INEQUALITIES OF OPERATOR POWERS

EUN YOUNG LEE ${ }^{1}$, MI RYEONG LEE ${ }^{2 \dagger}$, AND HAE YUNG PARK ${ }^{1}$
${ }^{1}$ Department of Mathematics, Kyungpook National University, Daegu, 702-701, Korea
E-mail address: \{eee-222, labenda2\}@hanmail. net
${ }^{2}$ Faculty of Liberal Education, Kyungpook National University, DaEgu, 702-701, Korea
E-mail address: leemr@knu.ac.kr

Abstract

Duggal-Jeon-Kubrusly ([2]) introduced Hilbert space operator T satisfying property $|T|^{2} \leq\left|T^{2}\right|$, where $|T|=\left(T^{*} T\right)^{1 / 2}$. In this paper we extend this property to general version, namely property $B(n)$. In addition, we construct examples which distinguish the classes of operators with property $B(n)$ for each $n \in \mathbb{N}$.

1. INTRODUCTION

Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space, and let $\mathcal{L}(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H}. An operator T in $\mathcal{L}(\mathcal{H})$ is said to be p-hyponormal if $\left(T^{*} T\right)^{p}-\left(T T^{*}\right)^{p} \geq 0, p \in(0, \infty)$. If $p=1$, then T is hyponormal. The LöwnerHeinz inequality $([3])$ implies that every p-hyponormal operator is a q-hyponormal operator for $0<q \leq p$. In particular, T is said to be ∞-hyponormal if T is p-hyponormal for every $p>0$ ([7]). An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be an $A(p)$-operator if $\left(T^{*}|T|^{2 p} T\right)^{1 /(p+1)} \geq|T|^{2}$ $(0<p<\infty)$ where $|T|=\left(T^{*} T\right)^{1 / 2}$. It is well known that every p-hyponormal is $A(p)$ operator($[3]$).

In [2], Duggal-Jeon-Kubrusly studied operators T on \mathcal{H} satisfying property

$$
\begin{equation*}
|T|^{2} \leq\left|T^{2}\right| \tag{1}
\end{equation*}
$$

In this paper we extend this property to a general version, namely property $B(n)$ whose definition will be introduced in Section 3. The operator satisfying (1) will be equivalent to property $B(2)$. It follows from (1) that an operator T in $\mathcal{L}(\mathcal{H})$ has property $B(2)$ if and only if T is $A(1)$-operator. Because only a few examples for property (1) have been known, it is worthwhile to find such examples.

In this paper, we construct examples which distinguish property $B(n)$ of an operator in $\mathcal{L}(\mathcal{H})$ for each $n \geq 2$. Also, we see the relationships between property $B(n)$ for each $n \geq 2$ and hyponormality of an operator T on \mathcal{H} from some simple examples. In addition, we show mutually disjoint ranges of property $B(n)$ for $n \geq 2$ of operator in the 2-dimensional space.

[^0]
2. Property $\mathbf{B}(\mathbf{n})$

For $n \geq 2$, an operator $T \in \mathcal{L}(\mathcal{H})$ has the property $B(n)$ if $\left|T^{n}\right| \geq|T|^{n}$. If T is a p hyponormal operator for $p>0$, then $T^{* n} T^{n} \geq\left(T^{*} T\right)^{n}$ for all positive integer $n<p([8])$. Hence we have the following proposition.

Proposition 2.1. If T is ∞-hyponormal, then T has property $B(n)$ for all $n \geq 2$.

Proof. Since T is ∞-hyponormal, T is $(n+1)$-hyponormal for all $n \in \mathbb{N}$. By the above known result, we have that $T^{* n} T^{n} \geq\left(T^{*} T\right)^{n}$, which implies that $\left|T^{n}\right|^{2} \geq|T|^{2 n}$. By Löwner-Heinz inequality $([3]),\left|T^{n}\right| \geq|T|^{n}$. Thus, T has property $B(n)$.

Theorem 2.2. Let W_{α} be a weighted shift with weight sequence $\alpha=\left\{\alpha_{k}\right\}_{k=0}^{\infty}$. Then W_{α} has property $B(n)$ if and only if

$$
\left|\alpha_{k+1}\right| \cdot\left|\alpha_{k+2}\right| \cdots\left|\alpha_{k+n-1}\right| \geq\left|\alpha_{k}\right|^{n-1}
$$

for all $k=0,1, \cdots$.
Proof. If W_{α} has property $B(n)$, then we have $\left|W_{\alpha}{ }^{n}\right| \geq\left|W_{\alpha}\right|^{n}$. Hence by simple computation, we have

$$
\left|W_{\alpha}{ }^{n}\right|^{2}=\left(W_{\alpha}^{*}\right)^{n} W_{a}^{n}=\operatorname{Diag}\left\{\left|\alpha_{0} \alpha_{1} \cdots \alpha_{n-1}\right|^{2},\left|\alpha_{1} \alpha_{2} \cdots \alpha_{n}\right|^{2},\left|\alpha_{2} \alpha_{3} \cdots \alpha_{n+1}\right|^{2}, \ldots\right\}
$$

and

$$
\left|W_{\alpha}\right|^{2 n}=\left(W_{\alpha}^{*} W_{\alpha}\right)^{n}=\operatorname{Diag}\left\{\left|\alpha_{0}\right|^{2 n},\left|\alpha_{1}\right|^{2 n},\left|\alpha_{2}\right|^{2 n}, \ldots\right\}
$$

Thus W_{α} has property $B(n)$, which is equivalent to $\left|\alpha_{k} \alpha_{k+1} \cdots \alpha_{k+n-1}\right| \geq\left|\alpha_{k}\right|^{n}(k \geq 0)$, i.e.,

$$
\left|\alpha_{k+1}\right| \cdot\left|\alpha_{k+2}\right| \cdots\left|\alpha_{k+n-1}\right| \geq\left|\alpha_{k}\right|^{n-1} \quad(k \geq 0)
$$

This completes the proof.

Corollary 2.3. Let W_{α} be a weighted shift with weight sequence α. Then we have the following statements.
(i) W_{α} has property $B(2)$ if and only if W_{α} is hyponormal.
(ii) If W_{α} is hyponormal, then W_{α} has property $B(n)$ for all $n \geq 2$.

Proof. (i) By the Theorem 2.2 and the fact in [1], we may have that

$$
\begin{aligned}
& W_{\alpha} \text { has property } B(2) \Longleftrightarrow \alpha_{0} \leq \alpha_{1} \leq \alpha_{2} \leq \cdots \\
& \Longleftrightarrow W_{\alpha} \text { is hyponormal. }
\end{aligned}
$$

(ii) Using the above fact (i), we can easily obtain that

$$
\left|\alpha_{k+1}\right| \cdot\left|\alpha_{k+2}\right| \cdots\left|\alpha_{k+n-1}\right| \geq\left|\alpha_{k}\right|^{n-1}(k \geq 0)
$$

By Theorem 2.2, W_{α} has property $B(n)$ for each $n \geq 2$.

Theorem 2.4. Let W_{α} be a weighted shift with weight sequence

$$
\alpha: x \equiv \alpha_{0}, y \equiv \alpha_{1}, \alpha_{2} \leq \alpha_{3} \leq \alpha_{4} \leq \cdots \leq \alpha_{n} \leq \cdots
$$

for $x, y \geq 0$ and $\alpha_{2}>0$. For all $n \geq 2$, if we set

$$
\mathcal{B}_{n}:=\left\{(x, y): W_{\alpha} \text { has property } B(n)\right\}
$$

then we have
(i) $\mathcal{B}_{n}=\left\{(x, y): 0 \leq x \leq\left(\alpha_{2} \alpha_{3} \cdots \alpha_{n-1} y\right)^{\frac{1}{n-1}}, 0 \leq y \leq\left(\alpha_{2} \alpha_{3} \cdots \alpha_{n}\right)^{\frac{1}{n-1}}\right\}$,
(ii) $\mathcal{B}_{m} \subsetneq \mathcal{B}_{n}$ for $2 \leq m<n$,
(iii) $\bigcap_{n=2}^{\infty} \mathcal{B}_{n}=\left\{(x, y): 0 \leq x \leq y \leq \alpha_{2}\right\}$.

Proof. (i) By Theorem 2.2 and the condition of $0<\alpha_{k} \leq \alpha_{k+1}$ for all $k \geq 2$, we have that W_{α} has property $B(n)$, which is equivalent to $\alpha_{1} \alpha_{2} \cdots \alpha_{n-1} \geq \alpha_{0}^{n-1}$ and $\alpha_{2} \alpha_{3} \cdots \alpha_{n} \geq \alpha_{1}^{n-1}$, and that is

$$
\alpha_{2} \cdots \alpha_{n-1} y \geq x^{n-1} \text { and } 0 \leq y \leq\left(\alpha_{2} \alpha_{3} \cdots \alpha_{n}\right)^{\frac{1}{n-1}}
$$

for each $n \geq 2$.
(ii) Put $\bar{f}(n, x):=\frac{x^{n-1}}{\alpha_{2} \alpha_{3} \cdots \alpha_{n-1}}$ for all $n \geq 2$ and $x>0$. Then

$$
\frac{\partial f(n, x)}{\partial x}=\frac{(n-1) x^{n-2}}{\alpha_{2} \alpha_{3} \cdots \alpha_{n-1}}>0 \text { and } \frac{\partial^{2} f(n, x)}{\partial x^{2}}=\frac{(n-1)(n-2) x^{n-3}}{\alpha_{2} \alpha_{3} \cdots \alpha_{n-1}} \geq 0
$$

for all $n \geq 2$ and $x>0$. So the function $f(n, x)$ is strictly increasing function about $x>0$ and for all $n \geq 2$.
Suppose $2 \leq m<n$. For $0<x<\left(\alpha_{m} \alpha_{m+1} \cdots \alpha_{n-1}\right)^{\frac{1}{n-m}}$, we have

$$
f(n, x)-f(m, x)=\frac{x^{m-1}}{\alpha_{2} \cdots \alpha_{m-1}}\left(\frac{x^{n-m}}{\alpha_{m} \alpha_{m+1} \cdots \alpha_{n-1}}-1\right)<0
$$

i.e. $f(m, x)>f(n, x)$ for $2 \leq m<n$ and $x \in\left(0,\left(\alpha_{m} \alpha_{m+1} \cdots \alpha_{n-1}\right)^{\frac{1}{n-m}}\right)$.

Let we set $a_{n}:=\left(\alpha_{2} \alpha_{3} \cdots \alpha_{n}\right)^{\frac{1}{n-1}}$ for each $n \geq 2$. Then, using the assumption $0<\alpha_{k} \leq$ α_{k+1} for all $k \geq 2$, we obtain that

$$
\begin{aligned}
a_{n+1}-a_{n} & =\left(\alpha_{2} \alpha_{3} \cdots \alpha_{n+1}\right)^{\frac{1}{n}}-\left(\alpha_{2} \alpha_{3} \cdots \alpha_{n}\right)^{\frac{1}{n-1}} \\
& =\left(\alpha_{2} \cdots \alpha_{n}\right)^{\frac{1}{n}}\left[\alpha_{n+1}^{\frac{1}{n}}-\left(\alpha_{2} \cdots \alpha_{n}\right)^{\frac{1}{n(n-1)}}\right] \\
& \geq\left(\alpha_{2} \cdots \alpha_{n}\right)^{\frac{1}{n}}\left[\alpha_{n+1}^{\frac{1}{n}}-\alpha_{n}^{\frac{1}{n}}\right] \geq 0
\end{aligned}
$$

Therefore the sequence $\left\{\left(\alpha_{2} \alpha_{3} \cdots \alpha_{n}\right)^{\frac{1}{n-1}}: n=2,3, \ldots\right\}$ is an increasing sequence. Since $\mathcal{B}_{n}=\left\{(x, y): 0 \leq f(n, x) \leq y, 0 \leq y \leq a_{n}\right\}$ for each $n \geq 2$, we completes the proof of (ii).
(iii) From the facts (i) and (ii), the assertion (iii) is obvious.

Remark 2.5. For the weighted shift W_{α} in Theorem 2.4, we note the following facts:

$$
\begin{aligned}
W_{\alpha} \text { is } \infty \text {-hyponormal } & \Longleftrightarrow W_{\alpha} \text { is hyponormal } \\
& \Longleftrightarrow 0 \leq x \leq y \text { and } 0 \leq y \leq \alpha_{2} \\
& \Longleftrightarrow W_{\alpha} \text { has the property } B(n) \text { for all } n \geq 2
\end{aligned}
$$

In general, but the converse of Proposition 2.1 is not true (see Example 3.3).

3. Examples

The following example explains that for a weighted shift W_{α} with weight sequence α, there is no relation with the property $B(n)$ and $B(m)$ for $m, n>2$ with $m \neq n$.
Example 3.1. Consider a positive bounded sequence $\alpha=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$,

$$
\alpha_{0}=\frac{2}{3}, \alpha_{1}=\frac{40}{81}, \alpha_{2}=\frac{9}{10}, \alpha_{3}=\frac{16000}{59049}, \alpha_{4}=\frac{4782969}{1600000}, \alpha_{n+1}=\alpha_{n}+\frac{1}{n^{2}}(n \geq 4)
$$

Let W_{α} be the weighted shift with the above weight sequence α. Then W_{α} has property $B(3)$ but not property $B(4)$. In fact, from simple calculations, we have $\alpha_{k}^{2}=\alpha_{k+1} \alpha_{k+2}(k=0,1,2)$ and $\alpha_{k}^{2} \leq \alpha_{k+1} \alpha_{k+2}$ for all $k \geq 3$. So W_{α} satisfies property $B(3)$. But $\alpha_{0}^{3}=\frac{8}{27}>\alpha_{1} \alpha_{2} \alpha_{3}=$ $\frac{64000}{531441}$. Therefore W_{α} does not satisfy property $B(4)$.

For the distinction of property $B(n)$, we introduce the following example which classify them clearly for each $n \geq 2$.
Example 3.2. Let W_{α} be the Bergman shift with weight sequence

$$
\alpha: \sqrt{x}, \sqrt{y}, \sqrt{\frac{3}{4}}, \sqrt{\frac{4}{5}}, \sqrt{\frac{5}{6}}, \ldots, \sqrt{\frac{k+1}{k+2}}, \ldots(k \geq 2) .
$$

Then by Theorem 2.2 we may obtain the following assertion:

$$
W_{\alpha} \text { has property } B(n) \Leftrightarrow 0 \leq x \leq\left(\frac{3 y}{n+1}\right)^{\frac{1}{n-1}} \text { and } 0 \leq y \leq\left(\frac{3}{n+2}\right)^{\frac{1}{n-1}}
$$

for each $n \geq 2$. Hence

$$
\mathcal{B}_{n}=\left\{(x, y) \left\lvert\, 0 \leq x \leq\left(\frac{3 y}{n+1}\right)^{\frac{1}{n-1}}\right., 0 \leq y \leq\left(\frac{3}{n+2}\right)^{\frac{1}{n-1}}\right\}
$$

Now, we claim that $\mathcal{B}_{m} \subsetneq \mathcal{B}_{n}$ for $2 \leq m<n$. First, we write $f(n, x):=\frac{n+1}{3} x^{n-1}$ for all $n \geq 2$ and $x>0$. By the derivative of $f(n, x)$ about x, we can see that the function $f(n, x)$ is strictly increasing function about x for all $n \geq 2$. Suppose $2 \leq m<n$. For $0<x<\left(\frac{m+1}{n+1}\right)^{\frac{1}{n-m}}$, we have

$$
f(n, x)-f(m, x)=\frac{1}{3} x^{m-1}\left(x^{n-m}(n+1)-(m+1)\right)<0
$$

which is that, for $2 \leq m<n, f(m, x)>f(n, x)$ on $\left(0,\left(\frac{m+1}{n+1}\right)^{\frac{1}{n-m}}\right)$.

Also, by simple calculations, we have that the sequence $\left\{\left(\frac{3}{n+2}\right)^{\frac{1}{n-1}}: n=2,3, \ldots\right\}$ is an increasing sequence and converges to 1 . Therefore we have $\mathcal{B}_{m} \subsetneq \mathcal{B}_{n}$. In fact, we can easily show the disjoint ranges of properties $B(n)$ for each $n \geq 2$ of W_{α} by usual way.

For each integer $n \geq 2$, we consider the following block matrix of operators in [6] and [5].
Example 3.3. Let $C=\left(c_{i j}\right)$ be an $m \times m$ matrix with $c_{i j}=1 / m(1 \leq i, j \leq m)$ and let $D \equiv D\left(x_{1}, x_{2}, \ldots, x_{m}\right):=\operatorname{Diag}\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ with $x_{i} \geq 0, i=1, \ldots, m$. We define an operator $T\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ on $\mathcal{H} \equiv \mathbb{C}^{m} \otimes \ell_{2}(\mathbb{Z})$ by

$$
T:=T\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\left(\begin{array}{ccccccc}
\ddots & & & & & & \\
\ddots & O & & & & & \\
& C & O & & & & \\
& & C & \boxed{O} & & & \\
& & & D & O & & \\
& & & & D & O & \\
& & & & & \ddots & \ddots
\end{array}\right)
$$

where $\cdot \cdot$ denotes the center of the two sided infinite matrix. We note that $C^{p}=C$ for every $p>0$. By simple calculations, we have that

$$
\left(C D^{k} C\right)^{\frac{1}{2}}=\sqrt{\frac{x_{1}^{k}+x_{2}^{k}+\ldots+x_{m}^{k}}{m}} C
$$

and

$$
\left(C D^{k} C\right)^{\frac{1}{2}}-C \geq 0 \Leftrightarrow x_{1}^{k}+x_{2}^{k}+\ldots+x_{m}^{k} \geq m
$$

for $x_{i} \geq 0(i=1,2, \ldots, m)$ and $k \geq 1$. Hence T has property $B(n) \Leftrightarrow\left(T^{n *} T^{n}\right)^{\frac{1}{2}} \geq\left(T^{*} T\right)^{\frac{n}{2}}$, which is equivalent to

$$
\left(C D^{2} C\right)^{\frac{1}{2}} \geq C,\left(C D^{4} C\right)^{\frac{1}{2}} \geq C, \ldots,\left(C D^{2(n-1)} C\right)^{\frac{1}{2}} \geq C
$$

For an integer $n \geq 2$, we denote

$$
\mathcal{E}_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{m}\right): T \text { has property } B(n) \text { for } x_{i} \geq 0\right\}
$$

If x_{i} satisfy $x_{i} \geq m^{\frac{1}{2(l-1)}}$ for some i, then $x_{1}^{2(l-1)}+x_{2}^{2(l-1)}+\ldots+x_{m}^{2(l-1)} \geq m$. So we have that $x_{1}^{2(n-1)}+x_{2}^{2(n-1)}+\ldots+x_{m}^{2(n-1)} \geq m$ for $2 \leq l<n$. Suppose $0<x_{i}<m^{\frac{1}{2(n-1)}}$ for all $i=1,2, \ldots, m-1$ for all $n \geq 2$. Then we obtain that the function

$$
\phi_{m}\left(n, x_{1}, x_{2}, \ldots, x_{m-1}\right):=\left(m-x_{1}^{2(n-1)}-x_{2}^{2(n-1)}-\cdots-x_{m-1}^{2(n-1)}\right)^{\frac{1}{2(n-1)}}
$$

is strictly decreasing with respect to all $n \geq 2$ on $\left(0, m^{\frac{1}{2(n-1)}}\right) \times \cdots \times\left(0, m^{\frac{1}{2(n-1)}}\right)$ (see $[6]$ and [5] for the detail methods). Therefore we have

$$
\begin{aligned}
\mathcal{E}_{n} & =\left\{\left(x_{1}, \ldots, x_{m}\right):\left(C D^{2(j-1)} C\right)^{\frac{1}{2}} \geq C, 2 \leq j \leq n, x_{i} \geq 0,1 \leq i \leq m\right\} \\
& =\bigcap_{2 \leq j \leq n}\left\{\left(x_{1}, \ldots, x_{m}\right): x_{1}^{2(j-1)}+x_{2}^{2(j-1)}+\ldots+x_{m}^{2(j-1)} \geq m, x_{i} \geq 0,1 \leq i \leq m\right\} \\
& =\mathcal{E}_{2}
\end{aligned}
$$

Moreover, we have that

$$
\begin{aligned}
\mathcal{E}_{2} & =\left\{\left(x_{1}, \ldots, x_{m}\right): x_{1}^{2}+x_{2}^{2}+\ldots+x_{m}^{2} \geq m, x_{i} \geq 0,1 \leq i \leq m\right\} \\
& =\left\{\left(x_{1}, \ldots, x_{m}\right): T \text { is } A(1) \text {-operator }\right\}
\end{aligned}
$$

and T is ∞-hyponormal (see [5]). Therefore we have this implication: T is ∞-hyponormal \Rightarrow T is hyponormal $\Rightarrow T$ has property $B(2)$, and the converse is not true.

References

[1] J. Conway, Subnormal operators, Reseach Notes in Mathematices, Vol.51, Pitman Publ. Co., London, 1981.
[2] B. Duggal, I. Jeon, and C. Kubrusly, Contractions satisfying the absolute value property $|A|^{2} \leq\left|A^{2}\right|$, Integral Equations Operator Theory, 49(2004), 141-148.
[3] T. Furuta, Invitation to linear operators, Taylor and Francis Inc. London and New York, 2001.
[4] M. Fujii and Y. Nakatsu, On subclasses of hyponormal operators, Proc. Japan Acad., 51(1975), 243-246.
[5] I. Jung, M. Lee, and P. Lim, Gaps of opertaors, II, Glasgow Math. J., 47(2005), 461-469.
[6] I. Jung, P. Lim, and S. Park, Gaps of opertaors, J. Math. Anal. App., 304 (2005), 87-95.
[7] S. Miyajima and I. Saito, ∞-hyponormal operators and their spectral properties, Acta Sci. Math. (Szeged), 67(2001), 357-371.
[8] M. Yanagida, On powers of p-hyponormal and log-hyponormal operators and related results, Proceeding of KOTAC, 3(2000), 61-72.

[^0]: 2000 Mathematics Subject Classification. 47B20, 47B37, 47A63.
 Key words and phrases. p-hyponormal, ∞-hyponormal, $A(p)$-operator.
 ${ }^{\dagger}$ Corresponding author.

