• 제목/요약/키워드: ($P,P^t,B$)-operator

검색결과 60건 처리시간 0.026초

WEYL@S THEOREMS FOR POSINORMAL OPERATORS

  • DUGGAL BHAGWATI PRASHAD;KUBRUSLY CARLOS
    • 대한수학회지
    • /
    • 제42권3호
    • /
    • pp.529-541
    • /
    • 2005
  • An operator T belonging to the algebra B(H) of bounded linear transformations on a Hilbert H into itself is said to be posinormal if there exists a positive operator $P{\in}B(H)$ such that $TT^*\;=\;T^*PT$. A posinormal operator T is said to be conditionally totally posinormal (resp., totally posinormal), shortened to $T{\in}CTP(resp.,\;T{\in}TP)$, if to each complex number, $\lambda$ there corresponds a positive operator $P_\lambda$ such that $|(T-{\lambda}I)^{\ast}|^{2}\;=\;|P_{\lambda}^{\frac{1}{2}}(T-{\lambda}I)|^{2}$ (resp., if there exists a positive operator P such that $|(T-{\lambda}I)^{\ast}|^{2}\;=\;|P^{\frac{1}{2}}(T-{\lambda}I)|^{2}\;for\;all\;\lambda)$. This paper proves Weyl's theorem type results for TP and CTP operators. If $A\;{\in}\;TP$, if $B^*\;{\in}\;CTP$ is isoloid and if $d_{AB}\;{\in}\;B(B(H))$ denotes either of the elementary operators $\delta_{AB}(X)\;=\;AX\;-\;XB\;and\;\Delta_{AB}(X)\;=\;AXB\;-\;X$, then it is proved that $d_{AB}$ satisfies Weyl's theorem and $d^{\ast}_{AB}\;satisfies\;\alpha-Weyl's$ theorem.

Rank-preserver of Matrices over Chain Semiring

  • Song, Seok-Zun;Kang, Kyung-Tae
    • Kyungpook Mathematical Journal
    • /
    • 제46권1호
    • /
    • pp.89-96
    • /
    • 2006
  • For a rank-1 matrix A, there is a factorization as $A=ab^t$, the product of two vectors a and b. We characterize the linear operators that preserve rank and some equivalent condition of rank-1 matrices over a chain semiring. We also obtain a linear operator T preserves the rank of rank-1 matrices if and only if it is a form (P, Q, B)-operator with appropriate permutation matrices P and Q, and a matrix B with all nonzero entries.

  • PDF

ISOLATION NUMBERS OF INTEGER MATRICES AND THEIR PRESERVERS

  • Beasley, LeRoy B.;Kang, Kyung-Tae;Song, Seok-Zun
    • 대한수학회보
    • /
    • 제57권3호
    • /
    • pp.535-545
    • /
    • 2020
  • Let A be an m × n matrix over nonnegative integers. The isolation number of A is the maximum number of isolated entries in A. We investigate linear operators that preserve the isolation number of matrices over nonnegative integers. We obtain that T is a linear operator that strongly preserve isolation number k for 1 ≤ k ≤ min{m, n} if and only if T is a (P, Q)-operator, that is, for fixed permutation matrices P and Q, T(A) = P AQ or, m = n and T(A) = P AtQ for any m × n matrix A, where At is the transpose of A.

INEQUALITIES OF OPERATOR POWERS

  • Lee, Eun-Young;Lee, Mi-Ryeong;Park, Hae-Yung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제12권1호
    • /
    • pp.1-6
    • /
    • 2008
  • Duggal-Jeon-Kubrusly([2]) introduced Hilbert space operator T satisfying property ${\mid}T{\mid}^2{\leq}{\mid}T^2{\mid}$, where ${\mid}T{\mid}=(T^*T)^{1/2}$. In this paper we extend this property to general version, namely property B(n). In addition, we construct examples which distinguish the classes of operators with property B(n) for each $n{\in}\mathbb{N}$.

  • PDF

A REMARK ON SOME INEQUALITIES FOR THE SCHATTEN p-NORM

  • HEDAYATIAN, K.;BAHMANI, F.
    • 호남수학학술지
    • /
    • 제24권1호
    • /
    • pp.9-23
    • /
    • 2002
  • For a closed densely defined linear operator T on a Hilbert space H, let ${\prod}$ denote the function which corresponds to T, the orthogonal projection from $H{\oplus}H$ onto the graph of T. We extend some ordinary norm ineqralites comparing ${\parallel}{\Pi}(A)-{\Pi}(B){\parallel}$ and ${\parallel}A-B{\parallel}$ to the Schatten p-norm where A and B are bounded operators on H.

  • PDF

WEYL'S TYPE THEOREMS FOR ALGEBRAICALLY (p, k)-QUASIHYPONORMAL OPERATORS

  • Rashid, Mohammad Hussein Mohammad;Noorani, Mohd Salmi Mohd
    • 대한수학회논문집
    • /
    • 제27권1호
    • /
    • pp.77-95
    • /
    • 2012
  • For a bounded linear operator T we prove the following assertions: (a) If T is algebraically (p, k)-quasihyponormal, then T is a-isoloid, polaroid, reguloid and a-polaroid. (b) If $T^*$ is algebraically (p, k)-quasihyponormal, then a-Weyl's theorem holds for f(T) for every $f{\in}Hol({\sigma}T))$, where $Hol({\sigma}(T))$ is the space of all functions that analytic in an open neighborhoods of ${\sigma}(T)$ of T. (c) If $T^*$ is algebraically (p, k)-quasihyponormal, then generalized a-Weyl's theorem holds for f(T) for every $f{\in}Hol({\sigma}T))$. (d) If T is a (p, k)-quasihyponormal operator, then the spectral mapping theorem holds for semi-B-essential approximate point spectrum $\sigma_{SBF_+^-}(T)$, and for left Drazin spectrum ${\sigma}_{lD}(T)$ for every $f{\in}Hol({\sigma}T))$.

ESTIMATES FOR RIESZ TRANSFORMS ASSOCIATED WITH SCHRÖDINGER TYPE OPERATORS

  • Wang, Yueshan
    • 대한수학회보
    • /
    • 제56권5호
    • /
    • pp.1117-1127
    • /
    • 2019
  • Let ${\mathcal{L}}_2=(-{\Delta})^2+V^2$ be the $Schr{\ddot{o}}dinger$ type operator, where nonnegative potential V belongs to the reverse $H{\ddot{o}}lder$ class $RH_s$, s > n/2. In this paper, we consider the operator $T_{{\alpha},{\beta}}=V^{2{\alpha}}{\mathcal{L}}^{-{\beta}}_2$ and its conjugate $T^*_{{\alpha},{\beta}}$, where $0<{\alpha}{\leq}{\beta}{\leq}1$. We establish the $(L^p,\;L^q)$-boundedness of operator $T_{{\alpha},{\beta}}$ and $T^*_{{\alpha},{\beta}}$, respectively, we also show that $T_{{\alpha},{\beta}}$ is bounded from Hardy type space $H^1_{L_2}({\mathbb{R}}^n)$ into $L^{p_2}({\mathbb{R}}^n)$ and $T^*_{{\alpha},{\beta}}$ is bounded from $L^{p_1}({\mathbb{R}}^n)$ into BMO type space $BMO_{{\mathcal{L}}1}({\mathbb{R}}^n)$, where $p_1={\frac{n}{4({\beta}-{\alpha})}}$, $p_2={\frac{n}{n-4({\beta}-{\alpha})}}$.

POSITIVE SOLUTIONS FOR MULTIPOINT BOUNDARY VALUE PROBLEMS WITH ONE-DIMENSIONAL p-LAPLACIAN OPERATOR

  • Xu, Fuyi;Meng, Zhaowei;Zhao, Wenling
    • Journal of applied mathematics & informatics
    • /
    • 제26권3_4호
    • /
    • pp.457-469
    • /
    • 2008
  • In this paper, we study the existence of positive solutions for the following nonlinear m-point boundary value problem with p-Laplacian: $\{{{{(\phi_p(u'))'\;+\;f(t,u(t))=0, \;0<t<1,} \atop u'(0)={\sum}{^{m-2}_{i=1}}\;a_iu'(\xi_i),} \atop u(1)={\sum}{^k_{i=1}}\;b_iu(\xi_i)\;-\;{\sum}{^s_{i=k+1}}\;b_iu(\xi_i)\;-\;{\sum}{^{m-2}_{i=s+1}}\;b_iu'(xi_i),}$ where ${\phi}_p(s)$ is p-Laplacian operator, i.e., ${\phi}_p(s)=\mid s\mid^{p-2}s$, p>1, ${\phi}_q\;=\;({\phi}_p)^{-1}$, $\frac{1}{p}+\frac{1}{q}=1$, $1\;{\leq}\;k\;{\leq}\;s\;{\leq}m\;-\;2$, $b_i\;{\in}\;(0,+{\infty})$ with $0\;<\;{\sum}{^k_{k=1}}\;b_i\;-\;{\sum}{^s_{i=k+1}}\;b_i\;<\;1$, $0\;<\;{\sum}{^{m-2}_{i=1}}\la_i\;<\;1$, $0\;<\;{\xi}_1\;<\;{\xi}_2\;<\;{\cdots}\;<\;{\xi}_{m-2}\;<\;1$, $f\;{\in}\;C([0,\;1]\;{\times}\;[0,\;+{\infty}),\;[0,\;+{\infty}))$. We show that there exists one or two positive solutions by using fixed-point theorem for operator on a cone. The conclusions in this paper essentially extend and improve the known results.

  • PDF

HARDY TYPE ESTIMATES FOR RIESZ TRANSFORMS ASSOCIATED WITH SCHRÖDINGER OPERATORS ON THE HEISENBERG GROUP

  • Gao, Chunfang
    • 대한수학회지
    • /
    • 제59권2호
    • /
    • pp.235-254
    • /
    • 2022
  • Let ℍn be the Heisenberg group and Q = 2n + 2 be its homogeneous dimension. Let 𝓛 = -∆n + V be the Schrödinger operator on ℍn, where ∆n is the sub-Laplacian and the nonnegative potential V belongs to the reverse Hölder class $B_{q_1}$ for q1 ≥ Q/2. Let Hp𝓛(ℍn) be the Hardy space associated with the Schrödinger operator 𝓛 for Q/(Q+𝛿0) < p ≤ 1, where 𝛿0 = min{1, 2 - Q/q1}. In this paper, we consider the Hardy type estimates for the operator T𝛼 = V𝛼(-∆n + V )-𝛼, and the commutator [b, T𝛼], where 0 < 𝛼 < Q/2. We prove that T𝛼 is bounded from Hp𝓛(ℍn) into Lp(ℍn). Suppose that b ∈ BMO𝜃𝓛(ℍn), which is larger than BMO(ℍn). We show that the commutator [b, T𝛼] is bounded from H1𝓛(ℍn) into weak L1(ℍn).

ON n-TUPLES OF TENSOR PRODUCTS OF p-HYPONORMAL OPERATORS

  • Duggal, B.P.;Jeon, In-Ho
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제11권4호
    • /
    • pp.287-292
    • /
    • 2004
  • The operator $A \; {\in} \; L(H_{i})$, the Banach algebra of bounded linear operators on the complex infinite dimensional Hilbert space $\cal H_{i}$, is said to be p-hyponormal if $(A^\ast A)^P \geq (AA^\ast)^p$ for $p\; \in \; (0,1]$. Let (equation omitted) denote the completion of (equation omitted) with respect to some crossnorm. Let $I_{i}$ be the identity operator on $H_{i}$. Letting (equation omitted), where each $A_{i}$ is p-hyponormal, it is proved that the commuting n-tuple T = ($T_1$,..., $T_{n}$) satisfies Bishop's condition ($\beta$) and that if T is Weyl then there exists a non-singular commuting n-tuple S such that T = S + F for some n-tuple F of compact operators.

  • PDF