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SR-ADDITIVE CODES

Saadoun Mahmoudi and Karim Samei

Abstract. In this paper, we introduce SR-additive codes as a general-

ization of the classes of ZprZps and Z2Z2[u]-additive codes, where S is

an R-algebra and an SR-additive code is an R-submodule of Sα × Rβ .
In particular, the definitions of bilinear forms, weight functions and Gray

maps on the classes of ZprZps and Z2Z2[u]-additive codes are generalized

to SR-additive codes. Also the singleton bound for SR-additive codes and
some results on one weight SR-additive codes are given. Among other

important results, we obtain the structure of SR-additive cyclic codes. As

some results of the theory, the structure of cyclic Z2Z4, ZprZps , Z2Z2[u],
(Z2)(Z2+uZ2+u2Z2), (Z2+uZ2)(Z2+uZ2+u2Z2), (Z2)(Z2+uZ2+vZ2)

and (Z2 + uZ2)(Z2 + uZ2 + vZ2)-additive codes are presented.

1. Introduction

An important class of additive codes is Z2Z4-additive codes. A subgroup of

Zα2 × Zβ4 , where α and β are positive integers, is called a Z2Z4-additive code.
A comprehensive study on Z2Z4-additive codes has been introduced in [9] by
Borges et al. The studies on Z2Z4-additive codes and their algebraic structures
have attracted many researchers; see [2, 6–9,13,15–17].

Z2Z4-additive codes were generalized to Z2Z2s-additive codes [4, 21]. Also
Z2Z2[u]-additive codes is another generalization of Z2Z4-additive codes which
has been introduced by Aydogdu et al. [3].

Recently, Aydogdu and Siap generalized Z2Z4-additive codes and Z2Z2s -
additive codes to ZprZps-additive codes [5]. Also, ZprZps -additive cyclic codes
have been studied in [10]. Also additive codes were studied over direct product
of chain rings in [11].

Note that in Z2Z4-additive codes and Z2Z2s-additive codes, Z2 is a Z4-
algebra and Z2s -algebra; respectively. Also in Z2Z2[u]-additive codes, Z2 is
considered as a Z2[u]-algebra and Zpr is a Zps -algebra in ZprZps-additive codes.
Also in additive codes over product of two chain rings, one of the rings is an
algebra over another ring.
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In this paper, we generalize above codes to SR-additive codes, where S is
an R-algebra. In this generalization, a subset C of Sα × Rβ is called an SR-
additive code if C is an R-submodule of Sα × Rβ . We present the structure
of SR-additive cyclic codes. Also we give the structure of Z2Z4-additive cyclic
codes, ZprZps -additive cyclic codes, (Z2)(Z2 + uZ2)-additive cyclic codes and
cyclic codes over direct product of chain rings as results of this theory, which the
structure of these codes are the main parts of [2], [10], [22] and [11]; respectively.

Also, we obtain the structure of (Z2)(Z2 + uZ2 + u2Z2), (Z2 + uZ2)(Z2 +
uZ2 + u2Z2), (Z2)(Z2 + uZ2 + vZ2) and (Z2 + uZ2)(Z2 + uZ2 + vZ2)-additive
cyclic codes as other results of this theory.

In Section 4, we define an inner product over SR-additive codes which is a
generalization of the inner products over Z2Z4, Z2Z2s , ZprZps , Z2Z2[u] additive
codes. We show that the dual code of any SR-additive cyclic code is also an
SR-additive cyclic code.

In Section 5, we find the Singleton bound for SR-additive codes. As ex-
amples, the Singleton bound for Z2Z2[u]-additive codes and Z2[u]Z2-additive
codes are given. In Section 6, we investigate one weight SR-additive codes. In
particular, one weight Z2Z2s -additive codes are determined.

Throughout this paper R and S are finite commutative rings such that S is
an R-algebra.

2. Preliminaries

In this section, we remind some facts of R-additive codes which are applied
throughout this paper. Also the structure of cyclic codes over some rings are
given.

Definition 2.1. Let S be an R-algebra with a ring homomorphism f : R→ S.
A nonempty subset C of Sn is called R-additive code if C is an R-submodule
of Sn, where the scalar multiplication is defined as follows: for r ∈ R and
(a0, a1, . . . , an−1) ∈ C, we have

r.(a0, a1, . . . , an−1) = (f(r)a0, f(r)a1, . . . , f(r)an−1).

Example 2.2 (Linear codes). Let R be a commutative ring with identity. A
subset C of Rn is called a linear code if C is an R-submodule of Rn. Now
consider R as R-algebra with identity homomorphism. Clearly, the subset C
of Rn is a linear code if and only if C is an R-additive code.

Above example shows that R-additive codes is a generalization of linear
codes. The following example give some special cases which R-additive codes
and linear codes are the same.

Example 2.3. (1) Let f : R → S be a ring isomorphism. In this case, R-
additive codes over S are exactly linear codes over S.

(2) Let S = R/I, where I is an ideal of R and f : R → R/I is the natural
homomorphism. For any nonempty subset C of Sn, we have I.C = 0. Hence
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R-additive codes over S are exactly linear codes over S. Moreover, if f : R→ S
is a surjective ring homomorphism, then R-additive codes over S are exactly
linear codes.

Example 2.4 (Additive codes). Let S be a local ring of characteristic pr. A
subset C of Sn is called an additive code if C is a subgroup of Sn under addition.
But we have the injective ring homomorphism f : Zpr → S, x 7→ x.1S . It is
easy to see that additive codes are exactly Zpr -submodules of Sn. In other
words, additive codes over S are exactly Zpr -additive codes over S.

Example 2.5 (Fq-linear codes over Fqt). A subset C of (Fqt)n is called an
Fq-linear code over Fqt of length n, if C is an Fq-submodule of (Fqt)n. Clearly
these codes are R-additive codes, where R = Fq and S = Fqt .

For a positive integer n, let Rn = R[x]/〈xn − 1〉 and Sn = S[x]/〈xn − 1〉.
Consider the following correspondence map.

(1)
π : Sn −→ Sn,

(a0, a1, . . . , an−1) 7−→ a0 + a1x+ · · ·+ an−1x
n−1 + 〈xn − 1〉.

Clearly π is an R-module isomorphism. We will identify Sn with Sn under π
and for simplicity, we write the polynomial a0 + a1x+ · · ·+ an−1x

n−1 for the
residue class a0 + a1x+ · · ·+ an−1x

n−1 + 〈xn − 1〉. The following proposition
gives the structure of cyclic R-additive codes.

Proposition 2.6 ([19, Proposition 3.1]). Let π be the correspondence map
defined in (1). Then a nonempty subset C of Sn is a cyclic R-additive code if
and only if π(C) is an Rn-submodule of Sn.

Let ω be a weight function over S. If AS = Max{ω(x) : x ∈ S}, then we
have the following bound for minimum weight of R-additive codes.

Theorem 2.7 ([20, Theorem 3.5]). Let R be a finite chain ring and S be a
free R-algebra of dimR(S) = m. If there exists a nondegenerate bilinear form

β : S × S → R, then bdω(C)−1
AS

c ≤ n− d rank(C)
m e.

Now we remind the structure of cyclic codes over a chain ring R of length
n coprime to Char(R). Also the structure of cyclic codes over Z2 + uZ2, Z2 +
uZ2 + u2Z2 and Z2 + uZ2 + vZ2 for an arbitrary length are given.

Theorem 2.8. Let R be a chain ring with the maximal ideal m = 〈γ〉 of nilpo-
tency index s and C be a cyclic code of length n over R, where (n,Char(R)) = 1.
Then

(1) There is a unique set of pairwise co-prime monic polynomials g0, . . . , gs
over R (possibly, some of them are equal to 1) such that g0g1 · · · gs =
xn − 1 in R[x] and C = 〈ĝ1, γĝ2, . . . , γ

s−1ĝs〉, where ĝi =
∏
j 6=i gj.

Moreover, |C| = |R/m|
∑s−1
i=0 (s−i) deg gi+1 .

(2) If hi = g0gi+2 · · · gs for i = 0, 1, . . . , s − 2 and hs−1 = g0. Then
hs−1|hs−2| · · · |h0|(xn − 1), and C = 〈h0 + γh1 + · · ·+ γs−1hs−1〉.
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Proof. Part (1) follows from Theorem 3.4 in [12]. We have part (2) by Theorem
3.5 in [12] and Theorem 2.4 in [11]. �

The following corollary is a result of Proposition 2.8.

Corollary 2.9. Let C be a cyclic code of length n over R = Zps , where (n, p) =
1. Then there exists a set of polynomials h0, h1, . . . , hs−1 in R[x] such that
h0|(xn − 1), hi|hi−1 for i = 1, . . . , s− 1 and C = 〈h0 + ph1 + · · ·+ ps−1hs−1〉.
Moreover if ĥi = hi−1

hi
for i ≥ 1 and ĥ0 = xn−1

h0
, then |C| = pd, where d =∑s−1

i=0 (s− i) deg ĥi. In special case, if n is odd and C is a cyclic code of length
n over R = Z4, then C = 〈g(x) + 2a(x)〉, where a(x)|g(x)|(xn− 1) in Z4[x]. In

this case, |C| = 22t1+t2 , where t1 = deg xn−1
g(x) and t2 = deg g(x)

a(x) .

Theorem 2.10 ([1, Theorem 1]). Let C be a cyclic code over Z2 + uZ2 of
length n. Then

(1) If n is odd, then (Z2 + uZ2)n is principal ideal ring and C = 〈g(x) +
ua(x)〉, where g(x) and a(x) are polynomials in Z2[x] such that
a(x)|g(x)|(xn − 1) mod 2.

(2) If n is not odd, then
(a) C = 〈g(x) + up(x)〉 such that g(x)|(xn − 1) mod 2,

(g(x) + up(x))|(xn − 1) in Z2 + uZ2 and g(x)|p(x)(x
n−1
g(x) ). Or

(b) C = 〈g(x) + up(x), ua(x)〉 such that g(x), a(x) and p(x) are poly-

nomials in Z2[x]. And a(x)|g(x)|(xn−1) mod 2, a(x)|p(x)(x
n−1
g(x) )

and deg a(x) > deg p(x).

Theorem 2.11 ([1, Theorem 2]). Let C be a cyclic code over Z2 +uZ2 +u2Z2

of length n. Then

(1) If n is odd, then (Z2 + uZ2 + u2Z2)n is principal ideal ring. C =
〈g(x)+ua1(x)+u2a2(x)〉, where a1(x), a2(x) and g(x) are polynomials
in Z2[x] such that a2(x)|a1(x)|g(x)|(xn − 1) mod 2.

(2) If n is not odd, then
(a) C = 〈g+up1+u2p2〉, where p2|p1|g|(xn−1) mod 2, (g+up1)|(xn−

1) in Z2 + uZ2 and (g + up1 + u2p2)|(xn − 1) in Z2 + uZ2 + u2Z2

and deg p2 < deg p1.
(b) C = 〈g + up1 + u2p2, u

2a2〉, where a2|g|(xn − 1) mod 2, (g +

up1)|(xn− 1) in Z2 +uZ2, g(x)|p1(x
n−1
g(x) ) and a2 divides p1(x

n−1
g(x) )

and p2(x
n−1
g(x) )(x

n−1
g(x) ) and deg p2 < deg a2. Or

(c) C = 〈g + up1 + u2p2, ua1 + u2q1, u
2a2〉, where a2|a1|g|(xn − 1)

mod 2, a1|p1(x
n−1
g(x) ) and a2 divides q1(x

n−1
a1(x) ) and p2(x

n−1
g(x) )(x

n−1
a1(x) ).

Moreover, deg p2 < deg a2, deg q1 < deg a2 and deg p1 < deg a1.

The following theorem gives the structure of cyclic codes over the non Frobe-
nius ring Z2 + uZ2 + vZ2 = {0, 1, u, v, 1 + u, 1 + v, u+ v, 1 + u+ v}.
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Theorem 2.12. Let C be a cyclic code over R = Z2 + uZ2 + vZ2 of length n.
Then C has a unique representation as follows:

C = 〈g + up1 + vp2, ua1 + vq1, va2〉,
where

(1) a2|a1|g|(xn − 1) and a1|p1(x
n−1
g ),

(2) a2|q1(x
n−1
a1

) and a2|p2(x
n−1
g )(x

n−1
a1

),

(3) deg p2,deg q1 < deg a2.
Moreover if n is odd, then C = 〈g + ua1, va2〉, where a2|a1|g|(xn − 1).

Proof. See Theorems 1 and 2, Lemmas 3 and 4 and Corollary 1 in [18]. �

3. SR-additive cyclic codes

The structure of Z2Z4-additive cyclic codes investigated in [2]. As general-
izations of these codes, recently ZprZps and Z2Z2[u] additive codes have been
introduced in [3] and [5]. Also the generator polynomials of ZprZps-additive
cyclic codes were given in [10]. Moreover, additive codes studied over direct
product of chain rings with the same residue fields in [11]. In this section,
we define and extend these codes to SR-additive codes, where R is a finite
commutative ring and S is a finite commutative R-algebra. A theory to find
the generators of SR-additive cyclic codes is given. As results, we obtain the
generators of Z2Z4, ZprZps , Z2Z2[u]-additive cyclic codes. Also the results in
[11] on the structure of cyclic codes over direct product of chain rings with the
same residue fields are given as a result of the theory. Moreover the structure
of (Z2)(Z2 +uZ2 +u2Z2), (Z2 +uZ2)(Z2 +uZ2 +u2Z2), (Z2)(Z2 +uZ2 + vZ2)
and (Z2 + uZ2)(Z2 + uZ2 + vZ2)-additive cyclic codes as new examples of SR-
additive cyclic codes are given, which we can not obtain their structures by
previous works.

Definition 3.1. Let α and β be two positive integers. A nonempty subset C of
Sα× Rβ is called an SR-additive code if C is an R-submodule with the following
scalar multiplication: for r ∈ R and (sα, rβ)=(s0, s1, . . . , sα−1, r0, r1, . . . , rβ−1)
∈ C,

r.(sα, rβ) = (f(r)sα, rrβ) = (f(r)s0, f(r)s1, . . . , f(r)sα−1, rr0, rr1, . . . , rrβ−1).

We say that an SR-additive code C is cyclic if (sα−1, s0, . . . , sα−2, rβ−1, r0, . . .,
rβ−2) ∈ C whenever (s0, s1, . . . , sα−1, r0, r1, . . . , rβ−1) ∈ C.

Consider the map π′ : Sα×Rβ → Sα×Rβ , (s0, s1, . . . , sα−1, r0, r1, . . . , rβ−1)
7→ (s0 + s1x+ · · ·+ sα−1x

α−1 + 〈xα − 1〉, r0+r1x+ · · ·+ rβ−1x
β−1 + 〈xβ − 1〉).

Clearly π′ is an R-module isomorphism. We will identify Sα×Rβ with Sα×Rβ
under π′ and for simplicity we write (s0 + s1x+ · · ·+ sα−1x

α−1, r0+r1x+ · · ·+
rβ−1x

β−1) for above residue class.

Lemma 3.2. A subset C of Sα×Rβ is an SR-additive cyclic code if and only
if π′(C) is an R[x]-submodule of Sα ×Rβ.
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Proof. Clearly Sα × Rβ is an R[x]-module. Since π′ is an R-module isomor-
phism, C is an R-submodule if and only if π′(C) is an R-submodule. Now
for an element (sα, rβ) = (s0, s1, . . . , sα−1, r0, r1, . . . , rβ−1) ∈ C, the cyclic
shift σ(sα, rβ) = (sα−1, s0, . . . , sα−2, rβ−1, r0, . . . , rβ−2) ∈ C if and only if
xπ′(sα, rβ) = π′(σ(sα, rβ)) ∈ π′(C). This completes the proof. �

We identify C with π′(C). Now we find the generator polynomials of C.

Theorem 3.3. A subset C of Sα × Rβ is an SR-additive cyclic code if and
only if C = 〈(g1, 0), . . . , (gs, 0), (h1, f1), . . . , (hr, fr)〉R[x] such that

(1) C1 = 〈f1, . . . , fr〉R[x] is a cyclic linear code over R of length β,
(2) C2 = 〈g1, . . . , gs〉R[x] is a cyclic R-additive code over S of length α,
(3) h1, . . . , hr are elements of Sα,
(4) |C| = |C1||C2|.

Proof. Let C ⊆ Sα × Rβ be an SR-additive cyclic code. Clearly the projec-
tion map φ : C → Rβ is an R[x]-homomorphism. Hence Im(φ) is an R[x]-
submodule of Rβ . As 〈xβ − 1〉.Im(φ) ⊆ 〈xβ − 1〉.Rβ = 0, Im(φ) is an ideal
of Rβ . In other words Im(φ) is a linear cyclic code over R of length β, say
C1. Let C1 = 〈f1, . . . , fr〉R[x] = 〈φ(h1, f1), . . . , φ(hr, fr)〉R[x]. Now, kerφ is
an R[x]-submodule of C. Let C2 = {g ∈ Sα : (g, 0) ∈ kerφ}, then clearly
C2 is an R[x]-submodule of Sα. Since 〈xα − 1〉.C2 ⊆ 〈xα − 1〉.Sα = 0, C2

is an Rα-module. In other words C2 is a cyclic R-additive code of length α
over S. If C2 = 〈g1, . . . , gs〉Rα , then kerφ = 〈(g1, 0), . . . , (gs, 0)〉R[x]. There-
fore C = 〈(g1, 0), . . . , (gs, 0), (h1, f1), . . . , (hr, fr)〉R[x]. Since φ is an R[x]-

homomorphism, C
kerφ

∼= C1, hence |C| = | kerφ||C1| = |C2||C1|. �

Proposition 3.4. With the above assumptions, let f : R → S be a surjective
ring homomorphism and C = 〈(g1, 0), . . . , (gs, 0), (h1, f1), . . . , (hr, fr)〉R[x] be
an SR-additive cyclic code. Also let {gi1 , . . . , git} be a subset of {g1, . . . , gs}
such that gij is monic for all j; j = 1, . . . , t. Then we can assume that deg hi <
min{deg gij : 1 ≤ j ≤ t} for all i; 1 ≤ i ≤ r.

Proof. Since f is surjective, every R-additive code over S is linear. In partic-
ular, C2 is a cyclic linear code over S. Let gj be monic and deg hi ≥ deg gj
for some i. Let deg hi − deg gj = ` and a ∈ S be the leading coefficient
of hi. Then (hi, fi) = (hi − ax`gj , fi) + ax`(gj , 0). Thus 〈(hi, fi), (gj , 0)〉 =
〈(hi − ax`gj , fi), (gj , 0)〉. Hence we can use hi − ax`gj instead of hi. By this
method we can reduce deg hi. �

Proposition 3.5. Let C = 〈(g1, 0), . . . , (gs, 0), (h1, f1), . . . , (hr, fr)〉R[x] be an
SR-additive cyclic code as in Theorem 3.3. Then

(xβ − 1)hi ∈ C2 = 〈g1, . . . , gs〉R[x].

Proof. Clearly (xβ − 1)(hi, fi) = ((xβ − 1)hi, 0) ∈ kerφ. Hence (xβ − 1)hi ∈
C2 = 〈g1, . . . , gs〉R[x]. �
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Corollary 3.6 ((R/m)R-additive cyclic codes). Let R be a finite local ring with
the unique maximal ideal m and C ⊆ (R/m)α×Rβ be an (R/m)R-additive cyclic
code. Then C = 〈(g, 0), (h1, f1), . . . , (hr, fr)〉 with the following conditions:

(a) g|xα − 1 over (R/m),
(b) hi ∈ (R/m)α,
(c) C1 = 〈f1, . . . , fr〉 is a linear cyclic code over R.

Proof. R/m is an R-algebra with the natural ring homomorphism f : R →
R/m. Since f is surjective, R-additive codes over R/m are linear over R/m.
Now, we have the results by Theorem 3.3. �

Z2Z4-additive cyclic codes is an example of (R/m)R-additive cyclic codes.
This class of codes is discussed in [2]. We obtain the structure of these codes
as a result of above discussion.

Corollary 3.7 (Z2Z4-additive cyclic codes). Let C ⊆ (Z2)α×(Z4)β be a Z2Z4-
additive cyclic code. If β is an odd integer, then

(1) C = 〈(h(x), 0), (`(x), g(x) + 2a(x))〉, where

(a) h(x) is a monic polynomial over Z2 such that h(x)|(xα − 1),
(b) a(x)|g(x)|(xβ − 1) in Z4[x],
(c) `(x) ∈ (Z2)α and deg `(x) < deg h(x).

(2) If t1 = deg xβ−1
g(x) , t2 = deg g(x)

a(x) and t = deg h(x), then |C| = 22t1+t2+α−t.

Proof. By above corollary, C = 〈(h(x), 0), (`1, f1), . . . , (`r, fr)〉, where h(x) is
a monic polynomial over Z2 such that h(x)|(xα − 1). Also C1 = 〈f1, . . . , fr〉
is a linear cyclic code over Z4. By Corollary 2.9, there exist polynomials g(x)
and a(x) over Z4 such that C1 = 〈g(x) + 2a(x)〉, where a(x)|g(x)|(xβ − 1) in
Z4[x]. Hence C = 〈(h(x), 0), (`(x), g(x) + 2a(x))〉, where `(x) ∈ (Z2)α and

deg `(x) < deg h(x). By Corollary 2.9, |C1| = 22t1+t2 , where t1 = deg xβ−1
g(x) and

t2 = deg g(x)
a(x) . Also |C2| = |〈h(x)〉| = 2α−t, where t = deg h(x). Therefore by

Theorem 3.3, |C| = |C1||C2| = 22t1+t2+α−t. �

Another example of SR-additive codes is the class of ZprZps-additive cyclic
codes (see [10]). We give the structure of these codes as another result of above
discussion.

Corollary 3.8 (ZprZps-additive cyclic codes). Let 1 ≤ r < s and C ⊆ (Zpr )α×
(Zps)β be a ZprZps-additive cyclic code. If (p, β) = 1 and (p, α) = 1, then

(1) C = 〈(h′0 + ph′1 + · · ·+ pr−1h′r−1, 0), (`(x), h0 + ph1 + · · ·+ ps−1hs−1)〉,
where
(a) h0, h1, . . . , hs−1 are polynomials in Zps [x] such that h0|(xβ − 1)

and hi|hi−1 for i = 1, . . . , s− 1,
(b) h′0, h

′
1, . . . , h

′
r−1 are polynomials in Zpr [x] such that h′0|(xα − 1)

and h′i|h′i−1 for i = 1, . . . , r − 1.
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(2) |C| = pd1+d2 , where d1 =
∑s−1
i=0 (s − i) deg ĥi and d2 =

∑r−1
i=0 (r −

i) deg ĥ′i.

Proof. Since f : Zps → Zpr is surjective, by the same argument of Corollary
3.7, C = 〈(h(x), 0), (`(x), g(x))〉, where g(x) ∈ (Zps)β is a generator of a cyclic
code over Zps of length β, h(x) ∈ (Zpr )α is a generator of a cyclic code over Zpr
of length α and `(x) ∈ (Zpr )α is a polynomial. By Corollary 2.9, there exists a
set of polynomials h0, h1, . . . , hs−1 in Zps [x] such that h0|(xβ − 1) and hi|hi−1

for i = 1, . . . , s − 1 and g(x) = h0 + ph1 + · · · + ps−1hs−1. Similarly, there
exists a set of polynomials h′0, h

′
1, . . . , h

′
r−1 in Zpr [x] such that h′0|(xα − 1) and

h′i|h′i−1 for i = 1, . . . , r− 1 and h(x) = h′0 + ph′1 + · · ·+ pr−1h′r−1. In this case,

|C| = pd1+d2 , where d1 =
∑s−1
i=0 (s− i) deg ĥi and d2 =

∑r−1
i=0 (r − i) deg ĥ′i. �

Recently, ZprZps -additive codes generalized to codes over direct product of
two finite chain rings in some special case [11]. More precisely, let R1 and R2

be two chain rings with the maximal ideals m1 = 〈γ1〉 and m2 = 〈γ2〉 of the
nilpotency indexes e1 and e2; respectively. Let e1 ≤ e2, and R1 and R2 have
the same residue field R1/m1 = R2/m2 = F. If a1 ∈ R1 and a2 ∈ R2, then a1

and a2 can be uniquely written as follows:

a1 = a1,0 + a1,1γ1 + · · ·+ a1,e1−1γ
e1−1
1 , a2 = a2,0 + a2,1γ2 + · · ·+ a2,e2−1γ

e2−1
2 ,

where the a1,is and a2,is can be viewed as elements in F (see [14, Lemma 2]).

Now define ψ : R2 → R1 by ψ(
∑e2−1
i=0 aiγ

i
2) =

∑e1−1
i=0 aiγ

i
1. It is easy to see that

ψ is a ring homomorphism. Hence R1 is an R2-algebra. For positive integers α

and β, an R2-submodule C ⊆ Rα1 ×R
β
2 is called an R1R2-additive code. When

α and β are coprime integers with Char(Ri/m), the structure of these codes
have been given (see [11, Theorem 4.3]). Now we obtain the structure of these
codes as a result of the structure of SR-additive codes.

Corollary 3.9 (Additive cyclic codes over direct product of finite chain rings).
With above assumptions, let C ⊆ (R1)α × (R2)β be an R1R2-additive cyclic
code. If α and β are coprime integers with Char(Ri/m), Then

(1) C=〈(h′0+γ1h
′
1+· · ·+γe1−1

1 h′e1−1, 0), (`(x), h0+γ2h1+· · ·+γe2−1
2 he2−1)〉,

where
(a) h0, h1, . . . , he2−1 are polynomials in R2[x] such that h0|(xβ − 1)

and hi|hi−1 for i = 1, . . . , e2 − 1,
(b) h′0, h

′
1, . . . , h

′
e1−1 are polynomials in R1[x] such that h′0|(xα − 1)

and h′i|h′i−1 for i = 1, . . . , e1 − 1.

(2) |C| = pd1+d2 , where d1 =
∑e2−1
i=0 (e2 − i) deg ĥi and d2 =

∑e1−1
i=0 (e1 −

i) deg ĥ′i.

Proof. By the same argument as Corollary 3.8, it follows from Theorem 3.3
and Theorem 2.8. �

Now we give new examples of SR-additive codes. First we give some ex-
amples of additive codes over direct products of chain rings that we can not
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obtain their structures by [11]; see Corollaries 3.10, 3.11 and 3.12. Note that

in [11], they considered an additive code C ⊆ Rα1 ×R
β
2 over the chain rings R1

and R2 in a case that α and β are coprime integers with Char(Ri/m). But in
the structure of SR-additive codes we haven’t any restriction on α and β.

Let R1 = Z2, R2 = Z2 + uZ2 = {0, 1, u, 1 + u} such that u2 = 0 and
R3 = Z2 + uZ2 + u2Z2 = {0, 1, u, 1 + u, u2, 1 + u2, 1 + u+ u2, u+ u2} such that
u3 = 0. By the following maps, Ri is an Rj-algebra for 1 ≤ i < j ≤ 3.

f2,1 : R2 −→ R1; λ0 + λ1u 7−→ λ0,

f3,1 : R3 −→ R1; λ0 + λ1u+ λ2u
2 7−→ λ0,

f3,2 : R3 −→ R2; λ0 + λ1u+ λ2u
2 7−→ λ0 + λ1u.

We want to describe RiRj-additive cyclic codes for 1 ≤ i < j ≤ 3. First we
find the generators of R1R2-additive cyclic codes which are known as Z2Z2[u]-
additive codes and studied in [3, 22].

Corollary 3.10 (R1R2-additive cyclic codes). Let C ⊆ (R1)α × (R2)β be an
R1R2-additive cyclic code.

(1) If β is odd, then C = 〈(h(x), 0), (`(x), g(x) + ua(x))〉 such that
h(x)|(xα − 1) mod 2, `(x) ∈ (Z2)α and g(x) + ua(x) ∈ (R2)β with
the same condition as the part (1) of Theorem 2.10.

(2) If β is not odd, then
(a) C = 〈(h(x), 0), (`(x), g(x) +up(x))〉, where h(x) and `(x) are such

as (1). g(x) and p(x) have the same conditions as Theorem 2.10
part 2(a). Or

(b) C = 〈(h(x), 0), (`1(x), g(x) + up(x)), (`2(x), ua(x))〉, where h(x)
and `i(x) are such as (1). g(x), p(x) and a(x) have the same
conditions as Theorem 2.10 part 2(b).

Proof. By Corollary 3.6, C = 〈(h(x), 0), (`1, f1), . . . , (`r, fr)〉, where h(x) is a
monic polynomial over R1 such that h(x)|(xα − 1). Also C1 = 〈f1, . . . , fr〉 is a
linear cyclic code over R2. Now we have the result by Theorem 2.10. �

Corollary 3.11 (R1R3-additive cyclic codes). Let C ⊆ (R1)α × (R3)β be an
R1R3-additive cyclic code.

(1) If β is odd, then C = 〈(h(x), 0), (`(x), g(x) +ua1(x) +u2a2(x))〉, where
h(x), `(x) are elements of Z2[x], h(x)|(xα − 1) in Z2[x] and g, a1, a2

have the same conditions as Theorem 2.11 part (1).
(2) If β is not odd, then

(a) C = 〈(h(x), 0), (`(x), g(x)+up1(x)+u2p2(x))〉, where `, h are such
as (1) and g, p1, p2 have the same conditions as Theorem 2.11 part
2(a).

(b) C = 〈(h(x), 0), (`1(x), g(x) + up1(x) + u2p2(x)), (`2(x), u2a2(x))〉,
where `i and h are such as (1) and g, p1, p2, a2 have the same
conditions as Theorem 2.11 part 2(b).
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(c) C = 〈(h(x), 0), (`1(x), g(x) + up1(x) + u2p2(x)), (`2(x), ua1(x) +
u2q1(x)), (`3, u

2a2(x))〉, where `i and h are such as (1) and g, p1,
p2, a1, q1, a2 have the same conditions as Theorem 2.11 part 2(c).

Proof. By the same argument as Corollary 3.10, it follows from Corollary 3.6
and Theorem 2.11. �

Corollary 3.12 (R2R3-additive cyclic codes). Let C ⊆ (R2)α × (R3)β be an
R2R3-additive cyclic code.

(1) If β and α are odd, then C = 〈(h(x), 0), (`(x), g(x)+ua1(x)+u2a2(x))〉,
where h(x), `(x) are elements of (R2)α. h(x) is a generator of a code
such as Theorem 2.10 part (1) and g, a1, a2 have the same conditions
as Theorem 2.11 part (1).

(2) If β is odd and α is not odd, then
(a) C = 〈(g + up, 0), (`, f)〉, where g, p have the same conditions as

Theorem 2.10 part 2(a). ` ∈ (R2)α and f ∈ (R3)β is a generator
of a code such as Theorem 2.11 part (1). Or

(b) 〈(g + up, 0), (ua, 0), (`, f)〉, where g, p, a are polynomials with the
same conditions as Theorem 2.10 part 2(b). ` ∈ (R2)α and f ∈
(R3)β is a generator of a code such as Theorem 2.11 part (1).

(3) If α is odd and β is not odd, then
(a) 〈(f, 0), (`, g + ua1 + u2a2)〉, where ` ∈ (R2)α, f is a generator of

a code such as Theorem 2.10 part (1) and g, a1, a2 are such as
Theorem 2.11 part 2(a). Or

(b) C = 〈(f, 0), (`1, g + up1 + u2p2), (`2, u
2a2)〉, where f and `i are

such as (a) and g, p1, p2, a2 have the same conditions as Theorem
2.11 part 2(b). Or

(c) C = 〈(f, 0), (`1, g + up1 + u2p2), (`2, ua1 + u2q1)(`3, u
2a2)〉, where

f and `i are such as (a) and g, p1, p2, a1, a2, q1 have the same con-
ditions as Theorem 2.11 part 2(c).

(4) If α and β are not odd, then we have one of the following states.
(a) C = 〈(g1, 0), (`1, f1)〉, where g1 is a generator of a code in Theorem

2.10 part 2(a), f1 is a generator of a code in Theorem 2.11 part
2(a) and `1 is an elements of (R2)α.

(b) C = 〈(g1, 0), (`1, f1), (`2, f2)〉, where g1 is a generator of a code in
Theorem 2.10 part 2(a), fi are generators of a code in Theorem
2.11 part 2(b) and `i are elements of (R2)α.

(c) C = 〈(g1, 0), (`1, f1), (`2, f2), (`3, f3)〉, where g1 is a generator of
a code in Theorem 2.10 part 2(a), fi are generators of a code in
Theorem 2.11 part 2(c) and `i are elements of (R2)α.

(d) C = 〈(g1, 0), (g2, 0), (`1, f1)〉, where gi are generators of a code in
Theorem 2.10 part 2(b), f1 is a generator of a code in Theorem
2.11 part 2(a) and `1 is an element of (R2)α.
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(e) C = 〈(g1, 0), (g2, 0), (`1, f1), (`2, f2)〉, where gi are generators of
a code in Theorem 2.10 part 2(b), fi are generators of a code in
Theorem 2.11 part 2(b) and `i is an element of (R2)α.

(f) C = 〈(g1, 0), (g2, 0), (`1, f1), (`2, f2), (`3, f3)〉, where gi are genera-
tors of a code in Theorem 2.10 part 2(b). fi are generators of a
code in Theorem 2.11 part 2(c) and `i are elements of (R2)α.

Proof. By Theorem 3.3, C = 〈(g1, 0), . . . , (gs, 0), (h1, f1), . . . , (hr, fr)〉R[x] such
that C1 = 〈f1, . . . , fr〉R3[x] is a cyclic linear code over R3 of length β and
C2 = 〈g1, . . . , gs〉R3[x] is a cyclic R3-additive code over R2 of length α. Since
f3,2 : R3 → R2 is a surjective map, C2 is a linear code over R2. Now the result
follows from Theorems 2.10 and 2.11. �

Now we give some examples that the ring R in SR-additive codes is not a
chain ring (moreover this ring is not a Frobenius ring). Let R4 = Z2 + uZ2 +
vZ2 = {0, 1, u, v, 1 +u, 1 +v, u+v, 1 +u+v} such that u2 = v2 = uv = 0. This
ring is not a chain ring. Moreover R4 is a non Frobenius ring. Consider the
rings R1 = Z2 and R2 = Z2 + uZ2 in above corollaries. It is easy to see that
the following maps are ring homomorphisms:

f4,1 : R4 −→ R1; λ1 + λ2u+ λ3v 7−→ λ1,

f4,2 : R4 −→ R2; λ1 + λ2u+ λ3v 7−→ λ1 + λ2u.

Hence R4 is an Ri-algebra for i = 1, 2. Now we want to describe R1R4 and
R2R4-additive cyclic codes.

Corollary 3.13 (R1R4-additive cyclic codes). Let C ⊆ (R1)α × (R4)β be an
R1R4-additive cyclic code. Then C = 〈(f, 0), (h1, g + up1 + vp2), (h2, ua1 +
vq1), (h3, va2)〉, where f |(xα−1), hi ∈ (R1)α and p1, p2, q1, a1, a2 have the same
conditions as Theorem 2.12. Moreover if β is odd, then C = 〈(f, 0), (h1, g +
ua1), (h2, va2)〉, where a2|a1|g|(xn − 1).

Proof. It follows from Corollary 3.6 and Theorem 2.12. �

Corollary 3.14 (R2R4-additive cyclic codes). Let C ⊆ (R2)α × (R4)β be an
R2R4-additive cyclic code. Then

(1) If α is odd, then C = 〈(g + ua, 0), (h1, g1 + up1 + vp2), (h2, ua1 +
vq1), (h3, va2)〉, where g and a are polynomials in Z2[x] such that
a|g|(xα − 1) mod 2, hi ∈ (R2)α and p1, p2, q1, g1, a1, a2 have the same
conditions as Theorem 2.12.

(2) If α is not odd, then
(a) C=〈(g+up, 0), (h1, g1 +up1 +vp2), (h2, ua1 +vq1), (h3, va2)〉 such

that g|(xα−1) mod 2, (g+up)|(xα−1) in Z2+uZ2 and g|p(x
α−1
g ).

Or
(b) C=〈(ua, 0), (g+up, 0), (h1, g1+up1+vp2), (h2, ua1+vq1), (h3, va2)〉

such that g, a and p are polynomials in Z2[x]. a|g|(xα−1) mod 2,

a|p(x
α−1
g ) and deg a > deg p.
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Where hi ∈ (R2)α and p1, p2, q1, g1, a1, a2 have the same conditions as Theorem
2.12.

Proof. It follows from Theorem 3.3 and Theorem 2.12. �

In the above examples the ring homomorphisms between Ri and Rj are
surjective, hence cyclic RiRj-additive codes are constructed by linear cyclic
codes over Ri and Rj . But when f is not surjective to construct cyclic SR-
additive codes we need the structure of R-additive codes over S. See the
following examples.

Example 3.15. Let R1 = Z2 and R2 = Z2 + uZ2 be the rings in above
corollaries. Then R2 is an R1-algebra with the including map. Let C ⊆ (R2)α×
(R1)β be an R2R1-additive cyclic code. Then C = 〈(g1, 0), . . . , (gs, 0), (h, f)〉,
where f |(xβ − 1), h ∈ (R2)α, and C1 = 〈g1, . . . , gs〉 is a cyclic R1-additive code
over R2 (C1 is an additive cyclic code over R2).

Example 3.16. Let R = GR(ps,m) and S = R[ξ] = GR(ps,m`) be the
Galois extension of R. Then S is an R-algebra with the including map. Let
C ⊆ Sα×Rβ be an SR-additive cyclic code. If gcd(β, p) = 1 and gcd(α, p) = 1,
then C = 〈(g1, 0), . . . , (g`, 0), (h, f)〉, where C2 = 〈f〉 is a cyclic code over R,
C1 = 〈g1, . . . , g`〉 is a cyclic R-additive code over S of length α and h ∈ Sα is
a polynomial.

4. Duality of SR-additive codes

In this section, we define a bilinear form on SR-additive codes which is
a generalization of the bilinear forms over Z2Z4-additive cyclic codes in [2],
Z2Z2[u]-additive codes in [3] and ZprZps-additive cyclic codes in [10].

Definition 4.1. Let τ : S → R be an R-module homomorphism, then

β′ : (Sα ×Rβ)× (Sα ×Rβ) −→ R

((x1, y1), (x2, y2)) 7−→ τ(x1.x2) + (y1.y2)

is an R-bilinear form where x1.x2 and y1.y2 are standard inner products. For
an SR-additive code C, C⊥ is the dual of C with respect to β′.

Proposition 4.2. Let R be a chain ring with maximal ideal m = 〈γ〉 of nilpo-
tency index e. If β′ is a bilinear form on (R/m)R-additive codes defined by an
R-module homomorphism τ : R/m → R, then there is a unit element a ∈ R
such that

β′ : ((R/m)α ×Rβ)× ((R/m)α ×Rβ) −→ R

((x1, y1), (x2, y2)) 7−→ aγe−1(x1.x2) + (y1.y2).

Where x1 = (x1,i + m), x2 = (x2,i + m), and x1 = (x1,i) and x2 = (x2,i).
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Proof. By the definition of β′, it suffices to determine HomR(R/m, R). But we
have the following R-module isomorphism

HomR(R/m, R) −→ AnnR(m)

τ 7−→ τ(1 + m).

Since R is a chain ring and AnnR(m) is an ideal of R, AnnR(m) = 〈γj〉 for some
j; 1 ≤ j ≤ e. Clearly γe−1m = 0. On other hand γe−2γ 6= 0. Hence AnnR(m) =
〈γe−1〉. Thus there is a unit element a ∈ R \ m such that τ(1 + m) = aγe−1.
Hence for r + m ∈ R/m, τ(r + m) = rτ(1 + m) = raγe−1. This completes the
proof. �

Now we give some examples of this bilinear form over SR-additive codes,
which we see some of them in [2] and [3].

Corollary 4.3 (The bilinear form of Z2Z4-additive codes). The following bi-
linear form is the only form on Z2Z4-additive codes defined by Definition 4.1.

β′ : (Zα2 × Zβ4 )× (Zα2 × Zβ4 ) −→ Z4, ((x1, y1), (x2, y2)) 7−→ 2(x1.x2) + (y1.y2).

Where the elements x1 and x2 in the inner product 2(x1.x2) are considered as

elements of Zβ4 ; naturally.

Proof. Z4 is a chain ring with maximal ideal 2Z4 of nilpotency index 2. Also
Z4

2Z4

∼= Z2. Now we have the result by Proposition 4.2. �

Proposition 4.4 (The bilinear forms of ZprZps -additive codes, r < s). Let β′

be a bilinear form on ZprZps-additive codes defined by Definition 4.1. Then β′

is defined as follows:

β′ : (Zαpr × Zβps)× (Zαpr × Zβps) −→ Zps ,
((x1, y1), (x2, y2)) 7−→ aps−r(x1.x2) + (y1.y2),

where a ∈ Zps and the elements x1 and x2 in the inner product aps−r(x1.x2)

are considered as elements of Zβps ; naturally.

Proof. HomZps (Zpr ,Zps) = HomZps (
Zps
prZps ,Zps)

∼= AnnZps (prZps) = 〈ps−r〉.
Now by the same argument of Proposition 4.2 we have the result. �

Let R1 and R2 be the finite chain rings with the assumptions of Corollary
3.9. We have the isomorphism ψ : R2

γ
e1
2 R2

→ R1. Let p : R2 → R2

γ
e1
2 R2

be defined

naturally. Hence ι = p−1ψ−1 : R1 → R2 is well defined, where p−1 is a right
inverse of p. The following proposition gives the bilinear forms over direct
product of chain rings.

Proposition 4.5 (The bilinear forms of additive codes over product of chain
rings). Let R1 and R2 be the finite chain rings with the assumptions Corollary
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3.9. If β′ is a bilinear form on R1R2-additive codes defined by Definition 4.1,
then β′ is defined as follows:

β′ : (Rα1 ×R
β
2 )× (Rα1 ×R

β
2 ) −→ R2,

((x1, y1), (x2, y2)) 7−→ aγe2−e1ι(x1.x2) + (y1.y2),

where a ∈ R2.

Proof. HomR2(R1, R2) = HomR2( R2

γ
e1
2 R2

, R2) ∼= AnnR2
(γe12 R2) = γe2−e12 R2.

Now by the same argument of Proposition 4.2 we have the result. �

Proposition 4.6 (The bilinear forms of RiRj-additive codes, i < j). Let Ri
and Rj be such as Corollaries 3.10, 3.11, 3.12, 3.13, 3.14. Then, we have the
following bilinear forms on RiRj-additive codes.

β1,2 : (Rα1 ×R
β
2 )× (Rα1 ×R

β
2 )→ R2, ((x1, y1), (x2, y2)) 7→ u(x1.x2) + y1.y2,

β1,3 : (Rα1 ×R
β
3 )× (Rα1 ×R

β
3 )→ R3, ((x1, y1), (x2, y2)) 7→ u2(x1.x2) + y1.y2,

β2,3 : (Rα2 ×R
β
3 )× (Rα2 ×R

β
3 )→ R3, ((x1, y1), (x2, y2)) 7→ au(x1.x2) + y1.y2,

β1,4 : (Rα1 ×R
β
4 )× (Rα1 ×R

β
4 )→ R4, ((x1, y1), (x2, y2)) 7→ h(x1.x2) + y1.y2,

β2,4 : (Rα2 ×R
β
4 )× (Rα2 ×R

β
4 )→ R4, ((x1, y1), (x2, y2)) 7→ h(x1.x2) + y1.y2,

where a ∈ R3, h ∈ R4u+R4v.

Proof. R2 and R3 are chain rings with maximal ideals R2〈u〉 and R3〈u〉 of
nilpotency indices 2 and 3; respectively. Also R2

〈u〉
∼= R3

〈u〉
∼= R1. Hence we have

the bilinear forms β1,2 and β1,3 by Proposition 4.2. To obtain β2,3, β1,4 and
β2,4 note that

HomR3(R2, R3) ∼= HomR3(
R3

〈u2〉
, R3) ∼= AnnR3(〈u2〉) = 〈u〉,

HomR4(R1, R4) ∼= HomR4(
R4

〈u, v〉
, R4) ∼= AnnR4(〈u, v〉) = R4u+R4v,

HomR4
(R2, R4) ∼= HomR4

(
R4

〈v〉
, R4) ∼= AnnR4

(〈v〉) = R4u+R4v.

Now by the same argument of the proof of Proposition 4.2 we have the result.
�

Proposition 4.7. Let τ : S → R be an R-module homomorphism and C ⊆
Sα × Rβ be an SR-additive cyclic code. If C⊥ is the dual of C with respect
to the bilinear form defined by τ in Definition 4.1, then C⊥ is an SR-additive
cyclic code.

Proof. Clearly C⊥ is an R-submodule of Sα×Rβ , hence C⊥ is an SR-additive
code. Now let

(x, y) = (x0 · · ·xα−1, y0 · · · yβ−1) ∈ C⊥ and



SR-ADDITIVE CODES 1249

φ(x, y) = (xα−1 · · ·xα−2, yβ−1 · · · yβ−2).

Let j = lcm(α, β) and (v, w) ∈ C. Since C is cyclic, φj−1(v, w) ∈ C. Now

(v, w).φ(x, y) = τ(v.φ(x)) + w.φ(y)

= τ(φj−1(v).x) + φj−1(w).y

= φj−1(v, w).(x, y) = 0.

Therefore φ(x, y) ∈ C⊥ and hence C⊥ is cyclic. �

5. Singleton bounds for SR-additive codes

Aydogdu and Siap obtained some bounds on the minimum distance of Z2Z2s -
additive codes [4]. In this section, we generalize the definitions of weight func-
tions and Gray maps on the classes of ZprZps and Z2Z2[u]-additive codes to
SR-additive codes. We obtain singleton bounds for SR-additive codes. As
results, singleton bounds for Z2Z2[u] and Z2[u]Z2-additive codes are given.

Definition 5.1. Let T be a commutative finite ring. For every x = (x1, . . . , xn)
∈ Tn and t ∈ T , the complete weight of x is defined by

nt(x) := |{i : xi = t}|.

For t ∈ T \ {0}, let at be a positive integer, and set a0 = 0. The general weight
function over T is defined as follows:

ωT (x) :=
∑
t∈T

atnt(x).

Now let ωR and ωS be two weight functions over R and S. A weight function
ω over Sα × Rβ is defined as follows: for (x, y) ∈ Sα × Rβ , ω(x, y) = ωS(x) +
ωR(y).

Definition 5.2. Let ns ∈ N be a positive integer. A map φ : R → SnS with
the following conditions is called a gray map:

(a) φ is injective.
(b) for x, y ∈ R, ωR(x− y) = ωS(φ(x)− φ(y)).

A gray map φ is called R-linear if φ is an R-module homomorphism. φ gen-
eralize on Rβ naturally; for x = (x1, . . . , xβ) ∈ Rβ , φ(x) = (φ(x1), . . . , φ(xβ)) ∈
Snsβ . We generalize φ to a map Φ over Sα ×Rβ as follows:

Φ : Sα ×Rβ −→ Sα+nsβ

(x, y) 7−→ (x, φ(y)).

Clearly for any (x, y) ∈ Sα × Rβ , ω(x, y) = ωS(Φ(x, y)). Moreover Φ is an
injective map. Now let C ⊆ Sα × Rβ be an SR-additive code, the minimum
general weight of C is

dω(C) := min{ω(x, y) : (x, y) ∈ C \ {0}}.
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Let As = max{as : s ∈ S}. The following theorem gives singleton bounds for
SR-additive codes.

Theorem 5.3. With above notations, let R be a chain ring and S be an R-
algebra with a ring homomorphism f : R → S. If C ⊆ Sα × Rβ is an SR-
additive code such that Φ(C) ⊆ Sα+nsβ is an R-additive code, then

(1) If S is a principal ideal ring and f is surjective, then bdω(C)−1
As

c ≤
α+ nsβ − rank(C).

(2) If S is a free R-algebra of dimension m, then bdω(C)−1
As

c ≤ α + nsβ −

d rank(C)
m e.

Proof. (1) Φ(C) is an R-additive code. Since f is surjective, hence Φ(C) is
a linear code over S. If dωs(Φ(C)) is the minimum weight of Φ(C) with
respect to the weight function ωS , then by Theorem 3.7 of [20], we have

that bdωs (Φ(C))−1
As

c ≤ α + nsβ − rank(Φ(C)). But dωs(Φ(C)) = dω(C) and

rank(Φ(C)) = rank(C). This completes the proof of part (1).
(2) Φ(C) is an R-additive code and S is a free R-algebra. Hence by Theorem

2.7, bdωs (Φ(C))−1
As

c ≤ α + nsβ − d rank(Φ(C))
m e. Since dωs(Φ(C)) = dω(C) and

rank(Φ(C)) = rank(C), we have the result. �

Corollary 5.4. With above assumptions, let ωS = ωH be the Hamming weight.
Then

(1) If S is a free R-algebra of dimension m, then dω(C) ≤ α + nsβ −
d rank(C)

m e+ 1.
(2) If S is a principal ideal ring and f is surjective, then dω(C) ≤ α +

nsβ − rank(C) + 1.

Remark 5.5. Let R be a finite commutative ring and S be a finite R-algebra
with a surjective ring homomorphism f : R → S. With above assumptions, if
ωS = ωH is the Hamming weight, then dω(C) ≤ α+ nsβ − log|S| |C|+ 1.

Proof. Since f is surjective, Φ(C) is a linear code over S. By the singleton
bound for linear codes we have the result. �

Example 5.6. Consider Z2Z2[u]-additive codes. The Lee weight over Z2[u] =
{0, 1, u, 1 + u} is defined as follows:

ωL(0) = 0, ωL(1) = 1, ωL(u) = 2, ωL(1 + u) = 1.

For any element (x, y) = (x0, . . . , xα−1; y0, . . . , yβ−1) ∈ Zα2 ×Z2[u]β , the weight
function ω is defined in the following way:

ω(x, y) =

α−1∑
i=0

ωH(xi) +

β−1∑
i=0

ωL(yi),



SR-ADDITIVE CODES 1251

where ωH is the hamming weight over Z2 and ωL is the Lee weight over Z2[u].
Now we have the following Gray map:

φ : Z2[u] −→ Z2
2

a+ bu 7−→ (b, a+ b).

It is easy to see that ωL(a+ bu) = ωH(b, a+ b) for any element a+ bu ∈ Z2[u].
This map generalizes to the Gray map Φ:

φ : Zα2 × Z2[u]β −→ Zα+2β
2

(x, y) 7−→ (x, φ(y)).

Clearly ω(x, y) = ωH(φ(x, y)). Now if C ⊆ Zα2 × Z2[u]β is a Z2Z2[u]-additive
code, then we have the following bounds for minimum weight dω(C):

dω(C) ≤ α+ 2β − rank(C) + 1,

dω(C) ≤ α+ 2β − log2 |C|+ 1.

Example 5.7. Consider Z2[u]Z2-additive codes in Example 3.15. The subset

C ⊆ Z2[u]α×Zβ2 is a Z2[u]Z2-additive code if and only if C is a subgroup under

addition. For any element (x, y) ∈ Z2[u]α×Zβ2 , the weight function ω is defined
as follows:

ω(x, y) = ωL(x) + ωH(y),

where ωL is the Lee weight over Z2[u] in above example and ωH is the Hamming
weight over Z2. Let j : Z2 → Z2[u] be the including map. We define a Gray
map as follows:

Φ : Z2[u]α × Zβ2 −→ Z2[u]α+β

(x, y) 7−→ (x, j(y)).

It is easy to see that ω(x, y) = ωL(Φ(x, y)). Since Z2[u] is a free Z2-algebra
of dimension 2, by Theorem 5.3, we have the following bound for minimum
weight:

bdω(C)− 1

2
c ≤ α+ β − d rank(C)

2
e.

6. One weight SR-additive codes

Recently, Dougherty et al. described one weight Z2Z4-additive codes [15].
In this section, we generalize this theory over SR-additive codes where S and
R are chain rings. As applications of the theory, we obtain some results on one
weight ZprZps-additive codes (with respect to homogeneous weight) and one
weight Z2rZ2s -additive codes (with respect to Lee weight). In particular, we
obtain the structure of one weight Z2Z2s-additive codes. First we remind the
following definition of a pre-homogeneous weight in [23].
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Definition 6.1. Let T be a commutative finite ring. A weight function ωT :
T → R is pre-homogeneous if a0 = 0 and there exists a constant cT > 0 such
that for t 6= 0, ∑

t′∈〈t〉

at′ = cT |〈t〉|,

where 〈t〉 is the principal ideal generated by an element t of T . In this case cT
is called the average weight.

Example 6.2 ([23, Example 3.7]). Let R = Z2s . Then Lee weight is pre-
homogeneous with average weight cR = 2s−2.

Lemma 6.3. Let R and S be two chain rings, where S is an R-algebra with
a surjective ring homomorphism f : R → S. Also let ωS and ωR be two pre-
homogeneous weights with average weights cR and cS. If C ⊆ Sα × Rβ is an
SR-additive code with no all zero columns, then∑

c∈C
ω(c) = |C|(αcS + βcR),

where ω is the weight function defined by ωS and ωR over Sα ×Rβ.

Proof. Let S be a chain ring with maximal ideal m = 〈γ〉 of nilpotency index
υ. Write the codewords of C as rows of a matrix G. Consider the column j of
G, where 1 ≤ j ≤ α. Let J be the ideal of S generated by all elements of the
column j. Then there exists 1 ≤ t ≤ υ that J = 〈γt〉. Since f is surjective and
C is an R-submodule, any element of J is an element of the column j. Now
we show that any two elements of J have the same repetition number in the
column j. Consider two elements γt and γt+1 of J with the repetition numbers
nt and nt+1, respectively. Since γt+1 = γγt, hence nt ≤ nt+1. On the other
hand γt(γ−1) = γt+1−γt. Since γ−1 is invertible, γt = (γ−1)−1(γt+1−γt).
Hence nt+1 ≤ nt and hence nt = nt+1. Thus all elements of J have the same

repetition number |C||J| in the column j. Therefore the sum of the weights of all

elements of the column j is equal to

|C|
|J |

(
∑
s∈J

as) =
|C|
|J |

(cS |J |) = |C||cS |.

By the same argument, the sum of the weights of all elements of the columns
of β coordinates is equal to |C||cR|. Therefore∑

c∈C
ω(c) = |C|(αcS + βcR).

�

Theorem 6.4. With the assumptions of above lemma, let C ⊆ Sα × Rβ be
a one weight SR-additive code with weight m such that there exists no zero
columns in the generator matrix of C. Then there exists a unique positive
integer λ such that m = λ|C| and αcS + βcR = λ(|C| − 1).
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Proof. By above lemma, we have that∑
c∈C

ω(c) = |C|(αcS + βcR).

On the other hand, the sum of the weights of all codewords is (|C|−1)m. Hence
|C|(αcS+βcR) = (|C|−1)m. But gcd(|C|, (|C|−1)) = 1. Therefore there exists
a positive integer λ such that m = λ|C| and hence αcS +βcR = λ(|C|−1). �

Let T be a finite chain ring with maximal ideal 〈γ〉, nilpotency index e, and
residue field T/〈γ〉 = Fpk . A homogenous weight is defined as follows

ωhom(t) =

 (pk − 1)pk(e−2), t ∈ T \ 〈γe−1〉;
pk(e−1), t ∈ 〈γe−1〉 \ 〈0〉;
0, t = 0.

Lemma 6.5. With above assumptions, let T be a chain ring. Then ωhom is
pre-homogeneous with average weight cT = (pk − 1)pk(e−2).

Proof. Let 〈t〉 be an ideal of T . By the structure of chain rings,〈t〉 = 〈γj〉 for
some j; 1 ≤ j ≤ e. Hence |〈γe−1〉| = |〈γj〉| = pk(e−j). Therefore∑

t′∈〈t〉

at′ =
∑

t′∈〈γj〉\〈γe−1〉

at′ +
∑

t′∈〈γe−1〉

at′

= (pk − 1)pk(e−2)(|〈γj〉| − |〈γe−1〉|) + pk(e−1)(|〈γe−1〉| − 1)

= (pk − 1)pk(e−2)(pk(e−j) − pk) + pk(e−1)(pk − 1)

= (pk − 1)pk(e−2)pk(e−j)

= cT |〈t〉|.
This completes the proof. �

Theorem 6.6. Let ω be the weight function defined by ωhom over Zpr and Zps
on ZprZps-additive codes. If C ⊆ Zαpr × Zβps is a one weight ZprZps-additive
code with weight m such that there exists no zero columns in the generator
matrix of C, then there exists a unique positive integer λ such that m = λ|C|
and (p− 1)pr−2(α+ ps−rβ) = λ(|C| − 1).

Proof. By Lemma 6.5, cZpr = (p − 1)pr−2 and cZps = (p − 1)ps−2. Now we
have the result by Theorem 6.4. �

By Example 6.2, the Lee weight over Z2r and Z2s is pre-homogeneous. Hence
we have the following result on one weight Z2rZ2s-additive codes.

Theorem 6.7. Let C ⊆ Zα2r × Zβ2s be a Z2rZ2s-additive code. Consider the
weight ω defined by Lee weight over Z2r and Z2s . If C is a one weight Z2rZ2s-
additive code with weight m such that there exists no zero columns in the gen-
erator matrix of C, then there exists a unique positive integer λ such that
m = λ|C| and 2r−2(α+ 2s−rβ) = λ(|C| − 1).
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Proof. It follows from Example 6.2 and Theorem 6.4. �

The structure of Z2Z2s-additive codes is studied in [4]. If a Z2Z2s -additive

code C ⊆ Zα2 × Zβ2s is isomorphic to an abelian structure Zk0+ks
2 × Zk12s × · · · ×

Zks−1

4 , then we say that C is of type (α, β; k0, k1, k2, . . . , ks). The following
theorem gives the structure of one weight Z2Z2s-additive codes which is a
generalization of Theorem 3.10 in [15].

Theorem 6.8. Let C ⊆ Zα2 × Zβ2s be a one weight Z2Z2s-additive code of type
(α, β; k0, k1, k2, . . . , ks) with weight m. Let k = k0 + sk1 + (s− 1)k2 + · · ·+ ks.
Then there exists a positive integer λ such that m = λ2k−1, where α and β
satisfy α + 2s−1β = λ(2k − 1). Furthermore, if m is an odd integer, then
α is odd and C = {(0α, 0β), (1α, 2

s−1
β )}, where 1α = (1, . . . , 1) ∈ Zα2 and

2s−1
β = (2s−1, . . . , 2s−1) ∈ Zβ2s .

Proof. By Lemma 6.3,
∑
c∈C ω(c) = |C|(α2 + 2s−2β) = |C|

2 (α + 2s−1β). On
the other hand, the sum of the weights of all codewords is (|C| − 1)m. But

gcd( |C|2 , (|C| − 1)) = gcd(2k−1, 2k − 1) = 1. Therefore there exists a positive

integer λ such that m = λ |C|2 = λ2k−1 and hence α+ 2s−1β = λ(2k − 1).

If m is odd, then λ2k−1 is odd. Hence λ is odd and k = 1. Moreover
the equality m = λ = α + 2s−1β implies that α is odd. Since |C| = 2 and
(1α, 2

s−1
β ) is the only word with weight α + 2s−1β and addition order 2, we

have that C = {(0α, 0β), (1α, 2
s−1
β )}. �
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[6] J. J. Bernal, J. Borges, C. Fernández-Córdoba, and M. Villanueva, Permutation decoding

of Z2Z4-linear codes, Des. Codes Cryptogr. 76 (2015), no. 2, 269–277. https://doi.org/
10.1007/s10623-014-9946-4

[7] M. Bilal, J. Borges, S. T. Dougherty, and C. Fernández-Córdoba, Maximum distance
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[12] H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain
rings, IEEE Trans. Inform. Theory 50 (2004), no. 8, 1728–1744. https://doi.org/10.

1109/TIT.2004.831789
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