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Abstract 

 
 Existing methods for blind identification of linear block codes without a candidate set are 
mainly built on the Gauss elimination process. However, the fault tolerance will fall short 
when the intercepted bit error rate (BER) is too high. To address this issue, we apply the 
reverse algebra approach and propose a novel “two-step-screening” algorithm by solving the 
linear error equations on the binary Galois field, or GF(2). In the first step, a recursive matrix 
partition is implemented to solve the system linear error equations where the coefficient 
matrix is constructed by the full codewords which come from the intercepted noisy bitstream. 
This process is repeated to derive all those possible parity-checks. In the second step, a check 
matrix constructed by the intercepted codewords is applied to find the correct parity-checks 
out of all possible parity-checks solutions. This novel “two-step-screening” algorithm can be 
used in different codes like Hamming codes, BCH codes, LDPC codes, and quasi-cyclic 
LDPC codes. The simulation results have shown that it can highly improve the fault 
tolerance ability compared to the existing Gauss elimination process-based algorithms. 
 
 
Keywords: Two-step screening algorithm, blind identification, linear block code, linear 
error equation, matrix partition, Galois field, Gauss elimination process 
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1. Introduction 

Error-correcting codes [1] are used in telecommunication systems to correct errors induced 
by a noisy channel and increase the reliability of digital data transmission. The information 
blocks are transmitted into the encoder defined by a generator matrix or a parity-check 
matrix, and then outputs the block codewords based on the binary Galois field, which is 
defined as GF(2) (denoted by 2F ).  

In the context of a cooperative communication model, the receiver knows all those 
encoders which the transmitter uses, like the situation of adaptive modulation and coding 
(AMC) [2]. Therefore, the receiver can choose the correct encoder from a candidate set by 
blind identification of channel coding. The received codewords are then decoded to obtain 
the information. When dealing with blind identification of channel coding within a candidate 
set, researchers converted this problem into a maximum-likelihood problem. That is a 
detection and recognition problem, it is equivalent to finding the minimum distance between 
the incorrect codewords and correct codewords [3]. Alternatively, authors of [4] [5] [6] used 
the statistical hypothesis tests method to solve this problem. In order to improve the fault 
tolerance ability of those methods, some researchers utilized the soft information of the 
intercepted bitstream by defining functions such as the log-likelihood ratio (LLR) [7], the 
difference of likelihood [8], the cosine of syndrome a posterior probability (SPP) [9]. When 
those functions reach the maximum value, the member in the candidate set will be 
considered as the correct encoder. 

While in a non-cooperative context, (for example, military applications or spectrum 
surveillance applications), a third party intercepts the signals transmitted between the two 
legal users and aims to retrieve helpful information. Suppose that this third party knows the 
parameters of the demodulation and scrambler if used. The adversary can only access the 
intercepted noisy binary stream exchanged between the legal users. For decoding the 
intercepted codewords to acquire helpful information, the adversary has to recover the 
corresponding generator matrix or parity-check matrix of the encoder scheme. Assuming that 
the starting bit of an entire codeword in the bitstream and the block length of the encoder are 
already available, we only need to focus on reconstructing the generator matrix or parity-
check matrix of the encoder from the noisy bitstream without any prior knowledge being 
known. 

In recent years, researchers have been devoted to solving the problem above. However, 
most of them applied BCH codes / RS codes with their cyclic structure [10] [11] or 
convolution codes / Turbo codes using their recursive property [12] [13] [14] [15]. However, 
seldom research worked on the general linear block codes without special structure.  
Furthermore, it becomes difficult when no candidate set is available, especially for long 
linear block codes. People usually implement the Gauss elimination method on the codeword 
matrix to derive dual codes. Research in [16] used a decision rule to obtain the correct sparse 
parity-checks from low-weight dual codewords. The derived parity-checks were used 
iteratively to decode the codewords with error. The study in [17] applied the Gauss 
elimination process to obtain the kernel space of the square codeword matrix, and then chose 
the correct parity-check vectors from them using some decision criteria. In [18], the work 
applied Gauss-Jordan elimination through pivoting (GJETP) to transform the noisy 
codewords matrix to an echelon one, and then proposed the “almost rank ratio criterion” to 
find dependent columns and derive the parameters and parity-checks of the encoder at the 
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same time. The method proposed in [19] introduced a decoding technique approach to speed 
up the process of acquiring parity-checks based on the work in [18]. For the reconstruction 
of the parity-check matrices of LDPC codes, an algorithm [20] was proposed. Which needed 
much less iterations compared with [19] for using a technique BGCE (Bidirectional 
Gaussian Column Elimination). Most of the existing works based on Gaussian column 
elimination perform well when the bit error rate (BER) is low. However, as we know, if the 
intercepted bit stream corrupted by a high BER, those algorithms will be invalidated. 

In this paper, we assume the framework synchronization, block length and rate of the 
encoder have already been known, because these parameters have been studied in-depth in [6] 
[18] [22] [23] [24] [25] [26]. In this situation we only devote our energy to reconstruct the 
parity-check matrix of linear block code from the noisy intercepted bit stream having a high 
BER.  Inspired by the work in [21], we propose an algorithm based on linear algebra and 
matrix partition theory to solve the linear equations with error on 2F , our algorithm has a 
stronger fault tolerance ability than methods based on Gaussian column elimination.  

The rest of this paper is organized as follows. In section 2, we introduce the notations and 
translate the reconstruction problem into algebraic equations. In section 3, we explain how to 
retrieve the parity-checks and give the whole concrete algorithm. Simulation results and 
analysis of the computational complexity of our algorithm are presented in section 4. Finally, 
we summarize our work in section 5. 

2. Problem Description and the Algebraic Approach 
2.1 The Related Mathematical Problem 
 

We only study the problem of how to reconstruct the generator matrix or parity-check 
matrix from the intercepted bit stream. The whole flow chart of the operation which deals 
with blind identification of channel coding and decoding is displayed in Fig. 1.  

Let G  be a generator matrix and H  be the corresponding parity-check matrix, they 
satisfy the orthogonal relationship in 2F  : T = 0GH . Where TH  stands for the transposition 
of H . The block code space generated by G  is denoted as 


, and ⊥



 represents the dual 
space spanned by the row vectors of H . Let 1 2( , , , )i i i ikm m m= m   be the i-th information 
block, where k nρ= , and the i-th codeword is ic ( )1 2, , ,i i inc c c=  i= m G , thus we have 

T
i = 0c H . Suppose codewords are sent to the binary symmetric channel (BSC) with cross-

over probability eP ,  ic  is the input and ( )1 2, , ,i i i ina a a= a ( ) 1,2, ,  i M=  is the output, 
where M  is the number of the total intercepted codewords, we have 

                                   ij ij ija c e= + ( ) 1,2, , ,  1,2, ,i M j n= =  ,                                       (1) 

where { }0,1ije ∈   with ( )Pr 1ij ee P= =   and ( )Pr 0 1ij ee P= = −  .  

Suppose N  is some positive integer slightly larger than the code block length n , a 
codeword matrix  ( )TT T T

1 2, , , NA a a a=   is then constructed by part of the output codewords 

which are derived from the encoded codeword matrix ( )TT T T
1 2, , , N= C c c c . Thus, we have 

= +A C E , where ( )ij N n
e

×
=E . If h  is a parity-check of  , we have T⋅ =C h 0 , while 

T⋅ ≠ 0A h  in general.  
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 We want to derive all the correct parity-checks h  from T⋅ ≠ 0A h  so that we can 
reconstruct the parity-check matrix H . 
 
2.2 The Algorithms Based on Gauss Column Elimination 
 

Gallager gave the following proposition in [1]:  
If a codeword of block length n  is received after transmission through a BSC with cross-

over probability eP , the probability that the number of error bits is even is given as  

( )1 1 2
2

n
eP+ −

,  

thus we have 

                    
( ) ( )

T T 1 1 2 e
Pr( 0) 1 Pr( 0) 1

2

NwP + −
 ⋅ ≠ = − ⋅ = = −
  

h

A H A H ,                     (2) 

where ( )w h  is the Hamming weight of vector h . Conversely, we can derive the conclusion : 

if a vector x  makes ( )w ⋅A xT  small, it is most likely to be a parity-check of  . 
From [20] we know, we can derive all the parity-checks through implying Gauss column 

elimination on the error-free codeword matrix. Based on this fact and the above conclusion, 
Authors in [18][19][20] obtain parity-checks by searching low weight columns (dependent 
columns) from the noisy codeword matrix after Gauss column elimination. However, may 
not all parity-checks can be found during the above step, thus a decoding process is 
introduced to correct the erroneous codewords to reduce the BER. Through this iterative 
process we can obtain all the parity-checks. 
  From [18] we know the method Gauss column elimination is seriously affected by error bits 
in codewords, because error bits can spread during column transformation. Therefore, the 
algorithms based on Gauss column elimination are ineffective when the BER is high. In this 
case, we must look for another method with strong fault tolerance to reconstruct the parity-
check matrix. To overcome the shortcomings of error propagation, we take steps to resolve 
the following linear equations directly.  
 

 
Fig. 1.  The whole step of blind identification of channel coding and decoding 
 

2.3 The Algorithm Based on Resolving Systems of Equations 
 

In a noise-free context, there is 0=E . If we have enough codewords, the number of the 
valid equations in  T T= = 0AX CX  is k , i.e. ( )rank k=A . We can, therefore, solve the 
linear equations 

                                                               T = 0CX                                                                
(3) 
to derive a fundamental system of solutions. Due to the orthogonal relationship between codewords 
and parity-checks, we can derive n k−  linear independent vectors to retrieve the systematic 
parity-check matrix ( ) ( )T

n kn k n −− × =H P I , where I  is a unit matrix of ( ) ( )n k n k− × − , 
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based on which  the systematic generator matrix ( )k n k× =G I P  is retrieved. 
However, in a noisy environment, the number of the valid equations in T = 0AX  is much 

larger than k due to the existing of error bits in A . Suppose ( )rank n=A , we have to solve 
an over-determined systems of equations 

T = 0AX .                                                            (4) 
However, it is impossible to find a non-zero solution which satisfies all the equations in (4). 
Instead, what we want to do is to find solutions which satisfy the most equations in (4). This 
means we expect to find several solutions of the equations T =AX b , where b  is a column 
vector belonging to 2

MF  with ( )w ε=b . Where 2
MF  is the extension field of 2F , and ε  is 

some pre-set positive integer. 
Since T( )w ε=Ax  is equivalent to T( )w ε=xA , by applying the linear equations T T=xA b  

and T( )w ε=b ,we have 
( )w ε=xB ,                                                         (5) 

Where T=B A  is a matrix of n N× . The Definitions 2.1 and 2.2 in linear algebraic are 
described below: 

Definition 2.1  Equation ( )w ε+ =xB b  is called a linear error equations [12], where B  
is a n N×  matrix, b  is a row vector of N  dimension, N  is larger than n , ε  is an integer 
in the interval [ ]0, N . 

Definition 2.2  Matrix Q  is called a row (or column) permutation matrix, if Q  can be 
represented by a product of many matrices, that is 1 2 s= Q Q Q Q , where iQ ( )1,2, ,i s=   is 
an elementary row (or column ) exchange matrix. 

Property 2.1 For every permutation matrix Q , we have ( ) ( )w w=yQ y  and 1−Q  is a 
permutation matrix, too. 

Obviously, we have = 0b  in (5). How to solve (5) in the changing process of the pre-set 
ε  to obtain all the correct parity-checks? 

Of course, we can solve equations (5) by randomly selecting n -dimensional vectors to 
obtain the vectors which make ε  smaller than some threshold. These vectors are considered 
to be parity-checks of the encoder. However, the operation has a large computation and 
serious time delay when n  is large (such as LDPC codes). 

In the next section, we will propose an algorithm to derive solutions to the linear error 
equations (5) using a two-step method which don’t need too much codewords. Actually, we 
derive a solution of the equations by dividing it into several sections and solving every 
section in turn.  

3. Resolve the Linear Error Equations and Summarize the Algorithm 

3.1 Solve the Linear Error Equations 
The process of solving the linear error equations can be divided into two steps: I) recursive 
decomposition of the coefficient matrix B  and II) iterative solution of the linear equations. 
 
3.1.1 Recursive Decomposition of the Coefficient Matrix 

At first, we give a lemma like that in [6] with a simple proof. 
For a given coefficient matrix B  in (5), we have 
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Lemma 3.1 Given a n N× ( )N n>  matrix B , there are an invertible n n×  matrix 1P  and 
a N N×  permutation matrix 1Q  such that  

1 1
1 1

r 
=  
 

I B
P BQ

O O
 or ( )1 1 1n=P BQ I B . 

Where 1r  is the rank of B  in the first case and the second case is 1r n= . 
Similarly, we can take the same operation on 1B  and derive an invertible 1 1r r×  matrix 1P  

and a ( ) ( )1 1N r N r− × −  permutation matrix 1Q , as well as a ( )2 1 2r n r r× − −  matrix 2B . 
Going on in this manner, we summarize this recursive process as follows: 

For each iB ( )0,1,2, ,i l=  , we have 

                       1 11 1
1 1

ir i
i i i

+ +− −
+ +

 
=  

 

I B
B P Q

O O
 , if rank(

iB )=
1i ir r+ < ,                                 (6) 

or  
 ( )1

1 1
1 1 1ii i r i i+

− −
+ + +=B P I B Q  , if rank(

iB )=
1i ir r+ = .                                 (7) 

Where 
0 =B B ,

0r n= ,
0N N= , 

iB  is a 
i ir N×  matrix, 

1i+P  is a 
i ir r×  non-singular matrix, 

1i+Q  is a 
i iN N×  permutation matrix, 

1ir +
I  is an identity matrix of 

1 1i ir r+ +× , the rank of 
iB  is 

1ir +
, and there is 

1 1i i iN N r+ += + . 
When does this recursive decomposition process end? Namely, how to determine l ? If 

1l+ =B 0  or 1l lN r += , the recursive procedure terminates. The recursive decomposition of the 
coefficient matrix B  can be organized in Algorithm 1. 
Algorithm 1 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Inputs: a N n×  codeword matrix A  
Outputs: 1 2 1, , , lr r r +  and 1 2 1, , , l+P P P  

T=B A ; 

0N N= ; 
1i = ; 

Do 

find 1 1,P Q  such that 1 1
1 1

r 
=  
 

I B
P BQ

O O
; 

( ) ( )=rankr i B ; 

( ) 1i =P P ; 
1i i= + ;  
1=B B ; 

While ( )1rank 0≠B  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
3.1.2 Iterative Solution of the Linear Equations 
First, the below Definition 3.1 is given: 

Definition 3.1 The operation ( )Tk V  represents taking the first k  columns of a matrix 
( )1 2, , , mv v v=V  ( )m k≥ . Namely, ( ) ( )1 2T , , ,k kv v v=V  .We then give a theorem like [12] 
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with a simple proof. 
Theorem 3.1 Under the decomposition of ( ) 0,1,2,l l = B  mentioned above,  

we have 
1 2 1 1( ) ( ) ( ) ( )l lw w w w + += + + +xB x x x B ,                                  (8) 

where 
lx  is a row vector of dimension 

lr  , and has the relationship with 
1l+x  as 

( )1
1 1 1Tl l l l

−
+ + +=x x P  . 

Proof We only prove the first step of the following proof, and the rest can be achieved in a 
similar way.  

i) If there exist an n n×  invertible matrix 
1P  and a N N×  permutation matrix 

1Q  such 

that 1 11 1
1 1

r− − 
=  

 

I B
B P Q

Ο O
, where 

1r  is the rank of B , and 
1B  is a ( )1 1r N r× −  matrix, then 

we have 

( ) ( )1 1 11 1 11 1 1
1 1 1 1 1 1 1 1 1 1, ,r r r− − −     
= = = =     

     

I B I B I B
xBQ xP Q Q xP x y x x B

O O O O O O
. 

Where ( ) 1
1 1 1, −=x y xP  and ( )

1

1
1 1Tr

−=x xP . Thus, we have  

( ) ( ) ( )( ) ( ) ( )1 1 1 1 1 1 1,w w w w w= = = +xB xBQ x x B x x B . 

ii) If there exist a n n×  non-singular matrix 
1P  and a N N×  permutation matrix 

1Q  so 

that ( )1

1 1
1 1 1r
− −=B P I B Q , in this case, 

1r = rank ( )B 0r n= = , 
1B  is a ( )1 1r N r× −  matrix, 

then we have 
( ) ( ) ( ) ( )

1 1

1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1, ,r r

− − − − −= = = =xBQ xP I B Q Q xP I B xP xP B x x B . 

Here 1
1 1

−=x xP , which can still be expressed by ( )
1

1
1 1Tr

−=x xP . Therefore, we  

still have 
( ) ( ) ( )( ) ( ) ( )1 1 1 1 1 1 1,w w w w w= = = +xB xBQ x x B x x B . 

The following is similar to what we have done above. Suppose the total number of steps 
we can do is 1l + . For each among the total 1l +  steps, we always have 
( ) ( ) ( )1 1 1i i i i iw w w+ + += +x B x x B ( )0,1,2, ,i l= 

 no matter which case it falls into. Therefore, 
Eq. (8) can be derived straightforwardly. 

In the last step, there are two results: one is 1 0l+ =B , i.e.,  

11 1
1 1

lr
l l l

+− −
+ +

 
=  

 

I O
B P Q

O O
 ,  

the other is 1l lN r += , i.e., 

                                                                     11 1
1 1

lr
l l l

+− −
+ +

 
=  

 

I
B P Q

O
. 

Both of the two cases, however, can draw the same conclusion as 
1 2 1( ) ( ) ( ) ( )lw w w w += + + +xB x x x . 
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Therefore, in the process of solving the systematic linear error equations (5), there exist 
finite row vectors 1 2 1, , , l+x x x  satisfying  

ε = 1 2 1( ) ( ) ( )lw w w ++ + +x x x , 0 ( ) ,  1 1i iw x r i l≤ ≤ ≤ ≤ + .                        (9) 
Furthermore, we know 0 1 2 1ln r r r r += ≥ ≥ ≥ ≥  as well as the resolution of the linear error 

equations depending on the decomposition of B  completely. We present the iterative 
solution of the linear error equations in Algorithm 2. 
Algorithm 2 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Input: l , 1 2 1, , , lr r r +  and 1 2 1, , , l+P P P ; 
      The number of iterations T ; 
Output: the set X  of solutions of (5) 
X = ∅ ; 

for i=1:T  
  for ε =1: 2N    

     for t=1:
N
ε
 
 
 

 

        split ε  to be 1 2 1lε ε ε ++ + + ;  
randomly choose 1lx +  such that ( )1 1l lw x ε+ += ; 

         for j= l :1 
            for repeat=1:100 
             randomly generate 1j jN r +− -dimensional vector jy ; 

             if ( ) 1,j j j jw x y P ε −
  =   

               ( )1 ,j j j jx x y P− = ; 
             else  
                break 
             end  

end 
        end 

0x x= ; 

{ }X X x=  ; 
       end 
    end 
  end 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
3.1.3 A Simple Example 

A simple example is provided below to describe the above process. For (6, 3) linear block 
code, whose generator matrix is  

1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 
 =  
 
 

G ,  

we received 9 codewords from the BSC with cross-over probability 0.2eP = , which are 
( )1 0 0 1 0 0 0=c , ( )2 1 0 0 1 1 1=c , ( )3 0 0 1 0 1 1=c , 
( )4 1 0 1 1 0 1=c , ( )5 0 1 1 1 1 1=c ,  ( )6 1 1 1 0 0 0=c , 
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( )7 0 0 1 0 1 0=c , ( )8 1 1 1 1 0 1=c , ( )9 0 1 0 1 0 0=c , respectively. 
Thus, we have 

0 0 1 0 0 0
1 0 0 1 1 1
0 0 1 0 1 1
1 0 1 1 0 1
0 1 1 1 1 1
1 1 1 0 0 0
0 0 1 0 1 0
1 1 1 1 0 1
0 1 0 1 0 0

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

A  and T

0 1 0 1 0 1 0 1 0
0 0 0 0 1 1 0 1 1
1 0 1 1 1 1 1 1 0
0 1 0 1 1 0 0 1 1
0 1 1 0 1 0 1 0 0
0 1 1 1 1 0 0 1 0

 
 
 
 

= =  
 
 
  
 

B A  , 

And to implement the recursive matrix partition on B , we have     

1 1

1 0 0 0 0 0 0 0 0
0 1 0 0 0 1 1 1 0
0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 1
0 0 0 0 0 1 0 0 0

 
 
 
 

=  
 
 
  
 

P BQ , 

 where  

1

1 0 1 0 1 0
1 0 0 0 1 1
0 0 0 1 0 1
1 1 0 1 1 1
1 0 0 1 0 0
1 1 0 1 0 0

 
 
 
 

=  
 
 
  
 

P , 1

0 0 0
1 1 0
0 0 1
1 0 0
0 1 1
0 0 0

 
 
 
 

=  
 
 
  
 

B  and 2 1 2

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

 
 
 
 

=  
 
 
  
 

P B Q ,  

where  

2

0 0 0 1 0 0
0 1 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 1 1 1 0
0 0 0 0 0 1

 
 
 
 

=  
 
 
  
 

P and 1 6r = , 2 3r = , 1 1=x x P , ( )1
2 3 1 2T −=x x P . 

When 1ε = , we only have ( )1 1w =x  and ( )2 0w =x . Thus 2x  must be ( )0,0,0 , 2y  has 
several different possibilities: ( )1,0,0 , ( )0,1,0 , ( )0,0,1 , ( )1,1,0 , ( )1,0,1 , ( )0,1,1  and 
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( )1,1,1 , we then have ( )1 2 2 2 =x x y P . 
If ( ) ( )2 2 0,0,0,1,0,0=x y , we have ( )1 1,0,0,0,0,0=x , which satisfies ( )1 1w =x , then 

( )1 1 1,0,1,0,1,0= =x x P . 
If ( ) ( )2 2 0,0,0,0,1,0=x y , we have ( )1 0,1,1,1,1,0=x , which does not satisfy ( )1 1w =x . 
If ( ) ( )2 2 0,0,0,0,0,1=x y , we have ( )1 0,0,0,0,0,1=x , which satisfies ( )1 1w =x , then 

( )1 1 1,1,0,1,0,0= =x x P . 
If ( ) ( )2 2 0,0,0,1,1,0=x y , we have ( )1 1,1,1,1,1,0=x , which does not satisfy ( )1 1w =x . 
If ( ) ( )2 2 0,0,0,1,0,1=x y , we have ( )1 1,0,0,0,0,1=x , which does not satisfy ( )1 1w =x . 
If ( ) ( )2 2 0,0,0,0,1,1=x  y , we have ( )1 0,1,1,1,1,1=x , which does not satisfy ( )1 1w =x . 
If ( ) ( )2 2 0,0,0,1,1,1=x y , we have ( )1 1,1,1,1,1,1=x , which does not satisfy ( )1 1w =x . 
When 2ε = , we have ( )1 2w =x , ( )2 0w =x  or ( )1 1w =x , ( )2 1w =x . In the first case, 

where 2 =x ( )0,0,0 , when ( ) ( )2 2 0,0,0,1,0,1=x y , there is ( )1 1,0,0,0,0,1=x  satisfying 
( )1 2w =x  and ( )1 1 0,1,1,1,1,0= =x x P . In the second case, only when 

( ) ( )2 2 1,0,0,0,0,0=x y  or ( )0,0,1,0,0,0  there are ( )1 0,0,0,1,0,0=x , ( )1 1 1,1,0,1,1,1= =x x P  
or ( )1 0,0,1,0,0,0=x , ( )1 1 0,0,0,1,0,1= =x x P , respectively. 
   The rest can be achieved in a similar way. So far, we have derived the solutions 
( )1,0,1,0,1,0 , ( )1,1,0,1,0,0  of (5) for 1ε =  and ( )1,1,0,1,1,1 , ( )0,0,0,1,0,1  for 2ε = . Which 
can be repeated by intercepting another group of erroneous codewords to derive more 
solutions. 

3.2 The Reconstruction of the Parity-Check Matrices of Linear Block Codes 
Based on Gallager’s conclusion [1], it is explored by Chabot [8] that, for a BSC with cross-
over probability eP , a codeword c  is input to the channel and a  is output. For a given 
vector 2

nF∈h  ( 2
nF  is the extension field of 2F )and A  being a N n×  codewords matrix 

constructed by part of the output codewords, if h  belongs to ⊥
 , then we have 

( ) ( ) ( )
T 1 1 2

Pr 0
2

w
eP+ −

⋅ = =
h

h a                                         (10) 

and                                                

 ( ) ( ) ( )
T 1 1 2

Pr 1
2

w
eP− −

⋅ = =
h

h a .                                        (11) 

Thus, we can compute  

( )( ) ( ) ( ) ( ) ( )
T 1 1 2 1 1 2

Pr
2 2

Mw w
e eM P P

w
ε ε

ε
ε

−

⊥
   + − − − 
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
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If  ⊥∉h , then there is 

( ) ( )T T 1Pr 1 Pr 0
2

⋅ = = ⋅ = =h a h a ,                                     (12) 



3468                                                       Liu et al.: A Two-Step Screening Algorithm to Solve Linear Error Equations for 
 Blind Identification of Block Codes Based on Binary Galois Field 

and we have ( )( )T 1Pr
2

MM
w ε

ε
⊥   = ∉ =   

  
hA h . 

Therefore, ( )Tw hA  obeys binomial distribution with different parameters according to 
⊥∈h  or not. When M  is big enough, if ⊥∈h ,   there is 

                                       ( ) ( ) ( ) ( )( )T 1 1 2
2

w
e

Mw w P= ≈ − − hhA hB ,                               (13) 

and if ⊥∉h , we have                   

( ) ( )T

2
Mw w= ≈hA hB .                                                (14) 

Thus, from the central limit theorem we know ( )Tw hA obeys normal distribution 

( ) ( ) ( ) ( )21 1 2 1 1 2
N ,

2 4

w w
e eM P M P    + − + −     

  
 

h h

or N ,
2 4
M M 

 
 

  

with respect to ⊥∈h  or ⊥∉h , respectively. Moreover, the difference of the value 
between (13) and (14) increases as M increases. 

We can take advantage of the above conclusion in the reverse way. For an intercepted 
M n×  codewords matrix A , if there is a vector 2

nF∈x  which makes ( )Tw ⋅x A  equal to 

some given ε , what is the probability of ⊥∈x ? That is to say, we want to compute 

( )( )TPr w ε⊥∈ =x xA  and to derive some ε  which makes ( )( )TPr w ε⊥∈ =h hA  higher 

furthermore. 
Based on the Bayes formula, we have  

( )( ) ( )( ) ( )
( )( ) ( ) ( )( ) ( )

T
T

T T

Pr Pr
Pr

Pr C Pr Pr C Pr
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w w

ε
ε
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Since ( )
( )12Pr
2

n

n

ρ−
⊥∈ =h  and ( )

( )12Pr 1
2

n

n
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⊥∉ = −h , we have 

( )( )

( ) ( )

( ) ( )
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ee
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which indicates that the probability ( )( )TPr w ε⊥∈ =h hA  decreases as ε  increases. This 

means, when a vector x  makes ( )Tw ⋅x A  much smaller than 
2
M , possibly there is ⊥∈x . 

Thus, we can resolve (5) for some small positive integer ε  to derive the solutions which are 
probable to be parity-checks. The setting of ε  will be presented in remark 1.  

We have to choose the correct parity-checks from the derived solutions which are treated 
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as possible parity-checks. Eq. (13) and (14) indicate that a number can be chosen as the 
threshold with a low false-alarm probability from the interval  

( ) ( ) ( ) ( )21 1 2 1 1 2
3 , 3

2 4 2 4

w w
e eM P M P M M

    − − − −    + − 
 
 

x x

            (17)  

according to the “3 standard deviation” if M  is big enough. 
  In fact, if incorrect parity-checks are wrongly thought to be correct, it will heavily influent 
the reconstruction of generator matrix or parity-check matrix. To address this, a threshold β 
is set to decide whether h is a parity-check or not with the false-alarm probability given as 

                                   ( ){ }
( )22

21Pr d
2

x M
Mw e x

M
β

β
π

−
Τ ⊥

−∞
< ∉ = ∫hA h . 

This indicates that the smaller β, the higher the false-alarm probability. In our method, it is 

empirically set to be 0.5
2
Mβ = ×  with a false-alarm probability smaller than 0.3%. Let 

checkA  be the codewords matrix with a dimension of M n× , which is composed of M  
intercepted codewords and used to choose correct parity-checks. In general, the larger M is, 
the higher the probability of selecting the correct parity-checks [17]. Therefore, we choose 

10M n=  by the rule of thumb.  

3.3 The Specific “Two-Step Screening” Blind Recognition Algorithm for Block 
Codes 
Our algorithm is described in the sequel. The parameters used in our algorithm are defined in 
Table 1. 

Table 1. The parameters in our algorithm 
n  code block length 
k  code dimension 
M  the total number of the intercepted codewords 

checkA  A matrix is constructed by all the intercepted  
codewords 

IT  the given number of iterations 
β  the threshold used to choose correct solutions 

Θ  The set of parity-checks 
Suppose the input is the transpose of the received codewords T=B A of a n N×  matrix, 

whose columns are the received codewords. And the output is the parity-check matrix H  or 
the systematic generator matrix G . Our Algorithm 3 for the whole procedure is organized as 
follows: 
Algorithm 3 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Θ =∅ ; 
for iter =1: IT 

X = ∅ ; 
randomly choose N  codewords from the total M  codewords to construct A ;  

T=B A ; 
imply algorithm 1 on B; 
imply algorithm 2; 
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for all X∈x  
if ( )checkw β⋅ ≤A x  

{ }Θ = Θ x ; 
end 

end 
if ( )rank n kΘ = −  
break 
end 

end 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

If we can derive n k−  linear independent members from Θ  to construct a ( )n k n− ×  

matrix, we may change the matrix to the systematic parity-check matrix ( )T  =H P I  by the 

elementary row transformation. It is easy to derive the generator matrix ( )  =G I P . If we 
cannot get n k−  linear independent parity-checks in a setting time T , it is failed to 
reconstruct the block code.  

Below are five remarks for our algorithm: 
Remark 1 In order to speed up derivation of parity-checks, we can pre-set the weight of 

the objective vectors x  to be ω , then ( )Twε = xA  will locate in interval (16) with a 

probability of more than 99.7% according to the “3 standard deviation”. Thus ε  can be 
chosen from interval (16). In turn, if we want to derive the parity checks with certain 
Hamming weight, we can choose ε  from (16). This means there is no need to traverse all the 
integers within [ ]1, N . Especially when the block length of the codeword is small, we can 
choose small positive ε  from (16), which simplifies the step of integer splitting of ε . 

Remark 2 Our algorithm can be highlighted that it is suitable for LDPC codes and 
especially for quasi-cyclic LDPC codes because of the sparsity of their parity-check matrices. 

In fact, according to (10) ( ) ( ) ( )( )T 1 1 2
2

w
e

Mw Pε = ≈ − − xxA  decreases as ( )w x  decreases. 

Meanwhile, with the smallest weight of the parity-checks of LDPC codes, we can resolve (5) 
for small ε  to derive all the vectors x  with low Hamming weight, some of which are the 
sparse parity-checks direct. In case of quasi-cyclic LDPC codes, for a b bm n×  basic parity-
check matrix bH , we only need bm  parity-checks which belong to different sub-matrices to 
reconstruct the sparse quasi-cyclic parity-check matrix H . This eliminates the need of the 
computationally expensive step to make parity-check matrix sparse like what the algorithm 
in [19] does. 

Remark 3 When implementing the recursive matrix partition on the intercepted codeword 

matrix B , we derive 11 1
1 1

k− − 
=  

 

I B
B P Q

O O
 after the first step if B  is error-free. 1P  is the 

row transformation matrix which records the linear combination of the rows of B  so that all 
the last n k−  rows of 1P  are orthogonal with the columns of B . Therefore, they are the total 
linear independent parity-check vectors. The parity-check vectors are, thus, completely linear 
independent. 

Remark 4 When the integer ε  is split into several non-negative integers 1 2, , , kε ε ε , we 
have to point it out that, if 0iε = ( )1 i k≤ < , then 1 2 0i i kε ε ε+ += = = = . In fact, we only 
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derive ix 0=  from ( ) 0i iwε = =x . Meanwhile, we can derive that 1i+x  is none other than 0  
because ( ) 1

1 1 1,i i i i
−

+ + + =x y P x  and 1
1i
−
+P  has an inverse matrix, and the following is analogical. 

Therefore, this property simplifies the progress of solving these linear equations by 
excluding several situations of integer splitting. 

Remark 5 In the simulation experiments, N  is usually chosen to be slightly larger than n  
in each iteration so as to reduce the times of recursive matrix partition and thus 
computational cost, which is also an advantage of our algorithm. 

4. The Computational Complexity and Simulation Analysis 
In the following, the comparisons among our algorithm and other approaches described in 
[17] [18] and [19] which are based on Gauss elimination method about computational 
complexity are presented. We also show the recognition probability of these algorithms and 
our work for different kinds of linear block codes in simulation results. 
 
4.1 Computational Complexity Analysis 
 

At first, let us make a brief description of the algorithm in [17], [18], and [19]. 
In [17], a dual code method is used to recover the parameters of the encoder and acquire 

parity-checks. It applies the Gauss elimination process on the square matrix coming from the 
codeword matrix to obtain its kernel space, then applies a decision rule to the vectors in the 
kernel space to choose the correct parity-checks. When all the linear independent parity-
checks are collected, the parity-check matrix is reconstructed. 

In this process, suppose the iteration time is set to be T , the number of total codewords is 
M and the total number of the vectors solved in kernel space is 1M . There are totally
( ) 2

1 11T n n M M n M− + ⋅ ⋅ −  addition and 1M M n⋅ ⋅  multiplication needed. When the BER 
is high, the square codeword matrix is very likely to be full-rank and its kernel space is much 
likely to be an empty set. It is very difficult to derive enough solutions so that we cannot 
reconstruct the parity-check matrix in T  times. 

In [18], a rank-based method for identifying the parameters of the interleaver is given. It 
applies a Gauss-Jordan elimination through pivoting (GJETP) method to transform the 
constructed matrix to a lower triangular matrix which contains the almost dependent 
columns, then it calculates the almost rank ratio which depends on the number of the almost 
dependent columns. The minimum of the almost rank ratios corresponds to the correct 
parameters of the interleaver. This operation can retrieve the parity-checks from the almost 
dependent columns at the same time. 

In this process, suppose the number of iterations is T , and the number of total codewords 

is M. We need add ( ) ( )1
1

2
T n nM

Tn M n
−

+ − −  times and compare the values ( )1T n −  

times.  
Algorithm in [19] is similar to the scheme in [18] except for introducing a decoding step 

to accelerate the process of parity-check matrix reconstruction. Therefore, on the basis of the 
computation of [18], ( )t w h⋅  multiplication and ( ) 1t w h⋅ −  comparison is added. Where 

( )w h  is the weight of the parity-check and t  is the number of the derived parity-checks. 
What follows is the computation of our algorithm. Suppose the number of iterations is T , 
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and ε  is changing from 1 to 2N   . When ε  is expressed as the sum of several l  

nonnegative integer, suppose we try 1T  times. There are ( )( )1
0

2 1
l

i i i
i

T T N N r r
=

⋅ ⋅ ⋅ + −   ∑  

addition and 2
1

0
2

l

i
i

T N T r
=

⋅ ⋅ ⋅   ∑  multiplication needed.  

From the above analysis, we can see that the computational amount of our algorithm is the 
biggest. However, when the BER is high, all the algorithms based on Gauss elimination are 
invalid. Our algorithm still works in this case. 

4.2 Simulation Results 

4.2.1 For Hamming Codes 
We first take the examples of (7,4) and (15,11) Hamming codes, and set 10N = , T= 3 and 

20N = , T=4, respectively. The one used for comparison is the algorithm in [17], which 
utilizes the Gauss elimination process to resolve the kernel space of the square codeword 
matrices and chooses the correct parity-checks from them. In Fig. 2, we can see that, for (7,4) 
Hamming code, our algorithm can reconstruct 100% of the generator matrix when 
BER=0.115, but it is only 0% for algorithm in [17] at the same time. For (15,11) Hamming 
code, the correct identification probability of algorithm is 100% when BER=0.058. However, 
it is also 0% for algorithm in [17] in the same case. Algorithm in [17] can reach a 100% 
correct identification probability when BER=0.005 for (15,11) Hamming code and when 
BER=0.009 for (7,4) Hamming code. Our algorithm has a strong fault tolerant ability. 

In the course of parity-check matrix reconstruction for (7,4) Hamming code, M=300 and 
T=3. There are at most 6 times stochastic decomposition for each ε  and 35 times traversal 
operation on the weight of the solution vectors of the equations in each cycle. Suppose the 
total number of solution vectors is M , then 10180 + 2099 M additions and 12180 + 2100 M
multiplications are needed. When the method in [17] is used to solve the parity-checks under 
the same condition, the number of cycles is set to be 10. Suppose the total number of 
solution vectors is M , then 2940 + 2099 M additions and 2100 M multiplications are needed. 
Therefore, the computational complexity of our scheme is higher than that of [17]. 

 

 
Fig. 2.  Comparison of the probability of identification of (7,4) and (15,11) Hamming codes with 

respect to different BER between our algorithm and that in [17]. 
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4.2.2 For BCH Codes 
Let us take the (15,7,5) BCH codes as an example. Its generator polynomial is 

( ) 8 7 6 4 1g x x x x x= + + + + ,  
and we set 20N = , 4T = . The comparison among our proposed scheme and those in [17] 
and [18] is shown in Fig. 3. We can see that the method in [18] has a better identification 
performance compared with that in [17] as the former finds “almost rank” instead of the rank 
of the codeword matrix. Its fault tolerance ability, however, is still limited by the bottleneck 
of the Gauss elimination process-based method. In this process, the correct identification 
probability of our algorithm is 100% when BER=0.11, but the algorithms in [17] and [18] 
can only reach 0% at the same time. The correct identification probability will reach 100% 
when BER=0.009 for algorithm in [17] and BER=0.05 for algorithm in [18], respectively. 
Therefore, the fault tolerance of our algorithm is at least one order of magnitude higher than 
the other two algorithms.  

Due to the random choice of row vectors and the random error bits in the constructed 
square matrices, in [17], their kernel spaces are affected seriously. Only when the square 
matrices have no error bit, all the linear independent parity-check vectors can be found. 
Therefore, the results of this algorithm are not stable and its performance is not robust. Its 
fault tolerance is also the weakest. 

In the course of parity-check matrix reconstruction for (15,7,5) BCH code, M=600 and 
T=4. There are at most 14 times stochastic decomposition for each ε and 1000 times traversal 
operation on the weight of the solution vectors of the equations in each cycle. Suppose the 
total number of solution vectors is M , then at most 923500 + 8400 M additions and 
1000000 + 9000 M multiplications are needed. When the method in [18] is used, the number 
of cycles is set to 10. In total 719850 additions and 150 comparison operations are needed. It 
can be seen from the results that, although our scheme has the highest computational 
complexity among the three methods, it has the best fault tolerance ability. 

 
Fig. 3. Comparison among our algorithm and those in [17] and [18] for BCH codes. 

4.2.3 For LDPC Codes 
This sub-section is aimed to resolve all of the sparse parity checks of (31, 4, 4) LDPC code 
by using the proposed algorithm. We set 40 1.3N n= ≈ , 30T = . Fig. 4 compares the 
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probability of identification with respect to different BER by our method with that from [19]. 
Though algorithm in [19] has a better performance than algorithms in [17] and [18], we can 
still see that the fault tolerance of our algorithm is far more than algorithm in [19]. When 
BER=0.11, the correct identification probability of our algorithm is 100%, whereas that of 
[19] is 100% only when BER=0.057. 

In our algorithm, for the purpose of saving computational cost, we resolve only the 
solutions which make  ( )Twε = hA  smallest as mentioned in remark 3. In the step of 

recursive matrix partition, it needs ( )20.6 1Tn n −  times addition operation, when resolving 
the linear error equations, it needs 22Tn  times multiplication and ( )2 1Tn n −  times addition 
operation, and when choosing the correct parity-checks, it needs Mnθ  times multiplication, 
( )1Mnθ −  times addition and θ  times comparison, where θ  is the number of solutions 

resolved above. The computation of algorithm in [17] is about ( ) ( )2
2 1

10 1
2

n n
l n n

−
⋅ − +  

times addition and 310l n⋅  times multiplication, where l  is the number of iterations. Because 
of the decoding step and calculation of almost rank instead of the rank, the computation of 
the algorithm in [19] is larger than that in [18], while the fault-tolerant ability of the former 
is better. Although the computation of our method is a little higher than the other approaches, 
it is able to deal with the identification problems when the cross-over probability of BSC is 
high. 

 
Fig. 4. Comparison of the probability of identification of (31,4,4) LDPC code with respect to different 

BER between our algorithm and that in [19]. 
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represented by a base matrix bH  with bm  rows and bn  columns, here b
rm
Z

=  and b
nn
Z

= . 

Since the Hamming weights of the solutions we have derived are low, the lowest among 
them can be regarded as the row vectors of the sparse parity-check matrix H . Thus, we only 
need to find bm  vectors in different sub-matrices to reconstruct H . In fact, most of the 
parity check matrices of LDPC codes commonly used are quasi-cyclic.  

Let us take the ( )8 ,4Z Z  LDPC code [26] [27] as an example, the parity check matrix is 

P P P P
P P P P

H
P P P P P

P P P P

0 0 1 0

1 4 0 0

2 6 0 0 0

3 5 1 0

0 0 0 0
0 0 0 0
0 0 0

0 0 0 0

 
 
 =  
  
 

,  

where 0P  is a 16 16×  unit matrix, iP  is the cyclic-shifted matrix of 0P  to the right by i  bits, 
and 0  is a 16 16×  zero matrix.  
  When SNR=7 dB, 150N = , the iterations 50T = , in each iteration, there are 2000 times 
stochastic decomposition for each ε . Eighteen parity-checks are derived, the locations of 
whose nonzero bits are listed in Table 2. 
  In order to find correct Z , all of the common factors of 8Z and 4Z are traversed, and then 
the check code matrix is used to verify whether it is correct or not. Let take the first parity-
check vector as an example, where the location of nonzero elements in it is 21, 40, 84, 100, 
respectively, denoted as ( )21,  40,  84,  100h  for convenience. The number of code words in 
the check matrix checkA  is 1280, and we know the common factors of 128 and 64 are 2, 4, 8, 
16, 32, 64. When 2Z = , the ones belonging to different sub-matrices are rotated to the right 
one bit each time and we can get ( )22,  39,  83,  99h . We have 

( )( )T 21,40,84,100 53checkw ⋅ =A h  but ( )( )T 22,39,83,99 630checkw ⋅ =A h , which means 

( )22,  39,  83,  99h  is not a parity-check vector, thus 2Z ≠ . For 4,  8,  16Z = , the results are 
listed in Table 3, where we use cA and ′h  to replace checkA  and Th  respectively for 
convenience. It is similar for 32,  64Z = , but we will not list them out. 

   We can see that all of ( )T
checkw ⋅A h  are much smaller than 640

2
M

=  only when 16Z = , 

which indicates 16Z =  is correct. In the following, let us reconstruct the sparse quasi-cyclic 
parity-check matrix by using the sparse parity checks we have derived from the linear error 
equations. 
   From ( )21,  40,  84,  100h  we can see that, the first module is 0, the second module is 4P , 
the third module is 7P , the fourth and fifth module are 0, the sixth and seventh module are 

3P , and the eighth module is 0. Thus, the first row of these modules is 
( )P P P P1 4 0 0   0 0   00 . For ( )9,  43,  71,  118h , the first module is 8P , the second module 

is 0, the third module is 10P , the forth module is 0, the fifth module is 6P , the sixth and 
seventh module are 0, the eighth module is 5P , and therefore , the second row is 
( )P P P P3 5 1 0 0  0   0 0 . For ( )3,  51,  68,  83h , the first module is 2P , the second and third 

modules are 0, the forth module is 2P , the fifth module is 3P , the sixth module is 2P , the 
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seventh and eighth modules are 0, resulting in the third row of modules 
( )0P P P P0 0 1 0 0    0 0 . For ( )7,  28,  41,  64,69,74,106,116,122h , which is the combination 

of ( )7,  41,  69,  116h and ( )28,  64,  74,  106, 122h , ( )7,  41,  69,  116h  belongs to 

( )00P P P P3 5 1 0     0 0  but ( )28,  64,  74,  106, 122h  is not a member of them. In fact, for 

( )28,  64,  74,  106, 122h , the first module is 0, the second module is 11P , the third module 
is 0, the forth module is 15P , the fifth module is 9P , the sixth module is 0, the seventh and 
eighth modules are 9P , and thus we get the forth row of modules ( )0 0P P P P P2 6 00  0    0   . 

Up to now, the parity-check matrix of ( )8 ,4Z Z  LDPC code is reconstructed successfully.  
The correct identification probability with respect to different BER of our algorithm under 

different values of T  is given in Fig. 5. The algorithm for comparison is algorithm in [19]. 
When 50T =  and BER=0.013, the correct identification probability of our algorithm is 
100%, whereas it reaches 100% when 100T =  and BER=0.015. The correct identification 
probability increasing with the value of T  is consistent with our intuition. However, the 
correct identification probability of algorithm in [19] is less than 50% in this case. 

 
Fig. 5. The probability of identification of ( )8 ,4Z Z LDPC code with respect to different SNR from 

the algorithm in [19] and our method for 50T =  and 100T = , respectively. 
 

Table 2. The locations of nonzero elements of the derived parity-checks 

1 21,40,84,100 10 6,54,71,86 

2 9,43,71,118 11 2,36,80,127 

3 3,51,68,83 12 28,64,74,106,122 

4 20,39,83,99 13 39,53,67,70,85,114 
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5 28,47,91,107 14 9,26,45,57,74,105 

6 15,33,77,124 15 7,19,65,72,87,97,113 

7 7,41,69,116 16 10,14,58,62,75,79,90,94 

8 2,50,67,82 17 15,29,48,50,76,77,92,93,109 

9 10,58,75,90 18 7,28,41,64,69,74,106,116,122 

 

Table 3. The weight of ( )cw h′A for different Z 

4Z =  

( )21,  40,  84,  100h  ( )( )21,  40,  84,  100 53cw ′⋅ =A h  

( )22,  37,  81,  97h  ( )( )22,  37,  81,  97 631cw ′⋅ =A h  

( )23,  38,  82,  98h  ( )( )23,  38,  82,  98 600cw ′⋅ =A h  

( )24,  39,  83,  99h  ( )( )24,  39,  83,  99 667cw ′⋅ =A h  
8Z =  

( )21,  40,  84,  100h  ( )( )21,  40,  84,  100 53cw ′⋅ =A h  

( )22,  33,  85,  101h  ( )( )22,  33,  85,  101 636cw ′⋅ =A h  

( )23,  34,  86,  102h  ( )( )23,  34,  86,  102 642cw ′⋅ =A h  

( )24,  35,  87,  103h  ( )( )24,  35,  87,  103 627cw ′⋅ =A h  

( )17,  36,  88,  104h  ( )( )17,  36,  88,  104 602cw ′⋅ =A h  

( )18,  37,  81,  97h  ( )( )18,  37,  81,  97 70cw ′⋅ =A h  

( )19,  38,  82,  98h  ( )( )19,  38,  82,  98 65cw ′⋅ =A h  



3478                                                       Liu et al.: A Two-Step Screening Algorithm to Solve Linear Error Equations for 
 Blind Identification of Block Codes Based on Binary Galois Field 

( )20,  39,  83,  99h  ( )( )20,  39,  83,  99 62cw ′⋅ =A h  

16Z =  
( )21,  40,  84,  100h  ( )( )21,  40,  84,  100 53cw ′⋅ =A h  

( )22,  41,  85,  101h  ( )( )22,  41,  85,  101 57cw ′⋅ =A h  

( )23,  42,  86,  102h  ( )( )23,  42,  86,  102 64cw ′⋅ =A h  

( )24,  43,  87,  103h  ( )( )24,  43,  87,  103 61cw ′⋅ =A h  

( )25,  44,  88,  104h  ( )( )25,  44,  88,  104 65cw ′⋅ =A h  

( )26,  45,  89,  105h  ( )( )26,  45,  89,  105 60cw ′⋅ =A h  

( )27,  46,  90,  106h  ( )( )27,  46,  90,  106 46cw ′⋅ =A h  

( )28,  47,  91,  107h  ( )( )28,  47,  91,  107 65cw ′⋅ =A h  

( )29,  48,  92,  108h  ( )( )29,  48,  92,  108 52cw ′⋅ =A h  

( )30,  33,  93,  109h  ( )( )30,  33,  93,  109 60cw ′⋅ =A h  

( )31,  34,  94,  110h  ( )( )31,  34,  94,  110 58cw ′⋅ =A h  

( )32,  35,  95,  111h  ( )( )32,  35,  95,  111 56cw ′⋅ =A h  

( )17,  36,  96,  112h  ( )( )17,  36,  96,  112 61cw ′⋅ =A h  

( )18,  37,  81,  97h  ( )( )18,  37,  81,  97 70cw ′⋅ =A h  

( )19,  38,  82,  98h  ( )( )19,  38,  82,  98 65cw ′⋅ =A h  

( )20,  39,  83,  99h  ( )( )20,  39,  83,  99 62cw ′⋅ =A h  

5. Conclusion 
In this paper, a novel two-step screening method is proposed to deal with the problem of 
blind identification of block codes without a candidate set. In the first step of screening, we 
resolve some vectors which satisfy most of the given linear error equations and put them in a 
set Θ . In the second step, we choose the members which make ( )T

checkw β⋅ <A h  from Θ  

using a check matrix checkA . Then we can reconstruct the parity-check matrix as long as we 
can derive enough linear independent vectors. Simulation results demonstrate that our 
method has a better fault-tolerant ability than those using GCE as the main step. In the future 
work, we plan to combine the advantages of our method with that in [19] to solve the 
identification problem of linear block codes of a large block length without a quasi-cyclic 
structure. 
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