Bull. Korean Math. Soc. **56** (2019), No. 5, pp. 1235–1255 https://doi.org/10.4134/BKMS.b180995 pISSN: 1015-8634 / eISSN: 2234-3016

SR-ADDITIVE CODES

SAADOUN MAHMOUDI AND KARIM SAMEI

ABSTRACT. In this paper, we introduce SR-additive codes as a generalization of the classes of $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ and $\mathbb{Z}_2\mathbb{Z}_2[u]$ -additive codes, where S is an R-algebra and an SR-additive code is an R-submodule of $S^{\alpha} \times R^{\beta}$. In particular, the definitions of bilinear forms, weight functions and Gray maps on the classes of $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ and $\mathbb{Z}_2\mathbb{Z}_2[u]$ -additive codes are generalized to SR-additive codes. Also the singleton bound for SR-additive codes and some results on one weight SR-additive codes are given. Among other important results, we obtain the structure of SR-additive cyclic codes. As some results of the theory, the structure of cyclic $\mathbb{Z}_2\mathbb{Z}_4$, $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$, $\mathbb{Z}_2\mathbb{Z}_2[u]$, $(\mathbb{Z}_2)(\mathbb{Z}_2+u\mathbb{Z}_2+u^2\mathbb{Z}_2)$, $(\mathbb{Z}_2+u\mathbb{Z}_2+u^2\mathbb{Z}_2)$, $(\mathbb{Z}_2+u\mathbb{Z}_2+v\mathbb{Z}_2)$ and $(\mathbb{Z}_2+u\mathbb{Z}_2)(\mathbb{Z}_2+u\mathbb{Z}_2+v\mathbb{Z}_2)$ -additive codes are presented.

1. Introduction

An important class of additive codes is $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes. A subgroup of $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$, where α and β are positive integers, is called a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code. A comprehensive study on $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes has been introduced in [9] by Borges et al. The studies on $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes and their algebraic structures have attracted many researchers; see [2,6–9,13,15–17].

 $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes were generalized to $\mathbb{Z}_2\mathbb{Z}_{2^s}$ -additive codes [4, 21]. Also $\mathbb{Z}_2\mathbb{Z}_2[u]$ -additive codes is another generalization of $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes which has been introduced by Aydogdu et al. [3].

Recently, Aydogdu and Siap generalized $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes and $\mathbb{Z}_2\mathbb{Z}_{2^s}$ -additive codes to $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive codes [5]. Also, $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive cyclic codes have been studied in [10]. Also additive codes were studied over direct product of chain rings in [11].

Note that in $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes and $\mathbb{Z}_2\mathbb{Z}_2^s$ -additive codes, \mathbb{Z}_2 is a \mathbb{Z}_4 algebra and \mathbb{Z}_{2^s} -algebra; respectively. Also in $\mathbb{Z}_2\mathbb{Z}_2[u]$ -additive codes, \mathbb{Z}_2 is considered as a $\mathbb{Z}_2[u]$ -algebra and \mathbb{Z}_{p^r} is a \mathbb{Z}_{p^s} -algebra in $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive codes. Also in additive codes over product of two chain rings, one of the rings is an algebra over another ring.

©2019 Korean Mathematical Society

Received October 18, 2018; Accepted December 18, 2018.

 $^{2010\} Mathematics\ Subject\ Classification.\ 94B15.$

Key words and phrases. additive code, chain ring, Galois ring.

In this paper, we generalize above codes to SR-additive codes, where S is an R-algebra. In this generalization, a subset C of $S^{\alpha} \times R^{\beta}$ is called an SRadditive code if C is an R-submodule of $S^{\alpha} \times R^{\beta}$. We present the structure of SR-additive cyclic codes. Also we give the structure of $\mathbb{Z}_2\mathbb{Z}_4$ -additive cyclic codes, $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive cyclic codes, $(\mathbb{Z}_2)(\mathbb{Z}_2 + u\mathbb{Z}_2)$ -additive cyclic codes and cyclic codes over direct product of chain rings as results of this theory, which the structure of these codes are the main parts of [2], [10], [22] and [11]; respectively.

Also, we obtain the structure of $(\mathbb{Z}_2)(\mathbb{Z}_2 + u\mathbb{Z}_2 + u^2\mathbb{Z}_2)$, $(\mathbb{Z}_2 + u\mathbb{Z}_2)(\mathbb{Z}_2 + u\mathbb{Z}_2)(\mathbb{Z}_2 + u\mathbb{Z}_2)(\mathbb{Z}_2 + u\mathbb{Z}_2)$, $(\mathbb{Z}_2)(\mathbb{Z}_2 + u\mathbb{Z}_2 + v\mathbb{Z}_2)$ and $(\mathbb{Z}_2 + u\mathbb{Z}_2)(\mathbb{Z}_2 + u\mathbb{Z}_2 + v\mathbb{Z}_2)$ -additive cyclic codes as other results of this theory.

In Section 4, we define an inner product over SR-additive codes which is a generalization of the inner products over $\mathbb{Z}_2\mathbb{Z}_4$, $\mathbb{Z}_2\mathbb{Z}_{2^s}$, $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$, $\mathbb{Z}_2\mathbb{Z}_2[u]$ additive codes. We show that the dual code of any SR-additive cyclic code is also an SR-additive cyclic code.

In Section 5, we find the Singleton bound for SR-additive codes. As examples, the Singleton bound for $\mathbb{Z}_2\mathbb{Z}_2[u]$ -additive codes and $\mathbb{Z}_2[u]\mathbb{Z}_2$ -additive codes are given. In Section 6, we investigate one weight SR-additive codes. In particular, one weight $\mathbb{Z}_2\mathbb{Z}_{2^s}$ -additive codes are determined.

Throughout this paper R and S are finite commutative rings such that S is an R-algebra.

2. Preliminaries

In this section, we remind some facts of R-additive codes which are applied throughout this paper. Also the structure of cyclic codes over some rings are given.

Definition 2.1. Let S be an R-algebra with a ring homomorphism $f : R \to S$. A nonempty subset C of S^n is called R-additive code if C is an R-submodule of S^n , where the scalar multiplication is defined as follows: for $r \in R$ and $(a_0, a_1, \ldots, a_{n-1}) \in C$, we have

 $r.(a_0, a_1, \dots, a_{n-1}) = (f(r)a_0, f(r)a_1, \dots, f(r)a_{n-1}).$

Example 2.2 (Linear codes). Let R be a commutative ring with identity. A subset C of R^n is called a linear code if C is an R-submodule of R^n . Now consider R as R-algebra with identity homomorphism. Clearly, the subset C of R^n is a linear code if and only if C is an R-additive code.

Above example shows that R-additive codes is a generalization of linear codes. The following example give some special cases which R-additive codes and linear codes are the same.

Example 2.3. (1) Let $f : R \to S$ be a ring isomorphism. In this case, *R*-additive codes over *S* are exactly linear codes over *S*.

(2) Let S = R/I, where I is an ideal of R and $f : R \to R/I$ is the natural homomorphism. For any nonempty subset C of S^n , we have I.C = 0. Hence

R-additive codes over *S* are exactly linear codes over *S*. Moreover, if $f : R \to S$ is a surjective ring homomorphism, then *R*-additive codes over *S* are exactly linear codes.

Example 2.4 (Additive codes). Let S be a local ring of characteristic p^r . A subset C of S^n is called an additive code if C is a subgroup of S^n under addition. But we have the injective ring homomorphism $f : \mathbb{Z}_{p^r} \to S, x \mapsto x.1_S$. It is easy to see that additive codes are exactly \mathbb{Z}_{p^r} -submodules of S^n . In other words, additive codes over S are exactly \mathbb{Z}_{p^r} -additive codes over S.

Example 2.5 (\mathbb{F}_q -linear codes over \mathbb{F}_{q^t}). A subset C of $(\mathbb{F}_{q^t})^n$ is called an \mathbb{F}_q -linear code over \mathbb{F}_{q^t} of length n, if C is an \mathbb{F}_q -submodule of $(\mathbb{F}_{q^t})^n$. Clearly these codes are R-additive codes, where $R = \mathbb{F}_q$ and $S = \mathbb{F}_{q^t}$.

For a positive integer n, let $R_n = R[x]/\langle x^n - 1 \rangle$ and $S_n = S[x]/\langle x^n - 1 \rangle$. Consider the following correspondence map.

(1)
$$\pi: S^n \longrightarrow S_n,$$
$$(a_0, a_1, \dots, a_{n-1}) \longmapsto a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + \langle x^n - 1 \rangle$$

Clearly π is an *R*-module isomorphism. We will identify S^n with S_n under π and for simplicity, we write the polynomial $a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$ for the residue class $a_0 + a_1x + \cdots + a_{n-1}x^{n-1} + \langle x^n - 1 \rangle$. The following proposition gives the structure of cyclic *R*-additive codes.

Proposition 2.6 ([19, Proposition 3.1]). Let π be the correspondence map defined in (1). Then a nonempty subset C of S^n is a cyclic R-additive code if and only if $\pi(C)$ is an R_n -submodule of S_n .

Let ω be a weight function over S. If $A_S = Max\{\omega(x) : x \in S\}$, then we have the following bound for minimum weight of R-additive codes.

Theorem 2.7 ([20, Theorem 3.5]). Let R be a finite chain ring and S be a free R-algebra of dim_R(S) = m. If there exists a nondegenerate bilinear form $\beta: S \times S \to R$, then $\lfloor \frac{d_{\omega}(C)-1}{A_S} \rfloor \leq n - \lceil \frac{\operatorname{rank}(C)}{m} \rceil$.

Now we remind the structure of cyclic codes over a chain ring R of length n coprime to $\operatorname{Char}(R)$. Also the structure of cyclic codes over $\mathbb{Z}_2 + u\mathbb{Z}_2$, $\mathbb{Z}_2 + u\mathbb{Z}_2 + u\mathbb{Z}_2$ and $\mathbb{Z}_2 + u\mathbb{Z}_2 + v\mathbb{Z}_2$ for an arbitrary length are given.

Theorem 2.8. Let R be a chain ring with the maximal ideal $\mathfrak{m} = \langle \gamma \rangle$ of nilpotency index s and C be a cyclic code of length n over R, where $(n, \operatorname{Char}(R)) = 1$. Then

- (1) There is a unique set of pairwise co-prime monic polynomials g_0, \ldots, g_s over R (possibly, some of them are equal to 1) such that $g_0g_1\cdots g_s = x^n - 1$ in R[x] and $C = \langle \widehat{g_1}, \gamma \widehat{g_2}, \ldots, \gamma^{s-1} \widehat{g_s} \rangle$, where $\widehat{g_i} = \prod_{j \neq i} g_j$. Moreover, $|C| = |R/\mathfrak{m}| \sum_{i=0}^{s-1} (s-i) \deg g_{i+1}$.
- (2) If $h_i = g_0 g_{i+2} \cdots g_s$ for $i = 0, 1, \dots, s-2$ and $h_{s-1} = g_0$. Then $h_{s-1}|h_{s-2}|\cdots|h_0|(x^n-1)$, and $C = \langle h_0 + \gamma h_1 + \cdots + \gamma^{s-1}h_{s-1} \rangle$.

Proof. Part (1) follows from Theorem 3.4 in [12]. We have part (2) by Theorem 3.5 in [12] and Theorem 2.4 in [11]. \Box

The following corollary is a result of Proposition 2.8.

Corollary 2.9. Let C be a cyclic code of length n over $R = \mathbb{Z}_{p^s}$, where (n, p) =1. Then there exists a set of polynomials $h_0, h_1, \ldots, h_{s-1}$ in R[x] such that $h_0|(x^n-1), h_i|h_{i-1} \text{ for } i=1,\ldots,s-1 \text{ and } C = \langle h_0 + ph_1 + \cdots + p^{s-1}h_{s-1} \rangle.$ Moreover if $\hat{h_i} = \frac{h_{i-1}}{h_i}$ for $i \ge 1$ and $\hat{h_0} = \frac{x^n-1}{h_0}$, then $|C| = p^d$, where $d = p^d$. $\sum_{i=0}^{s-1} (s-i) \deg \hat{h_i}$. In special case, if n is odd and C is a cyclic code of length n over $R = \mathbb{Z}_4$, then $C = \langle g(x) + 2a(x) \rangle$, where $a(x)|g(x)|(x^n - 1)$ in $\mathbb{Z}_4[x]$. In this case, $|C| = 2^{2t_1+t_2}$, where $t_1 = \deg \frac{x^n - 1}{g(x)}$ and $t_2 = \deg \frac{g(x)}{a(x)}$.

Theorem 2.10 ([1, Theorem 1]). Let C be a cyclic code over $\mathbb{Z}_2 + u\mathbb{Z}_2$ of length n. Then

- (1) If n is odd, then $(\mathbb{Z}_2 + u\mathbb{Z}_2)_n$ is principal ideal ring and $C = \langle g(x) + g(x) \rangle$ $|ua(x)\rangle$, where g(x) and a(x) are polynomials in $\mathbb{Z}_2[x]$ such that $a(x)|g(x)|(x^n-1) \mod 2.$
- (2) If n is not odd, then
 - (a) $C = \langle g(x) + up(x) \rangle$ such that $g(x)|(x^n 1) \mod 2$, $(g(x) + up(x))|(x^n - 1) \text{ in } \mathbb{Z}_2 + u\mathbb{Z}_2 \text{ and } g(x)|p(x)(\frac{x^n - 1}{g(x)}). \text{ Or }$
 - (b) $C = \langle g(x) + up(x), ua(x) \rangle$ such that g(x), a(x) and p(x) are polynomials in $\mathbb{Z}_2[x]$. And $a(x)|g(x)|(x^n-1) \mod 2$, $a(x)|p(x)(\frac{x^n-1}{a(x)})$ and $\deg a(x) > \deg p(x)$.

Theorem 2.11 ([1, Theorem 2]). Let C be a cyclic code over $\mathbb{Z}_2 + u\mathbb{Z}_2 + u^2\mathbb{Z}_2$ of length n. Then

- (1) If n is odd, then $(\mathbb{Z}_2 + u\mathbb{Z}_2 + u^2\mathbb{Z}_2)_n$ is principal ideal ring. C = $\langle g(x) + ua_1(x) + u^2a_2(x) \rangle$, where $a_1(x)$, $a_2(x)$ and g(x) are polynomials in $\mathbb{Z}_2[x]$ such that $a_2(x)|a_1(x)|g(x)|(x^n-1) \mod 2$.
- (2) If n is not odd, then
 - (a) $C = \langle g + up_1 + u^2 p_2 \rangle$, where $p_2 |p_1|g|(x^n 1) \mod 2$, $(g + up_1)|(x^n 1)|(x^n 1)|$ 1) in $\mathbb{Z}_2 + u\mathbb{Z}_2$ and $(g + up_1 + u^2p_2)|(x^n - 1)$ in $\mathbb{Z}_2 + u\mathbb{Z}_2 + u^2\mathbb{Z}_2$ and $\deg p_2 < \deg p_1$.
 - (b) $C = \langle g + up_1 + u^2p_2, u^2a_2 \rangle$, where $a_2|g|(x^n 1) \mod 2$, $(g + up_1)|(x^n 1) \ in \mathbb{Z}_2 + u\mathbb{Z}_2$, $g(x)|p_1(\frac{x^n 1}{g(x)})$ and $a_2 \ divides \ p_1(\frac{x^n 1}{g(x)})$ and $p_2(\frac{x^n 1}{g(x)})(\frac{x^n 1}{g(x)})$ and $\deg p_2 < \deg a_2$. Or (c) $C = \langle g + up_1 + u^2p_2, ua_1 + u^2q_1, u^2a_2 \rangle$, where $a_2|a_1|g|(x^n 1) \mod 2$, $a_1|p_1(\frac{x^n 1}{g(x)})$ and $a_2 \ divides \ q_1(\frac{x^n 1}{a_1(x)})$ and $p_2(\frac{x^n 1}{g(x)})(\frac{x^n 1}{a_1(x)})$.
 - Moreover, $\deg p_2 < \deg a_2$, $\deg q_1 < \deg a_2$ and $\deg p_1 < \deg a_1$.

The following theorem gives the structure of cyclic codes over the non Frobenius ring $\mathbb{Z}_2 + u\mathbb{Z}_2 + v\mathbb{Z}_2 = \{0, 1, u, v, 1 + u, 1 + v, u + v, 1 + u + v\}.$

Theorem 2.12. Let C be a cyclic code over $R = \mathbb{Z}_2 + u\mathbb{Z}_2 + v\mathbb{Z}_2$ of length n. Then C has a unique representation as follows:

 $C = \langle g + up_1 + vp_2, ua_1 + vq_1, va_2 \rangle,$

where

(1) $a_2|a_1|g|(x^n-1)$ and $a_1|p_1(\frac{x^n-1}{g})$, (2) $a_2|q_1(\frac{x^n-1}{a_1})$ and $a_2|p_2(\frac{x^n-1}{g})(\frac{x^n-1}{a_1})$, (3) deg p_2 , deg $q_1 < \deg a_2$.

Moreover if n is odd, then $C = \langle g + ua_1, va_2 \rangle$, where $a_2|a_1|g|(x^n - 1)$.

Proof. See Theorems 1 and 2, Lemmas 3 and 4 and Corollary 1 in [18]. \Box

3. SR-additive cyclic codes

The structure of $\mathbb{Z}_2\mathbb{Z}_4$ -additive cyclic codes investigated in [2]. As generalizations of these codes, recently $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ and $\mathbb{Z}_2\mathbb{Z}_2[u]$ additive codes have been introduced in [3] and [5]. Also the generator polynomials of $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive cyclic codes were given in [10]. Moreover, additive codes studied over direct product of chain rings with the same residue fields in [11]. In this section, we define and extend these codes to SR-additive codes, where R is a finite commutative ring and S is a finite commutative R-algebra. A theory to find the generators of SR-additive cyclic codes is given. As results, we obtain the generators of $\mathbb{Z}_2\mathbb{Z}_4$, $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$, $\mathbb{Z}_2\mathbb{Z}_2[u]$ -additive cyclic codes. Also the results in [11] on the structure of cyclic codes over direct product of chain rings with the same residue fields are given as a result of the theory. Moreover the structure of $(\mathbb{Z}_2)(\mathbb{Z}_2 + u\mathbb{Z}_2 + u\mathbb{Z}_2)$, $(\mathbb{Z}_2 + u\mathbb{Z}_2)(\mathbb{Z}_2 + u\mathbb{Z}_2 + u\mathbb{Z}_2)$, $(\mathbb{Z}_2)(\mathbb{Z}_2 + u\mathbb{Z}_2 + v\mathbb{Z}_2)$ and $(\mathbb{Z}_2 + u\mathbb{Z}_2)(\mathbb{Z}_2 + u\mathbb{Z}_2 + v\mathbb{Z}_2)$ -additive cyclic codes as new examples of SRadditive cyclic codes are given, which we can not obtain their structures by previous works.

Definition 3.1. Let α and β be two positive integers. A nonempty subset C of $S^{\alpha} \times R^{\beta}$ is called an SR-additive code if C is an R-submodule with the following scalar multiplication: for $r \in R$ and $(s_{\alpha}, r_{\beta}) = (s_0, s_1, \ldots, s_{\alpha-1}, r_0, r_1, \ldots, r_{\beta-1}) \in C$,

 $r.(s_{\alpha}, r_{\beta}) = (f(r)s_{\alpha}, rr_{\beta}) = (f(r)s_{0}, f(r)s_{1}, \dots, f(r)s_{\alpha-1}, rr_{0}, rr_{1}, \dots, rr_{\beta-1}).$

We say that an *SR*-additive code *C* is cyclic if $(s_{\alpha-1}, s_0, \ldots, s_{\alpha-2}, r_{\beta-1}, r_0, \ldots, r_{\beta-2}) \in C$ whenever $(s_0, s_1, \ldots, s_{\alpha-1}, r_0, r_1, \ldots, r_{\beta-1}) \in C$.

Consider the map $\pi': S^{\alpha} \times R^{\beta} \to S_{\alpha} \times R_{\beta}, (s_0, s_1, \dots, s_{\alpha-1}, r_0, r_1, \dots, r_{\beta-1})$ $\mapsto (s_0 + s_1 x + \dots + s_{\alpha-1} x^{\alpha-1} + \langle x^{\alpha} - 1 \rangle, r_{0+} r_1 x + \dots + r_{\beta-1} x^{\beta-1} + \langle x^{\beta} - 1 \rangle).$ Clearly π' is an *R*-module isomorphism. We will identify $S^{\alpha} \times R^{\beta}$ with $S_{\alpha} \times R_{\beta}$ under π' and for simplicity we write $(s_0 + s_1 x + \dots + s_{\alpha-1} x^{\alpha-1}, r_{0+} r_1 x + \dots + r_{\beta-1} x^{\beta-1})$ for above residue class.

Lemma 3.2. A subset C of $S^{\alpha} \times R^{\beta}$ is an SR-additive cyclic code if and only if $\pi'(C)$ is an R[x]-submodule of $S_{\alpha} \times R_{\beta}$.

Proof. Clearly $S_{\alpha} \times R_{\beta}$ is an R[x]-module. Since π' is an R-module isomorphism, C is an R-submodule if and only if $\pi'(C)$ is an R-submodule. Now for an element $(s_{\alpha}, r_{\beta}) = (s_0, s_1, \ldots, s_{\alpha-1}, r_0, r_1, \ldots, r_{\beta-1}) \in C$, the cyclic shift $\sigma(s_{\alpha}, r_{\beta}) = (s_{\alpha-1}, s_0, \ldots, s_{\alpha-2}, r_{\beta-1}, r_0, \ldots, r_{\beta-2}) \in C$ if and only if $x\pi'(s_{\alpha}, r_{\beta}) = \pi'(\sigma(s_{\alpha}, r_{\beta})) \in \pi'(C)$. This completes the proof.

We identify C with $\pi'(C)$. Now we find the generator polynomials of C.

Theorem 3.3. A subset C of $S_{\alpha} \times R_{\beta}$ is an SR-additive cyclic code if and only if $C = \langle (g_1, 0), \ldots, (g_s, 0), (h_1, f_1), \ldots, (h_r, f_r) \rangle_{R[x]}$ such that

- (1) $C_1 = \langle f_1, \ldots, f_r \rangle_{R[x]}$ is a cyclic linear code over R of length β ,
- (2) $C_2 = \langle g_1, \ldots, g_s \rangle_{R[x]}$ is a cyclic *R*-additive code over *S* of length α ,
- (3) h_1, \ldots, h_r are elements of S_{α} ,
- (4) $|C| = |C_1||C_2|$.

Proof. Let $C \subseteq S_{\alpha} \times R_{\beta}$ be an SR-additive cyclic code. Clearly the projection map $\phi: C \to R_{\beta}$ is an R[x]-homomorphism. Hence $Im(\phi)$ is an R[x]-submodule of R_{β} . As $\langle x^{\beta} - 1 \rangle Im(\phi) \subseteq \langle x^{\beta} - 1 \rangle R_{\beta} = 0$, $Im(\phi)$ is an ideal of R_{β} . In other words $Im(\phi)$ is a linear cyclic code over R of length β , say C_1 . Let $C_1 = \langle f_1, \ldots, f_r \rangle_{R[x]} = \langle \phi(h_1, f_1), \ldots, \phi(h_r, f_r) \rangle_{R[x]}$. Now, ker ϕ is an R[x]-submodule of C. Let $C_2 = \{g \in S_{\alpha} : (g, 0) \in \ker \phi\}$, then clearly C_2 is an R[x]-submodule of S_{α} . Since $\langle x^{\alpha} - 1 \rangle C_2 \subseteq \langle x^{\alpha} - 1 \rangle S_{\alpha} = 0$, C_2 is an R_{α} -module. In other words C_2 is a cyclic R-additive code of length α over S. If $C_2 = \langle g_1, \ldots, g_s \rangle_{R_{\alpha}}$, then ker $\phi = \langle (g_1, 0), \ldots, (g_s, 0) \rangle_{R[x]}$. Therefore $C = \langle (g_1, 0), \ldots, (g_s, 0), (h_1, f_1), \ldots, (h_r, f_r) \rangle_{R[x]}$. Since ϕ is an R[x]-homomorphism, $\frac{C}{\ker \phi} \cong C_1$, hence $|C| = |\ker \phi| |C_1| = |C_2| |C_1|$.

Proposition 3.4. With the above assumptions, let $f : R \to S$ be a surjective ring homomorphism and $C = \langle (g_1, 0), \ldots, (g_s, 0), (h_1, f_1), \ldots, (h_r, f_r) \rangle_{R[x]}$ be an SR-additive cyclic code. Also let $\{g_{i_1}, \ldots, g_{i_t}\}$ be a subset of $\{g_1, \ldots, g_s\}$ such that g_{i_j} is monic for all $j; j = 1, \ldots, t$. Then we can assume that $\deg h_i < \min\{\deg g_{i_j} : 1 \le j \le t\}$ for all $i; 1 \le i \le r$.

Proof. Since f is surjective, every R-additive code over S is linear. In particular, C_2 is a cyclic linear code over S. Let g_j be monic and $\deg h_i \geq \deg g_j$ for some i. Let $\deg h_i - \deg g_j = \ell$ and $a \in S$ be the leading coefficient of h_i . Then $(h_i, f_i) = (h_i - ax^\ell g_j, f_i) + ax^\ell (g_j, 0)$. Thus $\langle (h_i, f_i), (g_j, 0) \rangle = \langle (h_i - ax^\ell g_j, f_i), (g_j, 0) \rangle$. Hence we can use $h_i - ax^\ell g_j$ instead of h_i . By this method we can reduce $\deg h_i$.

Proposition 3.5. Let $C = \langle (g_1, 0), \dots, (g_s, 0), (h_1, f_1), \dots, (h_r, f_r) \rangle_{R[x]}$ be an SR-additive cyclic code as in Theorem 3.3. Then

$$(x^{\beta}-1)h_i \in C_2 = \langle g_1, \dots, g_s \rangle_{R[x]}.$$

Proof. Clearly $(x^{\beta} - 1)(h_i, f_i) = ((x^{\beta} - 1)h_i, 0) \in \ker \phi$. Hence $(x^{\beta} - 1)h_i \in C_2 = \langle g_1, \dots, g_s \rangle_{R[x]}$.

Corollary 3.6 ($(R/\mathfrak{m})R$ -additive cyclic codes). Let R be a finite local ring with the unique maximal ideal \mathfrak{m} and $C \subseteq (R/\mathfrak{m})^{\alpha} \times R^{\beta}$ be an $(R/\mathfrak{m})R$ -additive cyclic code. Then $C = \langle (g, 0), (h_1, f_1), \ldots, (h_r, f_r) \rangle$ with the following conditions:

- (a) $g|x^{\alpha} 1$ over (R/\mathfrak{m}) ,
- (b) $h_i \in (R/\mathfrak{m})_{\alpha}$,
- (c) $C_1 = \langle f_1, \ldots, f_r \rangle$ is a linear cyclic code over R.

Proof. R/\mathfrak{m} is an R-algebra with the natural ring homomorphism $f : R \to R/\mathfrak{m}$. Since f is surjective, R-additive codes over R/\mathfrak{m} are linear over R/\mathfrak{m} . Now, we have the results by Theorem 3.3.

 $\mathbb{Z}_2\mathbb{Z}_4$ -additive cyclic codes is an example of $(R/\mathfrak{m})R$ -additive cyclic codes. This class of codes is discussed in [2]. We obtain the structure of these codes as a result of above discussion.

Corollary 3.7 ($\mathbb{Z}_2\mathbb{Z}_4$ -additive cyclic codes). Let $C \subseteq (\mathbb{Z}_2)_{\alpha} \times (\mathbb{Z}_4)_{\beta}$ be a $\mathbb{Z}_2\mathbb{Z}_4$ additive cyclic code. If β is an odd integer, then

- (1) $C = \langle (h(x), 0), (\ell(x), g(x) + 2a(x)) \rangle$, where
- (a) h(x) is a monic polynomial over \mathbb{Z}_2 such that $h(x)|(x^{\alpha}-1)$,
- (b) $a(x)|g(x)|(x^{\beta}-1)$ in $\mathbb{Z}_4[x]$,
- (c) $\ell(x) \in (\mathbb{Z}_2)_{\alpha}$ and $\deg \ell(x) < \deg h(x)$.
- (2) If $t_1 = \deg \frac{x^{\beta} 1}{g(x)}$, $t_2 = \deg \frac{g(x)}{a(x)}$ and $t = \deg h(x)$, then $|C| = 2^{2t_1 + t_2 + \alpha t}$.

Proof. By above corollary, $C = \langle (h(x), 0), (\ell_1, f_1), \dots, (\ell_r, f_r) \rangle$, where h(x) is a monic polynomial over \mathbb{Z}_2 such that $h(x)|(x^{\alpha} - 1)$. Also $C_1 = \langle f_1, \dots, f_r \rangle$ is a linear cyclic code over \mathbb{Z}_4 . By Corollary 2.9, there exist polynomials g(x)and a(x) over \mathbb{Z}_4 such that $C_1 = \langle g(x) + 2a(x) \rangle$, where $a(x)|g(x)|(x^{\beta} - 1)$ in $\mathbb{Z}_4[x]$. Hence $C = \langle (h(x), 0), (\ell(x), g(x) + 2a(x)) \rangle$, where $\ell(x) \in (\mathbb{Z}_2)_{\alpha}$ and $\deg \ell(x) < \deg h(x)$. By Corollary 2.9, $|C_1| = 2^{2t_1+t_2}$, where $t_1 = \deg \frac{x^{\beta}-1}{g(x)}$ and $t_2 = \deg \frac{g(x)}{a(x)}$. Also $|C_2| = |\langle h(x) \rangle| = 2^{\alpha-t}$, where $t = \deg h(x)$. Therefore by Theorem 3.3, $|C| = |C_1||C_2| = 2^{2t_1+t_2+\alpha-t}$.

Another example of SR-additive codes is the class of $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive cyclic codes (see [10]). We give the structure of these codes as another result of above discussion.

Corollary 3.8 $(\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}\text{-additive cyclic codes})$. Let $1 \leq r < s$ and $C \subseteq (\mathbb{Z}_{p^r})_{\alpha} \times (\mathbb{Z}_{p^s})_{\beta}$ be a $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}\text{-additive cyclic code}$. If $(p, \beta) = 1$ and $(p, \alpha) = 1$, then

- (1) $C = \langle (h'_0 + ph'_1 + \dots + p^{r-1}h'_{r-1}, 0), (\ell(x), h_0 + ph_1 + \dots + p^{s-1}h_{s-1}) \rangle,$ where
 - (a) $h_0, h_1, \ldots, h_{s-1}$ are polynomials in $\mathbb{Z}_{p^s}[x]$ such that $h_0|(x^\beta 1)$ and $h_i|h_{i-1}$ for $i = 1, \ldots, s-1$,
 - (b) $h'_0, h'_1, \ldots, h'_{r-1}$ are polynomials in $Z_{p^r}[x]$ such that $h'_0|(x^{\alpha}-1)$ and $h'_i|h'_{i-1}$ for $i = 1, \ldots, r-1$.

S. MAHMOUDI AND K. SAMEI

(2) $|C| = p^{d_1+d_2}$, where $d_1 = \sum_{i=0}^{s-1} (s-i) \deg \hat{h_i}$ and $d_2 = \sum_{i=0}^{r-1} (r-i) \log \hat{h_i}$ i) deg \hat{h}'_i .

Proof. Since $f : \mathbb{Z}_{p^s} \to \mathbb{Z}_{p^r}$ is surjective, by the same argument of Corollary 3.7, $C = \langle (h(x), 0), (\ell(x), g(x)) \rangle$, where $g(x) \in (\mathbb{Z}_{p^s})_{\beta}$ is a generator of a cyclic code over \mathbb{Z}_{p^s} of length β , $h(x) \in (\mathbb{Z}_{p^r})_{\alpha}$ is a generator of a cyclic code over \mathbb{Z}_{p^r} of length α and $\ell(x) \in (\mathbb{Z}_{p^r})_{\alpha}$ is a polynomial. By Corollary 2.9, there exists a set of polynomials $h_0, h_1, \ldots, h_{s-1}$ in $\mathbb{Z}_{p^s}[x]$ such that $h_0|(x^\beta - 1)$ and $h_i|h_{i-1}$ for i = 1, ..., s - 1 and $g(x) = h_0 + ph_1 + \dots + p^{s-1}h_{s-1}$. Similarly, there exists a set of polynomials $h'_0, h'_1, \dots, h'_{r-1}$ in $\mathbb{Z}_{p^r}[x]$ such that $h'_0|(x^{\alpha} - 1)$ and $h'_i|h'_{i-1}$ for $i = 1, \dots, r-1$ and $h(x) = h'_0 + ph'_1 + \dots + p^{r-1}h'_{r-1}$. In this case, $|C| = p^{d_1+d_2}$, where $d_1 = \sum_{i=0}^{s-1} (s-i) \deg \hat{h_i}$ and $d_2 = \sum_{i=0}^{r-1} (r-i) \deg \hat{h'_i}$. \Box

Recently, $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive codes generalized to codes over direct product of two finite chain rings in some special case [11]. More precisely, let R_1 and R_2 be two chain rings with the maximal ideals $\mathfrak{m}_1 = \langle \gamma_1 \rangle$ and $\mathfrak{m}_2 = \langle \gamma_2 \rangle$ of the nilpotency indexes e_1 and e_2 ; respectively. Let $e_1 \leq e_2$, and R_1 and R_2 have the same residue field $R_1/\mathfrak{m}_1 = R_2/\mathfrak{m}_2 = \mathbb{F}$. If $a_1 \in R_1$ and $a_2 \in R_2$, then a_1 and a_2 can be uniquely written as follows:

 $a_1 = a_{1,0} + a_{1,1}\gamma_1 + \dots + a_{1,e_1-1}\gamma_1^{e_1-1}, \ a_2 = a_{2,0} + a_{2,1}\gamma_2 + \dots + a_{2,e_2-1}\gamma_2^{e_2-1},$ where the $a_{1,i}$ s and $a_{2,i}$ s can be viewed as elements in \mathbb{F} (see [14, Lemma 2]). Now define $\psi: R_2 \to R_1$ by $\psi(\sum_{i=0}^{e_2-1} a_i \gamma_2^i) = \sum_{i=0}^{e_1-1} a_i \gamma_1^i$. It is easy to see that ψ is a ring homomorphism. Hence R_1 is an R_2 -algebra. For positive integers α and β , an R_2 -submodule $C \subseteq R_1^{\alpha} \times R_2^{\beta}$ is called an R_1R_2 -additive code. When α and β are coprime integers with $\operatorname{Char}(R_i/\mathfrak{m})$, the structure of these codes have been given (see [11, Theorem 4.3]). Now we obtain the structure of these codes as a result of the structure of SR-additive codes.

Corollary 3.9 (Additive cyclic codes over direct product of finite chain rings). With above assumptions, let $C \subseteq (R_1)_{\alpha} \times (R_2)_{\beta}$ be an R_1R_2 -additive cyclic code. If α and β are coprime integers with $\operatorname{Char}(R_i/\mathfrak{m})$, Then

- (1) $C = \langle (h'_0 + \gamma_1 h'_1 + \dots + \gamma_1^{e_1 1} h'_{e_1 1}, 0), (\ell(x), h_0 + \gamma_2 h_1 + \dots + \gamma_2^{e_2 1} h_{e_2 1}) \rangle,$ where
 - (a) $h_0, h_1, \ldots, h_{e_2-1}$ are polynomials in $R_2[x]$ such that $h_0|(x^{\beta}-1)$ and $h_i|h_{i-1}$ for $i = 1, \ldots, e_2 - 1$,
- (b) $h'_0, h'_1, \dots, h'_{e_1-1}$ are polynomials in $R_1[x]$ such that $h'_0|(x^{\alpha} 1)$ and $h'_i|h'_{i-1}$ for $i = 1, \dots, e_1 1$. (2) $|C| = p^{d_1+d_2}$, where $d_1 = \sum_{i=0}^{e_2-1} (e_2 i) \deg \widehat{h_i}$ and $d_2 = \sum_{i=0}^{e_1-1} (e_1 1)$
- i) deg h'_i .

Proof. By the same argument as Corollary 3.8, it follows from Theorem 3.3 and Theorem 2.8.

Now we give new examples of SR-additive codes. First we give some examples of additive codes over direct products of chain rings that we can not

SR-ADDITIVE CODES

obtain their structures by [11]; see Corollaries 3.10, 3.11 and 3.12. Note that in [11], they considered an additive code $C \subseteq R_1^{\alpha} \times R_2^{\beta}$ over the chain rings R_1 and R_2 in a case that α and β are coprime integers with $\operatorname{Char}(R_i/\mathfrak{m})$. But in the structure of SR-additive codes we haven't any restriction on α and β .

Let $R_1 = \mathbb{Z}_2$, $R_2 = \mathbb{Z}_2 + u\mathbb{Z}_2 = \{0, 1, u, 1 + u\}$ such that $u^2 = 0$ and $R_3 = \mathbb{Z}_2 + u\mathbb{Z}_2 + u^2\mathbb{Z}_2 = \{0, 1, u, 1 + u, u^2, 1 + u^2, 1 + u + u^2, u + u^2\}$ such that $u^3 = 0$. By the following maps, R_i is an R_j -algebra for $1 \le i < j \le 3$.

$$\begin{split} f_{2,1} &: R_2 \longrightarrow R_1; & \lambda_0 + \lambda_1 u \longmapsto \lambda_0, \\ f_{3,1} &: R_3 \longrightarrow R_1; & \lambda_0 + \lambda_1 u + \lambda_2 u^2 \longmapsto \lambda_0, \\ f_{3,2} &: R_3 \longrightarrow R_2; & \lambda_0 + \lambda_1 u + \lambda_2 u^2 \longmapsto \lambda_0 + \lambda_1 u. \end{split}$$

We want to describe $R_i R_j$ -additive cyclic codes for $1 \leq i < j \leq 3$. First we find the generators of $R_1 R_2$ -additive cyclic codes which are known as $\mathbb{Z}_2 \mathbb{Z}_2[u]$ -additive codes and studied in [3,22].

Corollary 3.10 (R_1R_2 -additive cyclic codes). Let $C \subseteq (R_1)_{\alpha} \times (R_2)_{\beta}$ be an R_1R_2 -additive cyclic code.

- (1) If β is odd, then $C = \langle (h(x), 0), (\ell(x), g(x) + ua(x)) \rangle$ such that $h(x)|(x^{\alpha} 1) \mod 2$, $\ell(x) \in (\mathbb{Z}_2)_{\alpha}$ and $g(x) + ua(x) \in (R_2)_{\beta}$ with the same condition as the part (1) of Theorem 2.10.
- (2) If β is not odd, then
 - (a) C = ⟨(h(x), 0), (ℓ(x), g(x) + up(x))⟩, where h(x) and ℓ(x) are such as (1). g(x) and p(x) have the same conditions as Theorem 2.10 part 2(a). Or
 - (b) $C = \langle (h(x), 0), (\ell_1(x), g(x) + up(x)), (\ell_2(x), ua(x)) \rangle$, where h(x)and $\ell_i(x)$ are such as (1). g(x), p(x) and a(x) have the same conditions as Theorem 2.10 part 2(b).

Proof. By Corollary 3.6, $C = \langle (h(x), 0), (\ell_1, f_1), \dots, (\ell_r, f_r) \rangle$, where h(x) is a monic polynomial over R_1 such that $h(x)|(x^{\alpha} - 1)$. Also $C_1 = \langle f_1, \dots, f_r \rangle$ is a linear cyclic code over R_2 . Now we have the result by Theorem 2.10.

Corollary 3.11 (R_1R_3 -additive cyclic codes). Let $C \subseteq (R_1)_{\alpha} \times (R_3)_{\beta}$ be an R_1R_3 -additive cyclic code.

- (1) If β is odd, then $C = \langle (h(x), 0), (\ell(x), g(x) + ua_1(x) + u^2a_2(x)) \rangle$, where $h(x), \ \ell(x)$ are elements of $\mathbb{Z}_2[x], \ h(x)|(x^{\alpha} 1)$ in $\mathbb{Z}_2[x]$ and g, a_1, a_2 have the same conditions as Theorem 2.11 part (1).
- (2) If β is not odd, then
 - (a) $C = \langle (h(x), 0), (\ell(x), g(x) + up_1(x) + u^2p_2(x)) \rangle$, where ℓ , h are such as (1) and g, p_1, p_2 have the same conditions as Theorem 2.11 part 2(a).
 - (b) $C = \langle (h(x), 0), (\ell_1(x), g(x) + up_1(x) + u^2p_2(x)), (\ell_2(x), u^2a_2(x)) \rangle$, where ℓ_i and h are such as (1) and g, p_1, p_2, a_2 have the same conditions as Theorem 2.11 part 2(b).

(c) $C = \langle (h(x), 0), (\ell_1(x), g(x) + up_1(x) + u^2p_2(x)), (\ell_2(x), ua_1(x) + u^2q_1(x)), (\ell_3, u^2a_2(x)) \rangle$, where ℓ_i and h are such as (1) and g, p_1 , p_2 , a_1 , q_1 , a_2 have the same conditions as Theorem 2.11 part 2(c).

Proof. By the same argument as Corollary 3.10, it follows from Corollary 3.6 and Theorem 2.11. $\hfill \Box$

Corollary 3.12 (R_2R_3 -additive cyclic codes). Let $C \subseteq (R_2)_{\alpha} \times (R_3)_{\beta}$ be an R_2R_3 -additive cyclic code.

- If β and α are odd, then C = ⟨(h(x), 0), (l(x), g(x)+ua₁(x)+u²a₂(x)))⟩, where h(x), l(x) are elements of (R₂)_α. h(x) is a generator of a code such as Theorem 2.10 part (1) and g, a₁, a₂ have the same conditions as Theorem 2.11 part (1).
- (2) If β is odd and α is not odd, then
 - (a) $C = \langle (g + up, 0), (\ell, f) \rangle$, where g, p have the same conditions as Theorem 2.10 part 2(a). $\ell \in (R_2)_{\alpha}$ and $f \in (R_3)_{\beta}$ is a generator of a code such as Theorem 2.11 part (1). Or
 - (b) $\langle (g + up, 0), (ua, 0), (\ell, f) \rangle$, where g, p, a are polynomials with the same conditions as Theorem 2.10 part 2(b). $\ell \in (R_2)_{\alpha}$ and $f \in (R_3)_{\beta}$ is a generator of a code such as Theorem 2.11 part (1).
- (3) If α is odd and β is not odd, then
 - (a) $\langle (f,0), (\ell, g + ua_1 + u^2a_2) \rangle$, where $\ell \in (R_2)_{\alpha}$, f is a generator of a code such as Theorem 2.10 part (1) and g, a_1, a_2 are such as Theorem 2.11 part 2(a). Or
 - (b) $C = \langle (f,0), (\ell_1, g + up_1 + u^2p_2), (\ell_2, u^2a_2) \rangle$, where f and ℓ_i are such as (a) and g, p_1, p_2, a_2 have the same conditions as Theorem 2.11 part 2(b). Or
 - (c) $C = \langle (f,0), (\ell_1, g + up_1 + u^2p_2), (\ell_2, ua_1 + u^2q_1)(\ell_3, u^2a_2) \rangle$, where f and ℓ_i are such as (a) and $g, p_1, p_2, a_1, a_2, q_1$ have the same conditions as Theorem 2.11 part 2(c).
- (4) If α and β are not odd, then we have one of the following states.
 - (a) C = ⟨(g₁,0), (ℓ₁, f₁)⟩, where g₁ is a generator of a code in Theorem 2.10 part 2(a), f₁ is a generator of a code in Theorem 2.11 part 2(a) and ℓ₁ is an elements of (R₂)_α.
 - (b) C = ⟨(g₁,0), (ℓ₁, f₁), (ℓ₂, f₂)⟩, where g₁ is a generator of a code in Theorem 2.10 part 2(a), f_i are generators of a code in Theorem 2.11 part 2(b) and ℓ_i are elements of (R₂)_α.
 - (c) C = ((g₁,0), (l₁, f₁), (l₂, f₂), (l₃, f₃)), where g₁ is a generator of a code in Theorem 2.10 part 2(a), f_i are generators of a code in Theorem 2.11 part 2(c) and l_i are elements of (R₂)_α.
 - (d) C = ((g₁,0), (g₂,0), (l₁, f₁)), where g_i are generators of a code in Theorem 2.10 part 2(b), f₁ is a generator of a code in Theorem 2.11 part 2(a) and l₁ is an element of (R₂)_α.

SR-ADDITIVE CODES

- (e) C = ((g₁,0), (g₂,0), (l₁, f₁), (l₂, f₂)), where g_i are generators of a code in Theorem 2.10 part 2(b), f_i are generators of a code in Theorem 2.11 part 2(b) and l_i is an element of (R₂)_α.
- (f) $C = \langle (g_1, 0), (g_2, 0), (\ell_1, f_1), (\ell_2, f_2), (\ell_3, f_3) \rangle$, where g_i are generators of a code in Theorem 2.10 part 2(b). f_i are generators of a code in Theorem 2.11 part 2(c) and ℓ_i are elements of $(R_2)_{\alpha}$.

Proof. By Theorem 3.3, $C = \langle (g_1, 0), \ldots, (g_s, 0), (h_1, f_1), \ldots, (h_r, f_r) \rangle_{R[x]}$ such that $C_1 = \langle f_1, \ldots, f_r \rangle_{R_3[x]}$ is a cyclic linear code over R_3 of length β and $C_2 = \langle g_1, \ldots, g_s \rangle_{R_3[x]}$ is a cyclic R_3 -additive code over R_2 of length α . Since $f_{3,2}: R_3 \to R_2$ is a surjective map, C_2 is a linear code over R_2 . Now the result follows from Theorems 2.10 and 2.11.

Now we give some examples that the ring R in SR-additive codes is not a chain ring (moreover this ring is not a Frobenius ring). Let $R_4 = \mathbb{Z}_2 + u\mathbb{Z}_2 + v\mathbb{Z}_2 = \{0, 1, u, v, 1+u, 1+v, u+v, 1+u+v\}$ such that $u^2 = v^2 = uv = 0$. This ring is not a chain ring. Moreover R_4 is a non Frobenius ring. Consider the rings $R_1 = \mathbb{Z}_2$ and $R_2 = \mathbb{Z}_2 + u\mathbb{Z}_2$ in above corollaries. It is easy to see that the following maps are ring homomorphisms:

$$\begin{split} f_{4,1} &: R_4 \longrightarrow R_1; & \lambda_1 + \lambda_2 u + \lambda_3 v \longmapsto \lambda_1, \\ f_{4,2} &: R_4 \longrightarrow R_2; & \lambda_1 + \lambda_2 u + \lambda_3 v \longmapsto \lambda_1 + \lambda_2 u \end{split}$$

Hence R_4 is an R_i -algebra for i = 1, 2. Now we want to describe R_1R_4 and R_2R_4 -additive cyclic codes.

Corollary 3.13 $(R_1R_4$ -additive cyclic codes). Let $C \subseteq (R_1)_{\alpha} \times (R_4)_{\beta}$ be an R_1R_4 -additive cyclic code. Then $C = \langle (f,0), (h_1, g + up_1 + vp_2), (h_2, ua_1 + vq_1), (h_3, va_2) \rangle$, where $f|(x^{\alpha}-1), h_i \in (R_1)_{\alpha}$ and p_1, p_2, q_1, a_1, a_2 have the same conditions as Theorem 2.12. Moreover if β is odd, then $C = \langle (f,0), (h_1, g + ua_1), (h_2, va_2) \rangle$, where $a_2|a_1|g|(x^n - 1)$.

Proof. It follows from Corollary 3.6 and Theorem 2.12.

Corollary 3.14 (R_2R_4 -additive cyclic codes). Let $C \subseteq (R_2)_{\alpha} \times (R_4)_{\beta}$ be an R_2R_4 -additive cyclic code. Then

- (1) If α is odd, then $C = \langle (g + ua, 0), (h_1, g_1 + up_1 + vp_2), (h_2, ua_1 + vq_1), (h_3, va_2) \rangle$, where g and a are polynomials in $\mathbb{Z}_2[x]$ such that $a|g|(x^{\alpha}-1) \mod 2, h_i \in (R_2)_{\alpha}$ and $p_1, p_2, q_1, g_1, a_1, a_2$ have the same conditions as Theorem 2.12.
- (2) If α is not odd, then
 - (a) $C = \langle (g+up, 0), (h_1, g_1+up_1+vp_2), (h_2, ua_1+vq_1), (h_3, va_2) \rangle$ such that $g|(x^{\alpha}-1) \mod 2, (g+up)|(x^{\alpha}-1) \ in \mathbb{Z}_2 + u\mathbb{Z}_2$ and $g|p(\frac{x^{\alpha}-1}{g})$. Or
 - (b) $C = \langle (ua, 0), (g+up, 0), (h_1, g_1+up_1+vp_2), (h_2, ua_1+vq_1), (h_3, va_2) \rangle$ such that g, a and p are polynomials in $\mathbb{Z}_2[x]$. $a|g|(x^{\alpha}-1) \mod 2$, $a|p(\frac{x^{\alpha}-1}{q})$ and $\deg a > \deg p$.

Where $h_i \in (R_2)_{\alpha}$ and $p_1, p_2, q_1, g_1, a_1, a_2$ have the same conditions as Theorem 2.12.

Proof. It follows from Theorem 3.3 and Theorem 2.12.

In the above examples the ring homomorphisms between R_i and R_j are surjective, hence cyclic R_iR_j -additive codes are constructed by linear cyclic codes over R_i and R_j . But when f is not surjective to construct cyclic SRadditive codes we need the structure of R-additive codes over S. See the following examples.

Example 3.15. Let $R_1 = \mathbb{Z}_2$ and $R_2 = \mathbb{Z}_2 + u\mathbb{Z}_2$ be the rings in above corollaries. Then R_2 is an R_1 -algebra with the including map. Let $C \subseteq (R_2)_{\alpha} \times (R_1)_{\beta}$ be an R_2R_1 -additive cyclic code. Then $C = \langle (g_1, 0), \ldots, (g_s, 0), (h, f) \rangle$, where $f|(x^{\beta} - 1), h \in (R_2)_{\alpha}$, and $C_1 = \langle g_1, \ldots, g_s \rangle$ is a cyclic R_1 -additive code over R_2 (C_1 is an additive cyclic code over R_2).

Example 3.16. Let $R = GR(p^s, m)$ and $S = R[\xi] = GR(p^s, m\ell)$ be the Galois extension of R. Then S is an R-algebra with the including map. Let $C \subseteq S_{\alpha} \times R_{\beta}$ be an SR-additive cyclic code. If $gcd(\beta, p) = 1$ and $gcd(\alpha, p) = 1$, then $C = \langle (g_1, 0), \ldots, (g_\ell, 0), (h, f) \rangle$, where $C_2 = \langle f \rangle$ is a cyclic code over R, $C_1 = \langle g_1, \ldots, g_\ell \rangle$ is a cyclic R-additive code over S of length α and $h \in S_{\alpha}$ is a polynomial.

4. Duality of SR-additive codes

In this section, we define a bilinear form on SR-additive codes which is a generalization of the bilinear forms over $\mathbb{Z}_2\mathbb{Z}_4$ -additive cyclic codes in [2], $\mathbb{Z}_2\mathbb{Z}_2[u]$ -additive codes in [3] and $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive cyclic codes in [10].

Definition 4.1. Let $\tau: S \to R$ be an *R*-module homomorphism, then

$$\begin{array}{rcl} \beta': (S^{\alpha} \times R^{\beta}) \times (S^{\alpha} \times R^{\beta}) & \longrightarrow & R \\ & & ((x_1, y_1), (x_2, y_2)) & \longmapsto & \tau(x_1.x_2) + (y_1.y_2) \end{array}$$

is an *R*-bilinear form where $x_1.x_2$ and $y_1.y_2$ are standard inner products. For an *SR*-additive code *C*, C^{\perp} is the dual of *C* with respect to β' .

Proposition 4.2. Let R be a chain ring with maximal ideal $\mathfrak{m} = \langle \gamma \rangle$ of nilpotency index e. If β' is a bilinear form on $(R/\mathfrak{m})R$ -additive codes defined by an R-module homomorphism $\tau : R/\mathfrak{m} \to R$, then there is a unit element $a \in R$ such that

$$\begin{array}{rcl} \beta': ((R/\mathfrak{m})^{\alpha} \times R^{\beta}) \times ((R/\mathfrak{m})^{\alpha} \times R^{\beta}) & \longrightarrow & R \\ & & & \\ & & & \\ & & & ((\overline{x}_1, y_1), (\overline{x}_2, y_2)) & \longmapsto & a\gamma^{e-1}(x_1.x_2) + (y_1.y_2). \end{array}$$

Where $\overline{x}_1 = (x_{1,i} + \mathfrak{m}), \ \overline{x}_2 = (x_{2,i} + \mathfrak{m}), \ and \ x_1 = (x_{1,i}) \ and \ x_2 = (x_{2,i}).$

Proof. By the definition of β' , it suffices to determine $\operatorname{Hom}_R(R/\mathfrak{m}, R)$. But we have the following *R*-module isomorphism

$$\operatorname{Hom}_{R}(R/\mathfrak{m}, R) \longrightarrow \operatorname{Ann}_{R}(\mathfrak{m})$$

$$\tau \longmapsto \tau(1+\mathfrak{m}).$$

Since R is a chain ring and $\operatorname{Ann}_R(\mathfrak{m})$ is an ideal of R, $\operatorname{Ann}_R(\mathfrak{m}) = \langle \gamma^j \rangle$ for some $j; 1 \leq j \leq e$. Clearly $\gamma^{e-1}\mathfrak{m} = 0$. On other hand $\gamma^{e-2}\gamma \neq 0$. Hence $\operatorname{Ann}_R(\mathfrak{m}) = \langle \gamma^{e-1} \rangle$. Thus there is a unit element $a \in R \setminus \mathfrak{m}$ such that $\tau(1 + \mathfrak{m}) = a\gamma^{e-1}$. Hence for $r + \mathfrak{m} \in R/\mathfrak{m}$, $\tau(r + \mathfrak{m}) = r\tau(1 + \mathfrak{m}) = ra\gamma^{e-1}$. This completes the proof.

Now we give some examples of this bilinear form over SR-additive codes, which we see some of them in [2] and [3].

Corollary 4.3 (The bilinear form of $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes). The following bilinear form is the only form on $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes defined by Definition 4.1.

 $\beta': (\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}) \times (\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}) \longrightarrow \mathbb{Z}_4, \ ((x_1, y_1), (x_2, y_2)) \longmapsto 2(x_1.x_2) + (y_1.y_2).$

Where the elements x_1 and x_2 in the inner product $2(x_1.x_2)$ are considered as elements of \mathbb{Z}_4^{β} ; naturally.

Proof. \mathbb{Z}_4 is a chain ring with maximal ideal $2\mathbb{Z}_4$ of nilpotency index 2. Also $\frac{\mathbb{Z}_4}{2\mathbb{Z}_4} \cong \mathbb{Z}_2$. Now we have the result by Proposition 4.2.

Proposition 4.4 (The bilinear forms of $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive codes, r < s). Let β' be a bilinear form on $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive codes defined by Definition 4.1. Then β' is defined as follows:

$$\beta' : (\mathbb{Z}_{p^r}^{\alpha} \times \mathbb{Z}_{p^s}^{\beta}) \times (\mathbb{Z}_{p^r}^{\alpha} \times \mathbb{Z}_{p^s}^{\beta}) \longrightarrow \mathbb{Z}_{p^s},$$
$$((x_1, y_1), (x_2, y_2)) \longmapsto ap^{s-r}(x_1.x_2) + (y_1.y_2),$$

where $a \in \mathbb{Z}_{p^s}$ and the elements x_1 and x_2 in the inner product $ap^{s-r}(x_1.x_2)$ are considered as elements of $\mathbb{Z}_{p^s}^{\beta}$; naturally.

Proof. Hom_{\mathbb{Z}_{p^s}}($\mathbb{Z}_{p^r}, \mathbb{Z}_{p^s}$) = Hom_{\mathbb{Z}_{p^s}}($\frac{\mathbb{Z}_{p^s}}{p^r \mathbb{Z}_{p^s}}, \mathbb{Z}_{p^s}$) \cong Ann_{\mathbb{Z}_{p^s}}($p^r \mathbb{Z}_{p^s}$) = $\langle p^{s-r} \rangle$. Now by the same argument of Proposition 4.2 we have the result.

Let R_1 and R_2 be the finite chain rings with the assumptions of Corollary 3.9. We have the isomorphism $\psi: \frac{R_2}{\gamma_2^{c_1}R_2} \to R_1$. Let $p: R_2 \to \frac{R_2}{\gamma_2^{c_1}R_2}$ be defined naturally. Hence $\iota = p^{-1}\psi^{-1}: R_1 \to R_2$ is well defined, where p^{-1} is a right inverse of p. The following proposition gives the bilinear forms over direct product of chain rings.

Proposition 4.5 (The bilinear forms of additive codes over product of chain rings). Let R_1 and R_2 be the finite chain rings with the assumptions Corollary

3.9. If β' is a bilinear form on R_1R_2 -additive codes defined by Definition 4.1, then β' is defined as follows:

$$\begin{split} \beta' : (R_1^{\alpha} \times R_2^{\beta}) \times (R_1^{\alpha} \times R_2^{\beta}) &\longrightarrow R_2, \\ ((x_1, y_1), (x_2, y_2)) &\longmapsto a \gamma^{e_2 - e_1} \iota(x_1.x_2) + (y_1.y_2), \end{split}$$

where $a \in R_2$.

Proof. $\operatorname{Hom}_{R_2}(R_1, R_2) = \operatorname{Hom}_{R_2}(\frac{R_2}{\gamma_2^{e_1}R_2}, R_2) \cong \operatorname{Ann}_{R_2}(\gamma_2^{e_1}R_2) = \gamma_2^{e_2-e_1}R_2.$ Now by the same argument of Proposition 4.2 we have the result. \Box

Proposition 4.6 (The bilinear forms of R_iR_j -additive codes, i < j). Let R_i and R_j be such as Corollaries 3.10, 3.11, 3.12, 3.13, 3.14. Then, we have the following bilinear forms on R_iR_j -additive codes.

$$\begin{split} \beta_{1,2} &: (R_1^{\alpha} \times R_2^{\beta}) \times (R_1^{\alpha} \times R_2^{\beta}) \to R_2, ((x_1, y_1), (x_2, y_2)) \mapsto u(x_1.x_2) + y_1.y_2, \\ \beta_{1,3} &: (R_1^{\alpha} \times R_3^{\beta}) \times (R_1^{\alpha} \times R_3^{\beta}) \to R_3, ((x_1, y_1), (x_2, y_2)) \mapsto u^2(x_1.x_2) + y_1.y_2, \\ \beta_{2,3} &: (R_2^{\alpha} \times R_3^{\beta}) \times (R_2^{\alpha} \times R_3^{\beta}) \to R_3, ((x_1, y_1), (x_2, y_2)) \mapsto au(x_1.x_2) + y_1.y_2, \\ \beta_{1,4} &: (R_1^{\alpha} \times R_4^{\beta}) \times (R_1^{\alpha} \times R_4^{\beta}) \to R_4, ((x_1, y_1), (x_2, y_2)) \mapsto h(x_1.x_2) + y_1.y_2, \\ \beta_{2,4} &: (R_2^{\alpha} \times R_4^{\beta}) \times (R_2^{\alpha} \times R_4^{\beta}) \to R_4, ((x_1, y_1), (x_2, y_2)) \mapsto h(x_1.x_2) + y_1.y_2, \\ where \ a \in R_3, \ h \in R_4u + R_4v. \end{split}$$

Proof. R_2 and R_3 are chain rings with maximal ideals $R_2\langle u \rangle$ and $R_3\langle u \rangle$ of nilpotency indices 2 and 3; respectively. Also $\frac{R_2}{\langle u \rangle} \cong \frac{R_3}{\langle u \rangle} \cong R_1$. Hence we have the bilinear forms $\beta_{1,2}$ and $\beta_{1,3}$ by Proposition 4.2. To obtain $\beta_{2,3}$, $\beta_{1,4}$ and $\beta_{2,4}$ note that

$$\operatorname{Hom}_{R_3}(R_2, R_3) \cong \operatorname{Hom}_{R_3}(\frac{R_3}{\langle u^2 \rangle}, R_3) \cong \operatorname{Ann}_{R_3}(\langle u^2 \rangle) = \langle u \rangle,$$

$$\operatorname{Hom}_{R_4}(R_1, R_4) \cong \operatorname{Hom}_{R_4}(\frac{R_4}{\langle u, v \rangle}, R_4) \cong \operatorname{Ann}_{R_4}(\langle u, v \rangle) = R_4 u + R_4 v,$$

$$\operatorname{Hom}_{R_4}(R_2, R_4) \cong \operatorname{Hom}_{R_4}(\frac{R_4}{\langle v \rangle}, R_4) \cong \operatorname{Ann}_{R_4}(\langle v \rangle) = R_4 u + R_4 v.$$

Now by the same argument of the proof of Proposition 4.2 we have the result. $\hfill \Box$

Proposition 4.7. Let $\tau : S \to R$ be an *R*-module homomorphism and $C \subseteq S^{\alpha} \times R^{\beta}$ be an *SR*-additive cyclic code. If C^{\perp} is the dual of *C* with respect to the bilinear form defined by τ in Definition 4.1, then C^{\perp} is an *SR*-additive cyclic code.

Proof. Clearly C^{\perp} is an R-submodule of $S^{\alpha}\times R^{\beta},$ hence C^{\perp} is an SR-additive code. Now let

$$(x, y) = (x_0 \cdots x_{\alpha - 1}, y_0 \cdots y_{\beta - 1}) \in C^{\perp}$$
 and

$$\phi(x,y) = (x_{\alpha-1}\cdots x_{\alpha-2}, y_{\beta-1}\cdots y_{\beta-2}),$$

Let $j = \operatorname{lcm}(\alpha, \beta)$ and $(v, w) \in C$. Since C is cyclic, $\phi^{j-1}(v, w) \in C$. Now

$$\begin{split} v,w).\phi(x,y) &= \tau(v.\phi(x)) + w.\phi(y) \\ &= \tau(\phi^{j-1}(v).x) + \phi^{j-1}(w).y \\ &= \phi^{j-1}(v,w).(x,y) = 0. \end{split}$$

Therefore $\phi(x, y) \in C^{\perp}$ and hence C^{\perp} is cyclic.

(

5. Singleton bounds for SR-additive codes

Aydogdu and Siap obtained some bounds on the minimum distance of $\mathbb{Z}_2\mathbb{Z}_{2^s}$ additive codes [4]. In this section, we generalize the definitions of weight functions and Gray maps on the classes of $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ and $\mathbb{Z}_2\mathbb{Z}_2[u]$ -additive codes to SR-additive codes. We obtain singleton bounds for SR-additive codes. As results, singleton bounds for $\mathbb{Z}_2\mathbb{Z}_2[u]$ and $\mathbb{Z}_2[u]\mathbb{Z}_2$ -additive codes are given.

Definition 5.1. Let T be a commutative finite ring. For every $x = (x_1, \ldots, x_n) \in T^n$ and $t \in T$, the complete weight of x is defined by

$$n_t(x) := |\{i : x_i = t\}|.$$

For $t \in T \setminus \{0\}$, let a_t be a positive integer, and set $a_0 = 0$. The general weight function over T is defined as follows:

$$\omega_T(x) := \sum_{t \in T} a_t n_t(x).$$

Now let ω_R and ω_S be two weight functions over R and S. A weight function ω over $S^{\alpha} \times R^{\beta}$ is defined as follows: for $(x, y) \in S^{\alpha} \times R^{\beta}$, $\omega(x, y) = \omega_S(x) + \omega_R(y)$.

Definition 5.2. Let $n_s \in \mathbb{N}$ be a positive integer. A map $\phi : R \to S^{n_s}$ with the following conditions is called a gray map:

(a) ϕ is injective.

(b) for $x, y \in R$, $\omega_R(x-y) = \omega_S(\phi(x) - \phi(y))$.

A gray map ϕ is called *R*-linear if ϕ is an *R*-module homomorphism. ϕ generalize on R^{β} naturally; for $x = (x_1, \ldots, x_{\beta}) \in R^{\beta}$, $\phi(x) = (\phi(x_1), \ldots, \phi(x_{\beta})) \in S^{n_s\beta}$. We generalize ϕ to a map Φ over $S^{\alpha} \times R^{\beta}$ as follows:

$$\begin{array}{cccc} \Phi:S^{\alpha}\times R^{\beta} &\longrightarrow & S^{\alpha+n_{s}\beta}\\ (x,y) &\longmapsto & (x,\phi(y)). \end{array}$$

Clearly for any $(x, y) \in S^{\alpha} \times R^{\beta}$, $\omega(x, y) = \omega_S(\Phi(x, y))$. Moreover Φ is an injective map. Now let $C \subseteq S^{\alpha} \times R^{\beta}$ be an *SR*-additive code, the minimum general weight of *C* is

 $d_{\omega}(C) := \min\{\omega(x, y) : (x, y) \in C \setminus \{0\}\}.$

1249

Let $A_s = \max\{a_s : s \in S\}$. The following theorem gives singleton bounds for SR-additive codes.

Theorem 5.3. With above notations, let R be a chain ring and S be an Ralgebra with a ring homomorphism $f : R \to S$. If $C \subseteq S^{\alpha} \times R^{\beta}$ is an SRadditive code such that $\Phi(C) \subseteq S^{\alpha+n_s\beta}$ is an R-additive code, then

- (1) If S is a principal ideal ring and f is surjective, then $\lfloor \frac{d_{\omega}(C)-1}{A_s} \rfloor \leq \alpha + n_s \beta \operatorname{rank}(C).$
- (2) If S is a free R-algebra of dimension m, then $\lfloor \frac{d_{\omega}(C)-1}{A_s} \rfloor \leq \alpha + n_s \beta \lfloor \frac{\operatorname{rank}(C)}{m} \rfloor$.

Proof. (1) $\Phi(C)$ is an *R*-additive code. Since *f* is surjective, hence $\Phi(C)$ is a linear code over *S*. If $d_{\omega_s}(\Phi(C))$ is the minimum weight of $\Phi(C)$ with respect to the weight function ω_S , then by Theorem 3.7 of [20], we have that $\lfloor \frac{d_{\omega_s}(\Phi(C))-1}{A_s} \rfloor \leq \alpha + n_s\beta - \operatorname{rank}(\Phi(C))$. But $d_{\omega_s}(\Phi(C)) = d_{\omega}(C)$ and $\operatorname{rank}(\Phi(C)) = \operatorname{rank}(C)$. This completes the proof of part (1).

(2) $\Phi(C)$ is an *R*-additive code and *S* is a free *R*-algebra. Hence by Theorem 2.7, $\lfloor \frac{d_{\omega_s}(\Phi(C))-1}{A_s} \rfloor \leq \alpha + n_s\beta - \lceil \frac{\operatorname{rank}(\Phi(C))}{m} \rceil$. Since $d_{\omega_s}(\Phi(C)) = d_{\omega}(C)$ and $\operatorname{rank}(\Phi(C)) = \operatorname{rank}(C)$, we have the result.

Corollary 5.4. With above assumptions, let $\omega_S = \omega_H$ be the Hamming weight. Then

- (1) If S is a free R-algebra of dimension m, then $d_{\omega}(C) \leq \alpha + n_s \beta \lceil \frac{\operatorname{rank}(C)}{\rceil} \rceil + 1.$
- (2) If S is a principal ideal ring and f is surjective, then $d_{\omega}(C) \leq \alpha + n_s \beta \operatorname{rank}(C) + 1$.

Remark 5.5. Let R be a finite commutative ring and S be a finite R-algebra with a surjective ring homomorphism $f: R \to S$. With above assumptions, if $\omega_S = \omega_H$ is the Hamming weight, then $d_{\omega}(C) \leq \alpha + n_s \beta - \log_{|S|} |C| + 1$.

Proof. Since f is surjective, $\Phi(C)$ is a linear code over S. By the singleton bound for linear codes we have the result.

Example 5.6. Consider $\mathbb{Z}_2\mathbb{Z}_2[u]$ -additive codes. The Lee weight over $\mathbb{Z}_2[u] = \{0, 1, u, 1 + u\}$ is defined as follows:

$$\omega_L(0) = 0, \ \omega_L(1) = 1, \ \omega_L(u) = 2, \ \omega_L(1+u) = 1.$$

For any element $(x, y) = (x_0, \ldots, x_{\alpha-1}; y_0, \ldots, y_{\beta-1}) \in \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_2[u]^{\beta}$, the weight function ω is defined in the following way:

$$\omega(x,y) = \sum_{i=0}^{\alpha - 1} \omega_H(x_i) + \sum_{i=0}^{\beta - 1} \omega_L(y_i),$$

where ω_H is the hamming weight over \mathbb{Z}_2 and ω_L is the Lee weight over $\mathbb{Z}_2[u]$. Now we have the following Gray map:

$$\phi: \mathbb{Z}_2[u] \longrightarrow \mathbb{Z}_2^2$$
$$a + bu \longmapsto (b, a + b).$$

It is easy to see that $\omega_L(a+bu) = \omega_H(b,a+b)$ for any element $a+bu \in \mathbb{Z}_2[u]$. This map generalizes to the Gray map Φ :

$$\phi: \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_2[u]^{\beta} \longrightarrow \mathbb{Z}_2^{\alpha+2\beta}$$
$$(x, y) \longmapsto (x, \phi(y)).$$

Clearly $\omega(x, y) = \omega_H(\phi(x, y))$. Now if $C \subseteq \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_2[u]^{\beta}$ is a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -additive code, then we have the following bounds for minimum weight $d_{\omega}(C)$:

$$d_{\omega}(C) \le \alpha + 2\beta - \operatorname{rank}(C) + 1,$$

$$d_{\omega}(C) \le \alpha + 2\beta - \log_2 |C| + 1.$$

Example 5.7. Consider $\mathbb{Z}_2[u]\mathbb{Z}_2$ -additive codes in Example 3.15. The subset $C \subseteq \mathbb{Z}_2[u]^{\alpha} \times \mathbb{Z}_2^{\beta}$ is a $\mathbb{Z}_2[u]\mathbb{Z}_2$ -additive code if and only if C is a subgroup under addition. For any element $(x, y) \in \mathbb{Z}_2[u]^{\alpha} \times \mathbb{Z}_2^{\beta}$, the weight function ω is defined as follows:

$$\omega(x, y) = \omega_L(x) + \omega_H(y),$$

where ω_L is the Lee weight over $\mathbb{Z}_2[u]$ in above example and ω_H is the Hamming weight over \mathbb{Z}_2 . Let $j : \mathbb{Z}_2 \to \mathbb{Z}_2[u]$ be the including map. We define a Gray map as follows:

$$\Phi: \mathbb{Z}_2[u]^{\alpha} \times \mathbb{Z}_2^{\beta} \longrightarrow \mathbb{Z}_2[u]^{\alpha+\beta}$$

(x, y) \longmapsto (x, j(y)).

It is easy to see that $\omega(x, y) = \omega_L(\Phi(x, y))$. Since $\mathbb{Z}_2[u]$ is a free \mathbb{Z}_2 -algebra of dimension 2, by Theorem 5.3, we have the following bound for minimum weight:

$$\lfloor \frac{d_{\omega}(C) - 1}{2} \rfloor \le \alpha + \beta - \lceil \frac{\operatorname{rank}(C)}{2} \rceil.$$

6. One weight SR-additive codes

Recently, Dougherty et al. described one weight $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes [15]. In this section, we generalize this theory over SR-additive codes where S and R are chain rings. As applications of the theory, we obtain some results on one weight $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive codes (with respect to homogeneous weight) and one weight $\mathbb{Z}_{2^r}\mathbb{Z}_{2^s}$ -additive codes (with respect to Lee weight). In particular, we obtain the structure of one weight $\mathbb{Z}_2\mathbb{Z}_{2^s}$ -additive codes. First we remind the following definition of a pre-homogeneous weight in [23]. **Definition 6.1.** Let T be a commutative finite ring. A weight function ω_T : $T \to \mathbb{R}$ is pre-homogeneous if $a_0 = 0$ and there exists a constant $c_T > 0$ such that for $t \neq 0$,

$$\sum_{t' \in \langle t \rangle} a_{t'} = c_T |\langle t \rangle|_{t}$$

where $\langle t \rangle$ is the principal ideal generated by an element t of T. In this case c_T is called the average weight.

Example 6.2 ([23, Example 3.7]). Let $R = \mathbb{Z}_{2^s}$. Then Lee weight is prehomogeneous with average weight $c_R = 2^{s-2}$.

Lemma 6.3. Let R and S be two chain rings, where S is an R-algebra with a surjective ring homomorphism $f : R \to S$. Also let ω_S and ω_R be two prehomogeneous weights with average weights c_R and c_S . If $C \subseteq S^{\alpha} \times R^{\beta}$ is an SR-additive code with no all zero columns, then

$$\sum_{c \in C} \omega(c) = |C|(\alpha c_S + \beta c_R),$$

where ω is the weight function defined by ω_S and ω_R over $S^{\alpha} \times R^{\beta}$.

Proof. Let S be a chain ring with maximal ideal $\mathfrak{m} = \langle \gamma \rangle$ of nilpotency index v. Write the codewords of C as rows of a matrix G. Consider the column j of G, where $1 \leq j \leq \alpha$. Let J be the ideal of S generated by all elements of the column j. Then there exists $1 \leq t \leq v$ that $J = \langle \gamma^t \rangle$. Since f is surjective and C is an R-submodule, any element of J is an element of the column j. Now we show that any two elements of J have the same repetition number in the column j. Consider two elements γ^t and γ^{t+1} of J with the repetition numbers n_t and n_{t+1} , respectively. Since $\gamma^{t+1} = \gamma \gamma^t$, hence $n_t \leq n_{t+1}$. On the other hand $\gamma^t(\gamma-1) = \gamma^{t+1} - \gamma^t$. Since $\gamma - 1$ is invertible, $\gamma^t = (\gamma - 1)^{-1}(\gamma^{t+1} - \gamma^t)$. Hence $n_{t+1} \leq n_t$ and hence $n_t = n_{t+1}$. Thus all elements of J have the same repetition number $\frac{|C|}{|J|}$ in the column j. Therefore the sum of the weights of all elements of the column j is equal to

$$\frac{|C|}{|J|} (\sum_{s \in J} a_s) = \frac{|C|}{|J|} (c_S |J|) = |C| |c_S|.$$

By the same argument, the sum of the weights of all elements of the columns of β coordinates is equal to $|C||c_R|$. Therefore

$$\sum_{c \in C} \omega(c) = |C|(\alpha c_S + \beta c_R).$$

Theorem 6.4. With the assumptions of above lemma, let $C \subseteq S^{\alpha} \times R^{\beta}$ be a one weight SR-additive code with weight m such that there exists no zero columns in the generator matrix of C. Then there exists a unique positive integer λ such that $m = \lambda |C|$ and $\alpha c_S + \beta c_R = \lambda (|C| - 1)$.

Proof. By above lemma, we have that

$$\sum_{c \in C} \omega(c) = |C|(\alpha c_S + \beta c_R)$$

On the other hand, the sum of the weights of all codewords is (|C|-1)m. Hence $|C|(\alpha c_S + \beta c_R) = (|C|-1)m$. But gcd(|C|, (|C|-1)) = 1. Therefore there exists a positive integer λ such that $m = \lambda |C|$ and hence $\alpha c_S + \beta c_R = \lambda (|C|-1)$. \Box

Let T be a finite chain ring with maximal ideal $\langle \gamma \rangle$, nilpotency index e, and residue field $T/\langle \gamma \rangle = \mathbb{F}_{p^k}$. A homogenous weight is defined as follows

$$\omega_{hom}(t) = \begin{cases} (p^k - 1)p^{k(e-2)}, & t \in T \setminus \langle \gamma^{e-1} \rangle; \\ p^{k(e-1)}, & t \in \langle \gamma^{e-1} \rangle \setminus \langle 0 \rangle; \\ 0, & t = 0. \end{cases}$$

Lemma 6.5. With above assumptions, let T be a chain ring. Then ω_{hom} is pre-homogeneous with average weight $c_T = (p^k - 1)p^{k(e-2)}$.

Proof. Let $\langle t \rangle$ be an ideal of *T*. By the structure of chain rings, $\langle t \rangle = \langle \gamma^j \rangle$ for some $j; 1 \leq j \leq e$. Hence $|\langle \gamma^{e-1} \rangle| = |\langle \gamma^j \rangle| = p^{k(e-j)}$. Therefore

$$\begin{split} \sum_{t' \in \langle t \rangle} a_{t'} &= \sum_{t' \in \langle \gamma^j \rangle \setminus \langle \gamma^{e-1} \rangle} a_{t'} + \sum_{t' \in \langle \gamma^{e-1} \rangle} a_{t'} \\ &= (p^k - 1) p^{k(e-2)} (|\langle \gamma^j \rangle| - |\langle \gamma^{e-1} \rangle|) + p^{k(e-1)} (|\langle \gamma^{e-1} \rangle| - 1) \\ &= (p^k - 1) p^{k(e-2)} (p^{k(e-j)} - p^k) + p^{k(e-1)} (p^k - 1) \\ &= (p^k - 1) p^{k(e-2)} p^{k(e-j)} \\ &= c_T |\langle t \rangle|. \end{split}$$

This completes the proof.

Theorem 6.6. Let ω be the weight function defined by ω_{hom} over \mathbb{Z}_{p^r} and \mathbb{Z}_{p^s} on $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive codes. If $C \subseteq \mathbb{Z}_{p^r}^{\alpha} \times \mathbb{Z}_{p^s}^{\beta}$ is a one weight $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive code with weight m such that there exists no zero columns in the generator matrix of C, then there exists a unique positive integer λ such that $m = \lambda |C|$ and $(p-1)p^{r-2}(\alpha + p^{s-r}\beta) = \lambda(|C|-1)$.

Proof. By Lemma 6.5, $c_{\mathbb{Z}_{p^r}} = (p-1)p^{r-2}$ and $c_{\mathbb{Z}_{p^s}} = (p-1)p^{s-2}$. Now we have the result by Theorem 6.4.

By Example 6.2, the Lee weight over \mathbb{Z}_{2^r} and \mathbb{Z}_{2^s} is pre-homogeneous. Hence we have the following result on one weight $\mathbb{Z}_{2^r}\mathbb{Z}_{2^s}$ -additive codes.

Theorem 6.7. Let $C \subseteq \mathbb{Z}_{2^r}^{\alpha} \times \mathbb{Z}_{2^s}^{\beta}$ be a $\mathbb{Z}_{2^r}\mathbb{Z}_{2^s}$ -additive code. Consider the weight ω defined by Lee weight over \mathbb{Z}_{2^r} and \mathbb{Z}_{2^s} . If C is a one weight $\mathbb{Z}_{2^r}\mathbb{Z}_{2^s}$ -additive code with weight m such that there exists no zero columns in the generator matrix of C, then there exists a unique positive integer λ such that $m = \lambda |C|$ and $2^{r-2}(\alpha + 2^{s-r}\beta) = \lambda(|C| - 1)$.

1253

Proof. It follows from Example 6.2 and Theorem 6.4.

The structure of $\mathbb{Z}_2\mathbb{Z}_{2^s}$ -additive codes is studied in [4]. If a $\mathbb{Z}_2\mathbb{Z}_{2^s}$ -additive code $C \subseteq \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_{2^s}^{\beta}$ is isomorphic to an abelian structure $\mathbb{Z}_2^{k_0+k_s} \times \mathbb{Z}_{2^s}^{k_1} \times \cdots \times$ $\mathbb{Z}_{4}^{k_{s-1}}$, then we say that C is of type $(\alpha, \beta; k_0, k_1, k_2, \ldots, k_s)$. The following theorem gives the structure of one weight $\mathbb{Z}_2\mathbb{Z}_{2^s}$ -additive codes which is a generalization of Theorem 3.10 in [15].

Theorem 6.8. Let $C \subseteq \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{2s}^{\beta}$ be a one weight $\mathbb{Z}_{2}\mathbb{Z}_{2s}$ -additive code of type $(\alpha, \beta; k_0, k_1, k_2, \ldots, k_s)$ with weight m. Let $k = k_0 + sk_1 + (s-1)k_2 + \cdots + k_s$. Then there exists a positive integer λ such that $m = \lambda 2^{k-1}$, where α and β satisfy $\alpha + 2^{s-1}\beta = \lambda(2^k - 1)$. Furthermore, if m is an odd integer, then α is odd and $C = \{(\mathbf{0}_{\alpha}, \mathbf{0}_{\beta}), (\mathbf{1}_{\alpha}, \mathbf{2}_{\beta}^{s-1})\}, \text{ where } \mathbf{1}_{\alpha} = (1, \ldots, 1) \in \mathbb{Z}_{2}^{\alpha} \text{ and } \mathbb{Z}_{2}^{\alpha}$ $2_{\beta}^{s-1} = (2^{s-1}, \dots, 2^{s-1}) \in \mathbb{Z}_{2^s}^{\beta}.$

Proof. By Lemma 6.3, $\sum_{c \in C} \omega(c) = |C|(\frac{\alpha}{2} + 2^{s-2}\beta) = \frac{|C|}{2}(\alpha + 2^{s-1}\beta)$. On the other hand, the sum of the weights of all codewords is (|C| - 1)m. But the other hand, the sum of the weights of an concrete L (|C| - 1) = $gcd(\frac{|C|}{2}, (|C| - 1)) = gcd(2^{k-1}, 2^k - 1) = 1$. Therefore there exists a positive integer λ such that $m = \lambda \frac{|C|}{2} = \lambda 2^{k-1}$ and hence $\alpha + 2^{s-1}\beta = \lambda(2^k - 1)$. If m is odd, then $\lambda 2^{k-1}$ is odd. Hence λ is odd and k = 1. Moreover the equality $m = \lambda = \alpha + 2^{s-1}\beta$ implies that α is odd. Since |C| = 2 and

 $(\mathbf{1}_{\alpha}, \mathbf{2}_{\beta}^{s-1})$ is the only word with weight $\alpha + 2^{s-1}\beta$ and addition order 2, we have that $C = \{(\mathbf{0}_{\alpha}, \mathbf{0}_{\beta}), (\mathbf{1}_{\alpha}, \mathbf{2}_{\beta}^{s-1})\}.$

References

- [1] T. Abualrub and I. Siap, Cyclic codes over the rings $Z_2 + uZ_2$ and $Z_2 + uZ_2 + u^2Z_2$, Des. Codes Cryptogr. 42 (2007), no. 3, 273-287. https://doi.org/10.1007/s10623-006-9034-5
- T. Abualrub, I. Siap, and N. Aydin, $\mathbb{Z}_2\mathbb{Z}_4$ -additive cyclic codes, IEEE Trans. Inform. [2]Theory 60 (2014), no. 3, 1508-1514. https://doi.org/10.1109/TIT.2014.2299791
- [3] I. Aydogdu, T. Abualrub, and I. Siap, $On \mathbb{Z}_2\mathbb{Z}_2[u]$ -additive codes, Int. J. Comput. Math. 92 (2015), no. 9, 1806-1814. https://doi.org/10.1080/00207160.2013.859854
- [4] I. Aydogdu and I. Siap, The structure of $\mathbb{Z}_2\mathbb{Z}_{2^s}$ -additive codes: bounds on the minimum distance, Appl. Math. Inf. Sci. 7 (2013), no. 6, 2271-2278. https://doi.org/10.12785/ amis/070617
- _____, $On \mathbb{Z}_{p^r} \mathbb{Z}_{p^s}$ -additive codes, Linear Multilinear Algebra **63** (2015), no. 10, 2089– [5]2102. https://doi.org/10.1080/03081087.2014.952728
- [6] J. J. Bernal, J. Borges, C. Fernández-Córdoba, and M. Villanueva, Permutation decoding of Z₂Z₄-linear codes, Des. Codes Cryptogr. 76 (2015), no. 2, 269–277. https://doi.org/ 10.1007/s10623-014-9946-4
- [7] M. Bilal, J. Borges, S. T. Dougherty, and C. Fernández-Córdoba, Maximum distance separable codes over \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_4$, Des. Codes Cryptogr. **61** (2011), no. 1, 31–40. https://doi.org/10.1007/s10623-010-9437-1
- [8] J. Borges and C. Fernández-Córdoba, There is exactly one $\mathbb{Z}_2\mathbb{Z}_4$ -cyclic 1-perfect code, Des. Codes Cryptogr. 85 (2017), no. 3, 557-566. https://doi.org/10.1007/s10623-016-0323-3

SR-ADDITIVE CODES

- J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifa, and M. Villanueva, Z₂Z₄-linear codes: generator matrices and duality, Des. Codes Cryptogr. 54 (2010), no. 2, 167–179. https://doi.org/10.1007/s10623-009-9316-9
- [10] J. Borges, C. Fernández-Córdoba, and R. Ten-Valls, $On \mathbb{Z}_{p^r} \mathbb{Z}_{p^s}$ -additive cyclic codes, (2016).
- [11] _____, Linear and cyclic codes over direct product of chain rings, Math. Meth. Appl. Sci. (2017).
- [12] H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory 50 (2004), no. 8, 1728–1744. https://doi.org/10. 1109/TIT.2004.831789
- [13] S. T. Dougherty and C. Fernández-Córdoba, Z₂Z₄-additive formally self-dual codes, Des. Codes Cryptogr. **72** (2014), no. 2, 435–453. https://doi.org/10.1007/s10623-012-9773-4
- [14] S. T. Dougherty, H. Liu, and Y. H. Park, Lifted codes over finite chain rings, Math. J. Okayama Univ. 53 (2011), 39–53.
- [15] S. T. Dougherty, H. Liu, and L. Yu, One weight Z₂Z₄ additive codes, Appl. Algebra Engrg. Comm. Comput. 27 (2016), no. 2, 123–138. https://doi.org/10.1007/s00200-015-0273-4
- [16] C. Fernández-Córdoba, J. Pujol, and M. Villanueva, Z₂Z₄-linear codes: rank and kernel, Des. Codes Cryptogr. 56 (2010), no. 1, 43–59. https://doi.org/10.1007/s10623-009-9340-9
- [17] J. Rifà, F. I. Solov'eva, and M. Villanueva, On the intersection of Z₂Z₄-additive perfect codes, IEEE Trans. Inform. Theory 54 (2008), no. 3, 1346–1356. https://doi.org/10. 1109/TIT.2007.915917
- [18] K. Samei and M. R. Alimoradi, Cyclic codes over the ring F₂+uF₂+vF₂, Comput. Appl. Math. **37** (2018), no. 3, 2489–2502. https://doi.org/10.1007/s40314-017-0460-y
- [19] K. Samei and S. Mahmoudi, Cyclic R-additive codes, Discrete Math. 340 (2017), no. 7, 1657–1668. https://doi.org/10.1016/j.disc.2016.11.007
- [20] _____, Singleton bounds for R-additive codes, Adv. Math. Commun. 12 (2018), no. 1, 107-114. https://doi.org/10.3934/amc.2018006
- [21] K. Samei and S. Sadeghi, Maximum distance separable codes over Z₂ × Z_{2^s}, J. Algebra Appl. 17 (2018), no. 7, 1850136, 12 pp. https://doi.org/10.1142/S0219498818501360
- [22] B. Srinivasulu and M. Bhaintwal, Z₂(Z₂ + uZ₂)-additive cyclic codes and their duals, Discrete Math. Algorithms Appl. 8 (2016), no. 2, 1650027, 19 pp. https://doi.org/10. 1142/S1793830916500270
- [23] J. A. Wood, The structure of linear codes of constant weight, Trans. Amer. Math. Soc. 354 (2002), no. 3, 1007–1026. https://doi.org/10.1090/S0002-9947-01-02905-1

SAADOUN MAHMOUDI DEPARTMENT OF MATHEMATICS BU ALI SINA UNIVERSITY HAMEDAN, IRAN *Email address*: mahmoudi.math89@yahoo.com

KARIM SAMEI DEPARTMENT OF MATHEMATICS BU ALI SINA UNIVERSITY HAMEDAN, IRAN *Email address*: samei@ipm.ir