}:\left(\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}\right) \times\left(\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}\right) \longrightarrow \mathbb{Z}_{4}, \quad\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \longmapsto 2\left(x_{1} \cdot x_{2}\right)+\left(y_{1} \cdot y_{2}\right)
$$

Where the elements x_{1} and x_{2} in the inner product $2\left(x_{1} \cdot x_{2}\right)$ are considered as elements of \mathbb{Z}_{4}^{β}; naturally.
Proof. \mathbb{Z}_{4} is a chain ring with maximal ideal $2 \mathbb{Z}_{4}$ of nilpotency index 2. Also $\frac{\mathbb{Z}_{4}}{2 \mathbb{Z}_{4}} \cong \mathbb{Z}_{2}$. Now we have the result by Proposition 4.2.

Proposition 4.4 (The bilinear forms of $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive codes, $r<s$). Let β^{\prime} be a bilinear form on $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive codes defined by Definition 4.1. Then β^{\prime} is defined as follows:

$$
\begin{aligned}
\beta^{\prime}:\left(\mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{s}}^{\beta}\right) \times\left(\mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{s}}^{\beta}\right) & \longrightarrow \mathbb{Z}_{p^{s}}, \\
\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & \longmapsto a p^{s-r}\left(x_{1} \cdot x_{2}\right)+\left(y_{1} \cdot y_{2}\right),
\end{aligned}
$$

where $a \in \mathbb{Z}_{p^{s}}$ and the elements x_{1} and x_{2} in the inner product ap ${ }^{s-r}\left(x_{1} \cdot x_{2}\right)$ are considered as elements of $\mathbb{Z}_{p^{s}}^{\beta}$; naturally.
Proof. $\operatorname{Hom}_{\mathbb{Z}_{p^{s}}}\left(\mathbb{Z}_{p^{r}}, \mathbb{Z}_{p^{s}}\right)=\operatorname{Hom}_{\mathbb{Z}_{p^{s}}}\left(\frac{\mathbb{Z}_{p^{s}}}{p^{r} \mathbb{Z}_{p^{s}}}, \mathbb{Z}_{p^{s}}\right) \cong \operatorname{Ann}_{\mathbb{Z}_{p^{s}}}\left(p^{r} \mathbb{Z}_{p^{s}}\right)=\left\langle p^{s-r}\right\rangle$. Now by the same argument of Proposition 4.2 we have the result.

Let R_{1} and R_{2} be the finite chain rings with the assumptions of Corollary 3.9. We have the isomorphism $\psi: \frac{R_{2}}{\gamma_{2}^{e_{1}} R_{2}} \rightarrow R_{1}$. Let $p: R_{2} \rightarrow \frac{R_{2}}{\gamma_{2}^{e_{1} R_{2}}}$ be defined naturally. Hence $\iota=p^{-1} \psi^{-1}: R_{1} \rightarrow R_{2}$ is well defined, where p^{-1} is a right inverse of p. The following proposition gives the bilinear forms over direct product of chain rings.
Proposition 4.5 (The bilinear forms of additive codes over product of chain rings). Let R_{1} and R_{2} be the finite chain rings with the assumptions Corollary
3.9. If β^{\prime} is a bilinear form on $R_{1} R_{2}$-additive codes defined by Definition 4.1, then β^{\prime} is defined as follows:

$$
\begin{aligned}
\beta^{\prime}:\left(R_{1}^{\alpha} \times R_{2}^{\beta}\right) \times\left(R_{1}^{\alpha} \times R_{2}^{\beta}\right) & \longrightarrow R_{2}, \\
\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & \longmapsto a \gamma^{e_{2}-e_{1}} \iota\left(x_{1} \cdot x_{2}\right)+\left(y_{1} \cdot y_{2}\right),
\end{aligned}
$$

where $a \in R_{2}$.
Proof. $\operatorname{Hom}_{R_{2}}\left(R_{1}, R_{2}\right)=\operatorname{Hom}_{R_{2}}\left(\frac{R_{2}}{\gamma_{2}^{1} R_{2}}, R_{2}\right) \cong \operatorname{Ann}_{R_{2}}\left(\gamma_{2}^{e_{1}} R_{2}\right)=\gamma_{2}^{e_{2}-e_{1}} R_{2}$. Now by the same argument of Proposition 4.2 we have the result.

Proposition 4.6 (The bilinear forms of $R_{i} R_{j}$-additive codes, $i<j$). Let R_{i} and R_{j} be such as Corollaries 3.10, 3.11, 3.12, 3.13, 3.14. Then, we have the following bilinear forms on $R_{i} R_{j}$-additive codes.

$$
\begin{aligned}
& \beta_{1,2}:\left(R_{1}^{\alpha} \times R_{2}^{\beta}\right) \times\left(R_{1}^{\alpha} \times R_{2}^{\beta}\right) \rightarrow R_{2},\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \mapsto u\left(x_{1} \cdot x_{2}\right)+y_{1} \cdot y_{2}, \\
& \beta_{1,3}:\left(R_{1}^{\alpha} \times R_{3}^{\beta}\right) \times\left(R_{1}^{\alpha} \times R_{3}^{\beta}\right) \rightarrow R_{3},\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \mapsto u^{2}\left(x_{1} \cdot x_{2}\right)+y_{1} \cdot y_{2}, \\
& \beta_{2,3}:\left(R_{2}^{\alpha} \times R_{3}^{\beta}\right) \times\left(R_{2}^{\alpha} \times R_{3}^{\beta}\right) \rightarrow R_{3},\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \mapsto a u\left(x_{1} \cdot x_{2}\right)+y_{1} \cdot y_{2}, \\
& \beta_{1,4}:\left(R_{1}^{\alpha} \times R_{4}^{\beta}\right) \times\left(R_{1}^{\alpha} \times R_{4}^{\beta}\right) \rightarrow R_{4},\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \mapsto h\left(x_{1} \cdot x_{2}\right)+y_{1} \cdot y_{2}, \\
& \beta_{2,4}:\left(R_{2}^{\alpha} \times R_{4}^{\beta}\right) \times\left(R_{2}^{\alpha} \times R_{4}^{\beta}\right) \rightarrow R_{4},\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \mapsto h\left(x_{1} \cdot x_{2}\right)+y_{1} \cdot y_{2},
\end{aligned}
$$

where $a \in R_{3}, h \in R_{4} u+R_{4} v$.
Proof. R_{2} and R_{3} are chain rings with maximal ideals $R_{2}\langle u\rangle$ and $R_{3}\langle u\rangle$ of nilpotency indices 2 and 3 ; respectively. Also $\frac{R_{2}}{\langle u\rangle} \cong \frac{R_{3}}{\langle u\rangle} \cong R_{1}$. Hence we have the bilinear forms $\beta_{1,2}$ and $\beta_{1,3}$ by Proposition 4.2. To obtain $\beta_{2,3}, \beta_{1,4}$ and $\beta_{2,4}$ note that

$$
\begin{aligned}
& \operatorname{Hom}_{R_{3}}\left(R_{2}, R_{3}\right) \cong \operatorname{Hom}_{R_{3}}\left(\frac{R_{3}}{\left\langle u^{2}\right\rangle}, R_{3}\right) \cong \operatorname{Ann}_{R_{3}}\left(\left\langle u^{2}\right\rangle\right)=\langle u\rangle \\
& \operatorname{Hom}_{R_{4}}\left(R_{1}, R_{4}\right) \cong \operatorname{Hom}_{R_{4}}\left(\frac{R_{4}}{\langle u, v\rangle}, R_{4}\right) \cong \operatorname{Ann}_{R_{4}}(\langle u, v\rangle)=R_{4} u+R_{4} v, \\
& \operatorname{Hom}_{R_{4}}\left(R_{2}, R_{4}\right) \cong \operatorname{Hom}_{R_{4}}\left(\frac{R_{4}}{\langle v\rangle}, R_{4}\right) \cong \operatorname{Ann}_{R_{4}}(\langle v\rangle)=R_{4} u+R_{4} v .
\end{aligned}
$$

Now by the same argument of the proof of Proposition 4.2 we have the result.

Proposition 4.7. Let $\tau: S \rightarrow R$ be an R-module homomorphism and $C \subseteq$ $S^{\alpha} \times R^{\beta}$ be an $S R$-additive cyclic code. If C^{\perp} is the dual of C with respect to the bilinear form defined by τ in Definition 4.1, then C^{\perp} is an $S R$-additive cyclic code.

Proof. Clearly C^{\perp} is an R-submodule of $S^{\alpha} \times R^{\beta}$, hence C^{\perp} is an $S R$-additive code. Now let

$$
(x, y)=\left(x_{0} \cdots x_{\alpha-1}, y_{0} \cdots y_{\beta-1}\right) \in C^{\perp} \text { and }
$$

$$
\phi(x, y)=\left(x_{\alpha-1} \cdots x_{\alpha-2}, y_{\beta-1} \cdots y_{\beta-2}\right)
$$

Let $j=\operatorname{lcm}(\alpha, \beta)$ and $(v, w) \in C$. Since C is cyclic, $\phi^{j-1}(v, w) \in C$. Now

$$
\begin{aligned}
(v, w) \cdot \phi(x, y) & =\tau(v \cdot \phi(x))+w \cdot \phi(y) \\
& =\tau\left(\phi^{j-1}(v) \cdot x\right)+\phi^{j-1}(w) \cdot y \\
& =\phi^{j-1}(v, w) \cdot(x, y)=0 .
\end{aligned}
$$

Therefore $\phi(x, y) \in C^{\perp}$ and hence C^{\perp} is cyclic.

5. Singleton bounds for $\boldsymbol{S R}$-additive codes

Aydogdu and Siap obtained some bounds on the minimum distance of $\mathbb{Z}_{2} \mathbb{Z}_{2^{s-}}$ additive codes [4]. In this section, we generalize the definitions of weight functions and Gray maps on the classes of $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$ and $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-additive codes to $S R$-additive codes. We obtain singleton bounds for $S R$-additive codes. As results, singleton bounds for $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$ and $\mathbb{Z}_{2}[u] \mathbb{Z}_{2}$-additive codes are given.

Definition 5.1. Let T be a commutative finite ring. For every $x=\left(x_{1}, \ldots, x_{n}\right)$ $\in T^{n}$ and $t \in T$, the complete weight of x is defined by

$$
n_{t}(x):=\left|\left\{i: x_{i}=t\right\}\right| .
$$

For $t \in T \backslash\{0\}$, let a_{t} be a positive integer, and set $a_{0}=0$. The general weight function over T is defined as follows:

$$
\omega_{T}(x):=\sum_{t \in T} a_{t} n_{t}(x) .
$$

Now let ω_{R} and ω_{S} be two weight functions over R and S. A weight function ω over $S^{\alpha} \times R^{\beta}$ is defined as follows: for $(x, y) \in S^{\alpha} \times R^{\beta}, \omega(x, y)=\omega_{S}(x)+$ $\omega_{R}(y)$.
Definition 5.2. Let $n_{s} \in \mathbb{N}$ be a positive integer. A map $\phi: R \rightarrow S^{n_{S}}$ with the following conditions is called a gray map:
(a) ϕ is injective.
(b) for $x, y \in R, \omega_{R}(x-y)=\omega_{S}(\phi(x)-\phi(y))$.

A gray map ϕ is called R-linear if ϕ is an R-module homomorphism. ϕ generalize on R^{β} naturally; for $x=\left(x_{1}, \ldots, x_{\beta}\right) \in R^{\beta}, \phi(x)=\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{\beta}\right)\right) \in$ $S^{n_{s} \beta}$. We generalize ϕ to a map Φ over $S^{\alpha} \times R^{\beta}$ as follows:

$$
\begin{aligned}
\Phi: S^{\alpha} \times R^{\beta} & \longrightarrow S^{\alpha+n_{s} \beta} \\
(x, y) & \longmapsto(x, \phi(y)) .
\end{aligned}
$$

Clearly for any $(x, y) \in S^{\alpha} \times R^{\beta}, \omega(x, y)=\omega_{S}(\Phi(x, y))$. Moreover Φ is an injective map. Now let $C \subseteq S^{\alpha} \times R^{\beta}$ be an $S R$-additive code, the minimum general weight of C is

$$
d_{\omega}(C):=\min \{\omega(x, y):(x, y) \in C \backslash\{0\}\} .
$$

Let $A_{s}=\max \left\{a_{s}: s \in S\right\}$. The following theorem gives singleton bounds for $S R$-additive codes.

Theorem 5.3. With above notations, let R be a chain ring and S be an R algebra with a ring homomorphism $f: R \rightarrow S$. If $C \subseteq S^{\alpha} \times R^{\beta}$ is an $S R$ additive code such that $\Phi(C) \subseteq S^{\alpha+n_{s} \beta}$ is an R-additive code, then
(1) If S is a principal ideal ring and f is surjective, then $\left\lfloor\frac{d_{\omega}(C)-1}{A_{s}}\right\rfloor \leq$ $\alpha+n_{s} \beta-\operatorname{rank}(C)$.
(2) If S is a free R-algebra of dimension m, then $\left\lfloor\frac{d_{\omega}(C)-1}{A_{s}}\right\rfloor \leq \alpha+n_{s} \beta-$ $\left\lceil\frac{\operatorname{rank}(C)}{m}\right\rceil$.
Proof. (1) $\Phi(C)$ is an R-additive code. Since f is surjective, hence $\Phi(C)$ is a linear code over S. If $d_{\omega_{s}}(\Phi(C))$ is the minimum weight of $\Phi(C)$ with respect to the weight function ω_{S}, then by Theorem 3.7 of [20], we have that $\left\lfloor\frac{d_{\omega_{s}}(\Phi(C))-1}{A_{s}}\right\rfloor \leq \alpha+n_{s} \beta-\operatorname{rank}(\Phi(C))$. But $d_{\omega_{s}}(\Phi(C))=d_{\omega}(C)$ and $\operatorname{rank}(\Phi(C))=\operatorname{rank}(C)$. This completes the proof of part (1).
(2) $\Phi(C)$ is an R-additive code and S is a free R-algebra. Hence by Theorem 2.7, $\left\lfloor\frac{d_{\omega_{s}}(\Phi(C))-1}{A_{s}}\right\rfloor \leq \alpha+n_{s} \beta-\left\lceil\frac{\operatorname{rank}(\Phi(C))}{m}\right\rceil$. Since $d_{\omega_{s}}(\Phi(C))=d_{\omega}(C)$ and $\operatorname{rank}(\Phi(C))=\operatorname{rank}(C)$, we have the result.

Corollary 5.4. With above assumptions, let $\omega_{S}=\omega_{H}$ be the Hamming weight. Then
(1) If S is a free R-algebra of dimension m, then $d_{\omega}(C) \leq \alpha+n_{s} \beta-$ $\left\lceil\frac{\operatorname{rank}(C)}{m}\right\rceil+1$.
(2) If S is a principal ideal ring and f is surjective, then $d_{\omega}(C) \leq \alpha+$ $n_{s} \beta-\operatorname{rank}(C)+1$.

Remark 5.5. Let R be a finite commutative ring and S be a finite R-algebra with a surjective ring homomorphism $f: R \rightarrow S$. With above assumptions, if $\omega_{S}=\omega_{H}$ is the Hamming weight, then $d_{\omega}(C) \leq \alpha+n_{s} \beta-\log _{|S|}|C|+1$.
Proof. Since f is surjective, $\Phi(C)$ is a linear code over S. By the singleton bound for linear codes we have the result.

Example 5.6. Consider $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-additive codes. The Lee weight over $\mathbb{Z}_{2}[u]=$ $\{0,1, u, 1+u\}$ is defined as follows:

$$
\omega_{L}(0)=0, \omega_{L}(1)=1, \omega_{L}(u)=2, \omega_{L}(1+u)=1
$$

For any element $(x, y)=\left(x_{0}, \ldots, x_{\alpha-1} ; y_{0}, \ldots, y_{\beta-1}\right) \in \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{2}[u]^{\beta}$, the weight function ω is defined in the following way:

$$
\omega(x, y)=\sum_{i=0}^{\alpha-1} \omega_{H}\left(x_{i}\right)+\sum_{i=0}^{\beta-1} \omega_{L}\left(y_{i}\right)
$$

where ω_{H} is the hamming weight over \mathbb{Z}_{2} and ω_{L} is the Lee weight over $\mathbb{Z}_{2}[u]$. Now we have the following Gray map:

$$
\begin{aligned}
\phi: \mathbb{Z}_{2}[u] & \longrightarrow \mathbb{Z}_{2}^{2} \\
a+b u & \longmapsto(b, a+b) .
\end{aligned}
$$

It is easy to see that $\omega_{L}(a+b u)=\omega_{H}(b, a+b)$ for any element $a+b u \in \mathbb{Z}_{2}[u]$. This map generalizes to the Gray map Φ :

$$
\begin{aligned}
\phi: \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{2}[u]^{\beta} & \longrightarrow \mathbb{Z}_{2}^{\alpha+2 \beta} \\
(x, y) & \longmapsto(x, \phi(y)) .
\end{aligned}
$$

Clearly $\omega(x, y)=\omega_{H}(\phi(x, y))$. Now if $C \subseteq \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{2}[u]^{\beta}$ is a $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-additive code, then we have the following bounds for minimum weight $d_{\omega}(C)$:

$$
\begin{aligned}
& d_{\omega}(C) \leq \alpha+2 \beta-\operatorname{rank}(C)+1 \\
& d_{\omega}(C) \leq \alpha+2 \beta-\log _{2}|C|+1
\end{aligned}
$$

Example 5.7. Consider $\mathbb{Z}_{2}[u] \mathbb{Z}_{2}$-additive codes in Example 3.15. The subset $C \subseteq \mathbb{Z}_{2}[u]^{\alpha} \times \mathbb{Z}_{2}^{\beta}$ is a $\mathbb{Z}_{2}[u] \mathbb{Z}_{2}$-additive code if and only if C is a subgroup under addition. For any element $(x, y) \in \mathbb{Z}_{2}[u]^{\alpha} \times \mathbb{Z}_{2}^{\beta}$, the weight function ω is defined as follows:

$$
\omega(x, y)=\omega_{L}(x)+\omega_{H}(y)
$$

where ω_{L} is the Lee weight over $\mathbb{Z}_{2}[u]$ in above example and ω_{H} is the Hamming weight over \mathbb{Z}_{2}. Let $j: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}[u]$ be the including map. We define a Gray map as follows:

$$
\begin{aligned}
\Phi: \mathbb{Z}_{2}[u]^{\alpha} \times \mathbb{Z}_{2}^{\beta} & \longrightarrow \mathbb{Z}_{2}[u]^{\alpha+\beta} \\
(x, y) & \longmapsto(x, j(y)) .
\end{aligned}
$$

It is easy to see that $\omega(x, y)=\omega_{L}(\Phi(x, y))$. Since $\mathbb{Z}_{2}[u]$ is a free \mathbb{Z}_{2}-algebra of dimension 2, by Theorem 5.3, we have the following bound for minimum weight:

$$
\left\lfloor\frac{d_{\omega}(C)-1}{2}\right\rfloor \leq \alpha+\beta-\left\lceil\frac{\operatorname{rank}(C)}{2}\right\rceil .
$$

6. One weight $S R$-additive codes

Recently, Dougherty et al. described one weight $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes [15]. In this section, we generalize this theory over $S R$-additive codes where S and R are chain rings. As applications of the theory, we obtain some results on one weight $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive codes (with respect to homogeneous weight) and one weight $\mathbb{Z}_{2^{r}} \mathbb{Z}_{2^{s}}$-additive codes (with respect to Lee weight). In particular, we obtain the structure of one weight $\mathbb{Z}_{2} \mathbb{Z}_{2^{s}}$-additive codes. First we remind the following definition of a pre-homogeneous weight in [23].

Definition 6.1. Let T be a commutative finite ring. A weight function ω_{T} : $T \rightarrow \mathbb{R}$ is pre-homogeneous if $a_{0}=0$ and there exists a constant $c_{T}>0$ such that for $t \neq 0$,

$$
\sum_{t^{\prime} \in\langle t\rangle} a_{t^{\prime}}=c_{T}|\langle t\rangle|,
$$

where $\langle t\rangle$ is the principal ideal generated by an element t of T. In this case c_{T} is called the average weight.

Example 6.2 ([23, Example 3.7]). Let $R=\mathbb{Z}_{2^{s}}$. Then Lee weight is prehomogeneous with average weight $c_{R}=2^{s-2}$.
Lemma 6.3. Let R and S be two chain rings, where S is an R-algebra with a surjective ring homomorphism $f: R \rightarrow S$. Also let ω_{S} and ω_{R} be two prehomogeneous weights with average weights c_{R} and c_{S}. If $C \subseteq S^{\alpha} \times R^{\beta}$ is an $S R$-additive code with no all zero columns, then

$$
\sum_{c \in C} \omega(c)=|C|\left(\alpha c_{S}+\beta c_{R}\right)
$$

where ω is the weight function defined by ω_{S} and ω_{R} over $S^{\alpha} \times R^{\beta}$.
Proof. Let S be a chain ring with maximal ideal $\mathfrak{m}=\langle\gamma\rangle$ of nilpotency index v. Write the codewords of C as rows of a matrix G. Consider the column j of G, where $1 \leq j \leq \alpha$. Let J be the ideal of S generated by all elements of the column j. Then there exists $1 \leq t \leq v$ that $J=\left\langle\gamma^{t}\right\rangle$. Since f is surjective and C is an R-submodule, any element of J is an element of the column j. Now we show that any two elements of J have the same repetition number in the column j. Consider two elements γ^{t} and γ^{t+1} of J with the repetition numbers n_{t} and n_{t+1}, respectively. Since $\gamma^{t+1}=\gamma \gamma^{t}$, hence $n_{t} \leq n_{t+1}$. On the other hand $\gamma^{t}(\gamma-1)=\gamma^{t+1}-\gamma^{t}$. Since $\gamma-1$ is invertible, $\gamma^{t}=(\gamma-1)^{-1}\left(\gamma^{t+1}-\gamma^{t}\right)$. Hence $n_{t+1} \leq n_{t}$ and hence $n_{t}=n_{t+1}$. Thus all elements of J have the same repetition number $\frac{|C|}{|J|}$ in the column j. Therefore the sum of the weights of all elements of the column j is equal to

$$
\frac{|C|}{|J|}\left(\sum_{s \in J} a_{s}\right)=\frac{|C|}{|J|}\left(c_{S}|J|\right)=|C|\left|c_{S}\right|
$$

By the same argument, the sum of the weights of all elements of the columns of β coordinates is equal to $|C|\left|c_{R}\right|$. Therefore

$$
\sum_{c \in C} \omega(c)=|C|\left(\alpha c_{S}+\beta c_{R}\right)
$$

Theorem 6.4. With the assumptions of above lemma, let $C \subseteq S^{\alpha} \times R^{\beta}$ be a one weight $S R$-additive code with weight m such that there exists no zero columns in the generator matrix of C. Then there exists a unique positive integer λ such that $m=\lambda|C|$ and $\alpha c_{S}+\beta c_{R}=\lambda(|C|-1)$.

Proof. By above lemma, we have that

$$
\sum_{c \in C} \omega(c)=|C|\left(\alpha c_{S}+\beta c_{R}\right)
$$

On the other hand, the sum of the weights of all codewords is $(|C|-1) m$. Hence $|C|\left(\alpha c_{S}+\beta c_{R}\right)=(|C|-1) m$. But $\operatorname{gcd}(|C|,(|C|-1))=1$. Therefore there exists a positive integer λ such that $m=\lambda|C|$ and hence $\alpha c_{S}+\beta c_{R}=\lambda(|C|-1)$.

Let T be a finite chain ring with maximal ideal $\langle\gamma\rangle$, nilpotency index e, and residue field $T /\langle\gamma\rangle=\mathbb{F}_{p^{k}}$. A homogenous weight is defined as follows

$$
\omega_{h o m}(t)= \begin{cases}\left(p^{k}-1\right) p^{k(e-2)}, & t \in T \backslash\left\langle\gamma^{e-1}\right\rangle \\ p^{k(e-1)}, & t \in\left\langle\gamma^{e-1}\right\rangle \backslash\langle 0\rangle \\ 0, & t=0\end{cases}
$$

Lemma 6.5. With above assumptions, let T be a chain ring. Then $\omega_{h o m}$ is pre-homogeneous with average weight $c_{T}=\left(p^{k}-1\right) p^{k(e-2)}$.

Proof. Let $\langle t\rangle$ be an ideal of T. By the structure of chain rings, $\langle t\rangle=\left\langle\gamma^{j}\right\rangle$ for some $j ; 1 \leq j \leq e$. Hence $\left|\left\langle\gamma^{e-1}\right\rangle\right|=\left|\left\langle\gamma^{j}\right\rangle\right|=p^{k(e-j)}$. Therefore

$$
\begin{aligned}
\sum_{t^{\prime} \in\langle t\rangle} a_{t^{\prime}} & =\sum_{t^{\prime} \in\left\langle\gamma^{j}\right\rangle \backslash\left\langle\gamma^{e-1}\right\rangle} a_{t^{\prime}}+\sum_{t^{\prime} \in\left\langle\gamma^{e-1}\right\rangle} a_{t^{\prime}} \\
& =\left(p^{k}-1\right) p^{k(e-2)}\left(\left|\left\langle\gamma^{j}\right\rangle\right|-\left|\left\langle\gamma^{e-1}\right\rangle\right|\right)+p^{k(e-1)}\left(\left|\left\langle\gamma^{e-1}\right\rangle\right|-1\right) \\
& =\left(p^{k}-1\right) p^{k(e-2)}\left(p^{k(e-j)}-p^{k}\right)+p^{k(e-1)}\left(p^{k}-1\right) \\
& =\left(p^{k}-1\right) p^{k(e-2)} p^{k(e-j)} \\
& =c_{T}|\langle t\rangle| .
\end{aligned}
$$

This completes the proof.
Theorem 6.6. Let ω be the weight function defined by $\omega_{\text {hom }}$ over $\mathbb{Z}_{p^{r}}$ and $\mathbb{Z}_{p^{s}}$ on $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive codes. If $C \subseteq \mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{s}}^{\beta}$ is a one weight $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive code with weight m such that there exists no zero columns in the generator matrix of C, then there exists a unique positive integer λ such that $m=\lambda|C|$ and $(p-1) p^{r-2}\left(\alpha+p^{s-r} \beta\right)=\lambda(|C|-1)$.
Proof. By Lemma 6.5, $c_{\mathbb{Z}_{p^{r}}}=(p-1) p^{r-2}$ and $c_{\mathbb{Z}_{p^{s}}}=(p-1) p^{s-2}$. Now we have the result by Theorem 6.4.

By Example 6.2, the Lee weight over $\mathbb{Z}_{2^{r}}$ and $\mathbb{Z}_{2^{s}}$ is pre-homogeneous. Hence we have the following result on one weight $\mathbb{Z}_{2^{r}} \mathbb{Z}_{2^{s}}$-additive codes.
Theorem 6.7. Let $C \subseteq \mathbb{Z}_{2^{r}}^{\alpha} \times \mathbb{Z}_{2^{s}}^{\beta}$ be a $\mathbb{Z}_{2^{r}} \mathbb{Z}_{2^{s}}$-additive code. Consider the weight ω defined by Lee weight over $\mathbb{Z}_{2^{r}}$ and $\mathbb{Z}_{2^{s}}$. If C is a one weight $\mathbb{Z}_{2^{r}} \mathbb{Z}_{2^{s}}$ additive code with weight m such that there exists no zero columns in the generator matrix of C, then there exists a unique positive integer λ such that $m=\lambda|C|$ and $2^{r-2}\left(\alpha+2^{s-r} \beta\right)=\lambda(|C|-1)$.

Proof. It follows from Example 6.2 and Theorem 6.4.
The structure of $\mathbb{Z}_{2} \mathbb{Z}_{2^{s}}$-additive codes is studied in [4]. If a $\mathbb{Z}_{2} \mathbb{Z}_{2^{s} \text {-additive }}$ code $C \subseteq \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{2^{s}}^{\beta}$ is isomorphic to an abelian structure $\mathbb{Z}_{2}^{k_{0}+k_{s}} \times \mathbb{Z}_{2^{s}}^{k_{1}} \times \cdots \times$ $\mathbb{Z}_{4}^{k_{s-1}}$, then we say that C is of type $\left(\alpha, \beta ; k_{0}, k_{1}, k_{2}, \ldots, k_{s}\right)$. The following theorem gives the structure of one weight $\mathbb{Z}_{2} \mathbb{Z}_{2^{s}}$-additive codes which is a generalization of Theorem 3.10 in [15].

Theorem 6.8. Let $C \subseteq \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{2^{s}}^{\beta}$ be a one weight $\mathbb{Z}_{2} \mathbb{Z}_{2^{s}}$-additive code of type $\left(\alpha, \beta ; k_{0}, k_{1}, k_{2}, \ldots, k_{s}\right)$ with weight m. Let $k=k_{0}+s k_{1}+(s-1) k_{2}+\cdots+k_{s}$. Then there exists a positive integer λ such that $m=\lambda 2^{k-1}$, where α and β satisfy $\alpha+2^{s-1} \beta=\lambda\left(2^{k}-1\right)$. Furthermore, if m is an odd integer, then α is odd and $C=\left\{\left(0_{\alpha}, 0_{\beta}\right),\left(1_{\alpha}, 2_{\beta}^{s-1}\right)\right\}$, where $1_{\alpha}=(1, \ldots, 1) \in \mathbb{Z}_{2}^{\alpha}$ and $2_{\beta}^{s-1}=\left(2^{s-1}, \ldots, 2^{s-1}\right) \in \mathbb{Z}_{2^{s}}^{\beta}$.

Proof. By Lemma 6.3, $\sum_{c \in C} \omega(c)=|C|\left(\frac{\alpha}{2}+2^{s-2} \beta\right)=\frac{|C|}{2}\left(\alpha+2^{s-1} \beta\right)$. On the other hand, the sum of the weights of all codewords is $(|C|-1) m$. But $\operatorname{gcd}\left(\frac{|C|}{2},(|C|-1)\right)=\operatorname{gcd}\left(2^{k-1}, 2^{k}-1\right)=1$. Therefore there exists a positive integer λ such that $m=\lambda \frac{|C|}{2}=\lambda 2^{k-1}$ and hence $\alpha+2^{s-1} \beta=\lambda\left(2^{k}-1\right)$.

If m is odd, then $\lambda 2^{k-1}$ is odd. Hence λ is odd and $k=1$. Moreover the equality $m=\lambda=\alpha+2^{s-1} \beta$ implies that α is odd. Since $|C|=2$ and $\left(1_{\alpha}, 2_{\beta}^{s-1}\right)$ is the only word with weight $\alpha+2^{s-1} \beta$ and addition order 2 , we have that $C=\left\{\left(0_{\alpha}, 0_{\beta}\right),\left(1_{\alpha}, 2_{\beta}^{s-1}\right)\right\}$.

References

[1] T. Abualrub and I. Siap, Cyclic codes over the rings $Z_{2}+u Z_{2}$ and $Z_{2}+u Z_{2}+u^{2} Z_{2}$, Des. Codes Cryptogr. 42 (2007), no. 3, 273-287. https://doi.org/10.1007/s10623-006-9034-5
[2] T. Abualrub, I. Siap, and N. Aydin, $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive cyclic codes, IEEE Trans. Inform. Theory 60 (2014), no. 3, 1508-1514. https://doi.org/10.1109/TIT.2014.2299791
[3] I. Aydogdu, T. Abualrub, and I. Siap, On $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-additive codes, Int. J. Comput. Math. 92 (2015), no. 9, 1806-1814. https://doi.org/10.1080/00207160.2013.859854
[4] I. Aydogdu and I. Siap, The structure of $\mathbb{Z}_{2} \mathbb{Z}_{2^{s}}$-additive codes: bounds on the minimum distance, Appl. Math. Inf. Sci. 7 (2013), no. 6, 2271-2278. https://doi.org/10.12785/ amis/070617
[5] 2102. https://doi.org/10.1080/03081087.2014.952728
[6] J. J. Bernal, J. Borges, C. Fernández-Córdoba, and M. Villanueva, Permutation decoding of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes, Des. Codes Cryptogr. 76 (2015), no. 2, 269-277. https://doi. org/ 10.1007/s10623-014-9946-4
[7] M. Bilal, J. Borges, S. T. Dougherty, and C. Fernández-Córdoba, Maximum distance separable codes over \mathbb{Z}_{4} and $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$, Des. Codes Cryptogr. 61 (2011), no. 1, 31-40. https://doi.org/10.1007/s10623-010-9437-1
[8] J. Borges and C. Fernández-Córdoba, There is exactly one $\mathbb{Z}_{2} \mathbb{Z}_{4}$-cyclic 1-perfect code, Des. Codes Cryptogr. 85 (2017), no. 3, 557-566. https://doi.org/10.1007/s10623-016-0323-3
[9] J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifa, and M. Villanueva, $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes: generator matrices and duality, Des. Codes Cryptogr. 54 (2010), no. 2, 167-179. https://doi.org/10.1007/s10623-009-9316-9
[10] J. Borges, C. Fernández-Córdoba, and R. Ten-Valls, On $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive cyclic codes, (2016).
[11] , Linear and cyclic codes over direct product of chain rings, Math. Meth. Appl. Sci. (2017).
[12] H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory 50 (2004), no. 8, 1728-1744. https://doi.org/10. 1109/TIT. 2004.831789
[13] S. T. Dougherty and C. Fernández-Córdoba, $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive formally self-dual codes, Des. Codes Cryptogr. 72 (2014), no. 2, 435-453. https://doi.org/10.1007/s10623-012-9773-4
[14] S. T. Dougherty, H. Liu, and Y. H. Park, Lifted codes over finite chain rings, Math. J. Okayama Univ. 53 (2011), 39-53.
[15] S. T. Dougherty, H. Liu, and L. Yu, One weight $\mathbb{Z}_{2} \mathbb{Z}_{4}$ additive codes, Appl. Algebra Engrg. Comm. Comput. 27 (2016), no. 2, 123-138. https://doi.org/10.1007/s00200-015-0273-4
[16] C. Fernández-Córdoba, J. Pujol, and M. Villanueva, $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes: rank and kernel, Des. Codes Cryptogr. 56 (2010), no. 1, 43-59. https://doi.org/10.1007/s10623-009-9340-9
[17] J. Rifà, F. I. Solov'eva, and M. Villanueva, On the intersection of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive perfect codes, IEEE Trans. Inform. Theory 54 (2008), no. 3, 1346-1356. https://doi.org/10. 1109/TIT. 2007.915917
[18] K. Samei and M. R. Alimoradi, Cyclic codes over the ring $F_{2}+u F_{2}+v F_{2}$, Comput. Appl. Math. 37 (2018), no. 3, 2489-2502. https://doi.org/10.1007/s40314-017-0460-y
[19] K. Samei and S. Mahmoudi, Cyclic R-additive codes, Discrete Math. 340 (2017), no. 7, 1657-1668. https://doi.org/10.1016/j.disc.2016.11.007
[20] , Singleton bounds for R-additive codes, Adv. Math. Commun. 12 (2018), no. 1, 107-114. https://doi.org/10.3934/amc. 2018006
[21] K. Samei and S. Sadeghi, Maximum distance separable codes over $\mathbb{Z}_{2} \times \mathbb{Z}_{2^{s}}$, J. Algebra Appl. 17 (2018), no. 7, 1850136, 12 pp. https://doi.org/10.1142/S0219498818501360
[22] B. Srinivasulu and M. Bhaintwal, $\mathbb{Z}_{2}\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}\right)$-additive cyclic codes and their duals, Discrete Math. Algorithms Appl. 8 (2016), no. 2, 1650027, 19 pp. https://doi.org/10. 1142/S1793830916500270
[23] J. A. Wood, The structure of linear codes of constant weight, Trans. Amer. Math. Soc. 354 (2002), no. 3, 1007-1026. https://doi.org/10.1090/S0002-9947-01-02905-1

Saadoun Mahmoudi
Department of Mathematics
Bu Ali Sina University
Hamedan, Iran
Email address: mahmoudi.math89@yahoo.com
Karim Samei
Department of Mathematics
Bu Ali Sina University
Hamedan, Iran
Email address: samei@ipm.ir

